
Visible Success Stories www.visible.com

__

Copyright © 2004 Visible Systems Corporation. All rights reserved.

- Page 1 -

A MENTOR FOR VISUAL BASIC-BASED
COMPONENT DEVELOPMENT

For experienced COM/COM developers, the benefits of Visible Designer are significant.
For newcomers to components, they are simply invaluable. At the price, large firms
should have no trouble justifying the cost to test Visible Developer on an upcoming
project. For small consultancies and lone developers the case is even more compelling.
Visible Developer, in my opinion, has a very solid future.

Object-oriented programming has been with us for thirty years now, long enough that we
can speak of “traditional” Object Oriented development. The move to component-based
development is a genuine paradigm shift: unsettling, radically different, and full of
promise. That many developers are only beginning to grasp this new way of thinking is
really not the problem. The real problem is that the tools to design software components
are only beginning to appear. Development tools are just beginning to change, or to put it
less charitably, they’re woefully behind our current ambitions.

Enter Visible Developer, from Visible Systems, an object-relational mapping tool that
reads a database schema and generates business objects. It’s almost completely
automatic, and it guides the developer through the difficult process of dividing an
application into distinct layers that communicate with each other. These layers become
ActiveX objects (DLLs or EXEs) and can reside virtually anywhere. Visible Developer
also makes smart decisions about which chunks of an application belong in which layer –
and then generates all the code required for the layered objects to communicate with each
other.

For this review, I tested Version 1.1 and concluded that Visible Developer will pay for
itself in less than a week. A Visual Basic add-in, Visible Developer is only visible while
Visual Basic is running on the add-in menu. The first step in creating a new project is to
identify the database on which to base the project. Next, you select the tables you want
to turn into business objects. Visible Developer then reads the database and creates a
tree-view with a list of business objects and their properties, methods and relationships.

Each table column becomes a property of the related object. At this point you can
customize the properties, supplying text labels and so on. You can add methods to each
object, if you wish, and also specify the nature of the relationships among the tables.
Next you decide how to structure the output – into one, two or three layers. Finally, you
click build and then sit back and watch Visible Developer generate your code.

Visible Success Stories www.visible.com

__

Copyright © 2004 Visible Systems Corporation. All rights reserved.

- Page 2 -

BENEFITS
Depending on the options you select, Visible Developer can generate a single executable,
a 2-tier or a 3-tier application. The first choice places all the objects in a single,
monolithic project – a good first step for newcomers. The other choices divide objects
into layers according to the following scheme:

• User Interface Layer – contains all the forms that participate in the project.
Objects in this layer know nothing about business rules or data access or database
schemas. All they do is communicate to the user, forward requests to the second
layer, and return the results of those requests to the UI.

• Logical Business Object Layer – contains the business objects which know all
about business rules and data validation and know nothing at all about either the
UI or the data access mechanisms beneath them in the layer three.

• Physical Business Object Layer – contains the persistence objects that read
from, and write to the database. The objects in this layer know all about the
physical storage underlying the application including: column and table names,
relationships among tables and referential integrity constraints.

The valuable stuff is in layers two and three – the user interface layer is mere proof of
concept. The forms are useful starting points, but in the average application none of them
will survive intact. Visible Developer makes no pretense of anything more. It’s not an
application generator - it focuses on the hard stuff.

During my testing, I pushed Visible Developer to limits it may never have seen, and
found its response thoroughly solid. Our application’s database involves more than
400 tables in a SQL Server 6.5 database. I ran Visible Developer against the
database and successfully generated over 1600 business objects based on it. (Not
surprisingly, it took a while.) Visible Developer successfully extracted all the table,
index and relationship information from the database, and created the appropriate
business objects in each category – over a million lines of code, not counting white
space. I distributed all these objects in a series of projects corresponding to the modules
that comprise our existing monolithic application.

Application Packaging
Visible Developer packages the resulting code in one, two or three Visual Basic projects:

• Single Project – Places all generated code in a single Visual Basic project that is
a standard executable.

• Two Projects – Places generated Forms in a standard executable; and logical and
physical Business Object classes in an ActiveX DLL.

Visible Success Stories www.visible.com

__

Copyright © 2004 Visible Systems Corporation. All rights reserved.

- Page 3 -

• Three Projects – Places Forms in a standard executable. Logical Business
Object classes are put in an ActiveX DLL; and physical Business Object classes
in an ActiveX DLL.

Containers
Another significant benefit is Visible Developer’s recognition of contained objects. A
contained object is based on an identifying relationship, for example the relationship
between “Orders” and “Order Items.” The latter have no meaning without the former –
they are identified by their belonging to a particular order and no other. By default,
Visible Developer identifies one-to-many relationships as reference, and does not create
contained objects – but the developer can use the Relationship Builder form in Visible
Developer to change a reference relationship to an identifying relationship. This change
results in the creation of a collection variable within the parent object, that houses the
instances of the contained object – or, in relational terms, the many rows in the child
table.

Finally, a major benefit of Visible Developer is what it calls “edit points” – clearly
marked points in the code where you might want to place customizations or
embellishments. The comments even suggest what sort of code should go there! This
becomes significant on regeneration of your objects. Any custom code added at the edit
points can be preserved and incorporated in subsequent generations. This feature allows
developers to work iteratively, refining their objects little by little and regenerating the
code several times in the course of a project.

Conclusions
For Experienced COM/COM developers, the benefits of Visible Developer are
significant. For newcomers to components, they are simply invaluable. At the price,
large firms should have no trouble justifying the cost, just to test Visible Developer on an
upcoming project. For small consultancies and lone developers, the case is even more
compelling. Visible Developer, in my opinion, has a very solid future.

By Arthur Fuller, Computing Canada

The Visible Developer was formerly called VBMentor. 3tSoftware was acquired by Visible Systems Corp.

	A Mentor for Visual Basic-based
	Component Development
	Benefits

