
episode 10

CPU Case

Allen Schmidt, Julie E. Kendall, and Kenneth E. Kendall

Classy Objects
“The prototypes and diagrams that we have created have really given us a feel for the project,” smiles Anna,
looking up from her computer. “I have a good sense about what we are doing.”

“Same here,” replies Chip. “But we need to work on the web pages that will be used by a wide variety
of faculty and staff.”

“Where do you want to start?” asks Anna. “Do you think that we should work on the class diagram?”
Chip leans back in his chair and thinks out loud, “No, we need to do some other modeling to determine

classes, attributes, and methods first. We have a preliminary E-R diagram as a starting point for entity class-
es. We should model the behavior of a number of prototypes. As a prototype is examined, we should be ask-
ing questions about each field. If the information is stored on a database table, we should obtain it somehow.”

“Yes, typically we would include it in a drop-down list,” Anna muses.
“Well, not necessarily,” counters Chip. “If there are too many entries, or if one list depends on a previ-

ous action, we should use Ajax to retrieve the information and update the web page, creating drop-down
lists or links.”

“The create programs that add new information will be the ones with the most keying, but the change,
delete, and query programs depend on stored data,” adds Anna. “Where should we start?”

“I’ve been giving a lot of thought to the prototype we created to use the Web to update the image of
all the software that is stored on a computer lab machine,” says Chip, leaning forward in his chair. “And by
lab room, I mean any classroom or lab that has the same set of software on each computer. The software
image is used to refresh any damaged computers or to replace software on a machine infected by a virus or
other problem.”

“Well, let’s have a look at that UPDATE LAB IMAGE prototype,” says Anna. Chip displays the
prototype (refer to the CPU case in Chapter 6). “We need to know the campus and room number to find
the software image,” says Chip, pointing to the first couple of fields on the web page. “These are stored on
database tables.”

“Yes, but these are stored with the administrative scheduling software on the mainframe,” interjects
Anna. “We could copy them to the web servers, but if the buildings or rooms change we will have inconsist-
ent data, and an unreliable system.”

“Ahh, I see what you mean,” says Chip. “Good thinking! We’ll have to get this data from the main-
frame.”

“This calls for the UPDATE LAB IMAGE activity diagram (illustrated in Figure E10.1),” remarks
Anna. “Why don’t I create the diagram and you check to verify that it’s correct?”

“Sounds good,” remarks Chip.
Anna starts to draw the diagram. “Since only certain staff members will have the authorization to

update the lab image, I think that it should start with them logging onto the system. If it is a valid logon, a
request will be sent to the mainframe state called GET CAMPUS BUILDING ROOMS to obtain both the
campus buildings and the rooms within them. This list gets sent back to the SEND CAMPUS BUILDING
LIST program on the web server, where it gets converted to an XML document and sent to the SELECT
CAMPUS BUILDING web page.”

Chip asks, “Are you going to put all the rooms into the list for all the buildings? That would be a large
XML document and may take a long time to load into the browser.”

“The other choice is to include just the buildings and then request the rooms for a selected campus
building,” answers Anna thoughtfully. “That would also be acceptable but would slow down the room se-
lection since the browser would have to wait for the rooms to be updated in the drop-down list. If the entire
XML document were sent at once, the room list would be quickly updated from the document elements at
the browser level. It would be very fast. So the user would select a campus building and only the rooms for
that building would display.”

“I’ve got an idea,” exclaims Chip. “When the program gets the building rooms, is there a way to select
only rooms that are computer labs?”

“That’s an excellent idea,” says Anna. “The XML document would be smaller, and load faster in the
browser. We may have to request a modification of the database table to have a code for computer labs.”

“I’ll check into it,” replies Chip. “So what happens after we get a lab room?”

M10_KEND3442_09_SE_C10_CPU.indd 1 1/7/13 11:15 AM

Anna thinks for a moment and then says, “We’ll need a lab image table on the web server containing
the room number and the software included in the room. This includes standard software, such as the operat-
ing system, word processing, and virus scanning software, since they may change from room to room. I’ll
add a state for the GET COMPUTER SOFTWARE FOR ROOM in the WEB SERVER swimlane.”

Chip asks, “Do we want to include a drop-down list for the software?”
“No, that would make it difficult to remove software, or to change the version,” replies Anna thought-

fully. “I think that we should display the software in a list on the web page and allow them to update the
version number.”

“The problem is that we may have a large list of software, and we have to delete some of the software
as well,” states Chip. “Why don’t we use an email model, with a check box in front of each software title
and limit the number of software titles per page? We would include a next page button to display the next
group of software titles.”

“How does the delete program know which software package to delete?” Anna asks.
“We need to include the software number as a hidden field that is transmitted to the web server,” an-

swers Chip. “What are your thoughts about adding software to the lab image?”

Figure E10.1 
UPDATE LAB IMAGE activity diagram.

Logon System Validate Logon

Select Campus
Building

Select Campus
Building List

Get Computer
Software For Room

Get Computer
Software Room

Find Matching
Software

Select Room

Select New
Software

Update
Software List

Update Lab
Software Images

Request Image
Changes

Web Page Action

Form Transmitted

Get Campus Building Rooms

Building Rooms

Invalid Logon Error

Building Room XML Values

Selected Building and Room

Software List

Software Changes

Successful Update

First 3 Letters of Software Sent

Matching Software Found

Matching Software Not Found

Add Software To Image

No More New Software

No New Software

No Changes

 More Software

Client Web Page Web Server Mainframe

M10_KEND3442_09_SE_C10_CPU.indd 2 1/7/13 11:15 AM

Anna thinks for a few minutes and then says, “Why don’t we use Ajax again to have them enter the
first few letters of the software title into an input text field? We could send the request to the Software table
on the web server and return a list of the titles that match. The web page would create a rectangular block
floating on top of the web page with a list of the software title links and hidden fields stored with the link.
The user would click a title and it would be added to the image. Then they could add another software title
if needed. This is the SELECT NEW SOFTWARE activity sending the first three letters to the web server
FIND MATCHING SOFTWARE state. UPDATE SOFTWARE LIST creates the floating block of titles.”

“Great idea!” exclaims Chip.
“When they are done adding software, checking software to be removed, and changing version numbers,

they click a submit button and the lab image database table is updated with the changes,” says Anna. “The
REQUEST IMAGE CHANGES state sends the changes to the UPDATE LAB SOFTWARE IMAGE state.

“This is fun,” grins Chip. “Let me work on a sequence diagram for the UPDATE LAB IMAGE pro-
totype (illustrated in Figure E10.2). Chip starts by sending the request for the Update Lab Web page. The
server sends the getCampus() message to the CAMPUS class, which returns the campusList, including a
campusCode and a campusDescription. The controller sends a message to the CAMPUS ROOM class to
obtain rooms that contain lab software, which are returned to the UPDATE COMPUTER LAB IMAGE
CONTROLLER. The controller class creates the roomList XML document and sends it to the Web browser,
which creates the Campus Building selection list. When the Campus Building list is changed, the Web
browser uses the same XML document to change the Room Number drop-down list to include only lab
rooms in the selected campus building.

When the Room Number drop-down list is changed, a getRoomSoftware() request is sent to the con-
troller class, which sends a getImageSoftware() message to the SOFTWARE IMAGE class. Using the room
number, the software is obtained and returned in the softwareList. The controller class uses the softwareList
to create the XML that is sent to the UPDATE COMPUTER LAB IMAGE interface class, which updates
the web page with the software titles.

When a partial software title is entered, a selectSoftware() request is sent to the UPDATE COM-
PUTER LAB IMAGE CONTROLLER, which sends a findSoftware() message to the SOFTWARE en-
tity class. The matching software is found and the softwareList containing the software number, descrip-
tion, and version, is sent to the controller class. This formats the XML document, which is sent to the

Figure E10.2 
UPDATE LAB IMAGE sequence diagram.

:Update
Computer
Lab Image

:Campus :Campus
Room

:Software
Image :Software

load update lab
WebPage

update lab
softwareWebPage

change Campus List

sendWebPageURL

send Lab Image Page

getCampusRoom()

getcampus()

return campusList

return roomList

return softwareList

return success

return softwareList

findSoftware()

getRoom()

getRoomSoftware() get ImageSoftware()

updateRoomImage()

update roomList

update software list

selectSoftware()

return matchingTitles

update Image()

Send Confirmation

change Room List

display lab software

display New Software

send Image Request

enter Partial
software Title

room List Available

:Update
Computer
Lab Image
Controller

Faculty

M10_KEND3442_09_SE_C10_CPU.indd 3 1/7/13 11:15 AM

UPDATE COMPUTER LAB IMAGE interface class. The Web browser formats the floating block of
software titles. When a title is selected, the browser adds it to the list of software titles and the floating
block is removed.

When the Send Image Request button is clicked on the web page, the updateImage() request is
sent to the controller, which sends an updateRoomImage() message to the SOFTWARE IMAGE entity
class. The database table is updated, and success is returned to the controller, which sends a confirma-
tion web page.

“The software seems to be a bit complicated, with different versions and software packages being
replaced by different ones,” comments Anna. “I think that it is a good idea to draw a statechart diagram for
software. This will give us a feeling for the software methods and attributes, and the interface that we will
need to change the attributes.”

Anna starts to work on a SOFTWARE statechart diagram. When software is first received, it is entered
into the system using the Microsoft Access ADD SOFTWARE form and the initial attribute values are
changed. All software must be added before it is permissible to install the software on machines, so the
SOFTWARE INSTALLED ON MACHINES event is deferred until it has been added.

After the software has been installed on any number of machines, it exists in the INSTALLED
SOFTWARE state for a long time. The HARDWARE-SOFTWARE relational table is updated to
reflect the current state. From time to time a machine is replaced and the software is moved to a dif-
ferent machine. The HARDWARE-SOFTWARE is again updated to reflect the new location. When
a new version of the software is available, the version is updated with a CHANGE SOFTWARE Mi-
crosoft Access form. Alternatively the software may be removed from the system, using a DELETE
SOFTWARE Microsoft Access form. The completed SOFTWARE statechart diagram is illustrated in
Figure E10.3.

Chip and Anna work on a number of activity, sequence, and statechart diagrams. After they have
completed a number of diagrams Chip remarks, “I think that we have enough information to create a class
diagram.”

Figure E10.3 
SOFTWARE statechart diagram.

Received
Software

Moved
Software

Installed
Software

Updated
Software

Removed
Software

software installed
on machines

software updated

software moved to
new machine software

updated

unused
software

software
received

M10_KEND3442_09_SE_C10_CPU.indd 4 1/7/13 11:15 AM

Anna agrees, “Yes, let’s map out the relationships.”
The COMPUTER SYSTEM class diagram is illustrated in Figure E10.4. Each class has private at-

tributes and public methods in Microsoft Access to update the attributes. The major classes are Computer
and Software, with a HardwareSoftware associative class connecting them. This is used to implement the
many-to-many relationship between hardware and software. Each software package belongs to one Soft-
ware Category and also has one Software Expert to call upon for support. Each computer has one or more
operating systems, and is located in one campus building.

Computer

–hardwareInventoryNumber
–computerType
–brandName
–model
–serialNumber
–datePurchased
–purchaseCost
–relacementCost
–memorySize
–hardDriveCapacity
–secondHardDriveCapacity
–opticalDrive
–warranty
–campusCode
–roomLocation
–vendorNumber
+addComputer()
+changeComputer()
+deleteComputer()
+getComputer()

Software

–softwareInventoryNumber
–title
–operatingSystemName
–versionNumber
–publisher
–softwareCategoryCode
–computerBrand
–memoryRequired
–siteLicense
–numberOfCopies
–softwareCost
–employeeNumber

+addSoftware()
+changeSoftware()
+getSoftware()
+getSoftwareTitle()
+removeSoftware()

Campus Building

–campusCode
–campusDescription

+addBuilding()

Software Expert

–employeeNumber
–lastName
–firstName
–officeTelephone
–email
–departmentCode
–teachCourse
+addExpert()
+changeExpert()
+removeExpert()
+getExpert()

HardwareSoftware
–hardwareInventoryNumber
–softwareInventoryNumber

+installSoftware()
+updateVersion()
+removeSoftware()
+getSoftware()
+getHardware()

Operating System
–operatingSystemCode
–operatingSystemMeaning

+addOperatingSystem()
+changeOperatingSystem()
+removeOperatingSystem()
+getOperatingSystem()

Software Category

–softwareCategoryCode
–softwareCategoryDescription

+addNewCategory()
+changeCategoryName()
+removeCategory()
+getCategory()

1
1

1

11

Figure E10.4 
COMPUTER SYSTEM class diagram.

M10_KEND3442_09_SE_C10_CPU.indd 5 1/7/13 11:15 AM

Exercises
E-1.  Use either Microsoft Visio or Visible Analyst to view the UPDATE LAB IMAGE activity diagram.

E-2. � Use either Microsoft Visio or Visible Analyst to view the UPDATE LAB IMAGE sequence diagram.

E-3.  Use either Microsoft Visio or Visible Analyst to view the SOFTWARE statechart diagram.

E-4.  Use either Microsoft Visio or Visible Analyst to view the COMPUTER SYSTEM class diagram.

The following exercises may be done with either Microsoft Visio or Visible Analyst. A rectangle will have
to be used for a class symbol when drawing sequence diagrams when using Microsoft Visio or Visible
Analyst (the class stereotype symbols are not available). Place a text label above each rectangle identifying
the type of class: interface, control, or entity.

E-5. � Modify and print the REGISTER FOR TRAINING activity diagram. Refer to Figure E12.3 in the
CPU Case Episode in Chapter 12 to see the prototype for this web page. Add the following state
symbols and event connections:

		   a. � The CREATE XML EMPLOYEE DATA state in the WEB SERVER swimlane, below the
GET EMPLOYEE INFORMATION state. Connect it with an event arrow coming from READ
EMPLOYEE RECORD. Label the event SEND EMPLOYEE DATA.

		   b. � Add the EMPLOYEE INFORMATION WEB PAGE state in the CLIENT WEB PAGE
swimlane, to the left of CREATE XML EMPLOYEE DATA state. Connect the two states
with an event arrow into the EMPLOYEE INFORMATION WEB PAGE state labeled SEND
EMPLOYEE XML DOCUMENT.

		   c. � Add a state below the CREATE XML EMPLOYEE DATA state called FIND SOFTWARE
TRAINING CLASS. Connect it with an event arrow coming from the EMPLOYEE
INFORMATION WEB PAGE state labeled SELECTED SOFTWARE AND TRAINING
LEVEL.

		   d. � Include a decision diamond symbol below the FIND SOFTWARE TRAINING CLASS state.
Connect it with an event arrow coming to it from the FIND SOFTWARE TRAINING CLASS
state. An event should flow to the left into the EMPLOYEE INFORMATION WEB PAGE state
labeled CLASS NOT FOUND.

		   e. � Add a CHOOSE SOFTWARE CLASS state below the EMPLOYEE INFORMATION WEB
PAGE state, and somewhat below the decision diamond. Connect the bottom of the deci-
sion diamond with an event arrow going to the CHOOSE SOFTWARE CLASS state. Label it
SOFTWARE TRAINING CLASSES.

		   f. � Add a state below the decision diamond and somewhat below the CHOOSE SOFTWARE
CLASS state. Label it UPDATE CLASS PARTICIPANT.

		   g. � Connect the CHOOSE SOFTWARE CLASS state with an event arrow pointing to the UPDATE
CLASS PARTICIPANT state. Label it SEND ENROLL CLASS REQUEST.

		   h. � Add an exit circle symbol in the bottom of the Client Web Page swimlane. Connect the CHOOSE
SOFTWARE CLASS state with an event arrow pointing to the exit circle labeled CANCEL.

		   i. � Connect the UPDATE CLASS PARTICIPANT state with an event arrow pointing to the exit
circle labeled SUCCESSFUL UPDATE.

E-6. � Create and print the TRAINING CALENDAR activity diagram. The prototype for this web page
is illustrated in Figure E11.4, which can be found in the CPU Case Episode in Chapter 11. Add a
starting circle at the top left of the diagram and add the following swimlanes, state symbols, and
event connections:

		   a. � Add a swimlane on the left labeled CLIENT WEB PAGE and one on the right called WEB
SERVER.

		   b. � Add a starting circle at the top of the CLIENT WEB PAGE swimlane and below it a state
labeled REQUEST TRAINING CALENDAR WEB PAGE. Connect the starting circle to the
state with an event arrow.

		   c. � Add a state in the WEB SERVER swimlane, to the right of the REQUEST TRAINING
CALENDAR WEB PAGE state. Label it GET TRAINING CLASS.

		   d. � Connect the left state to the right one with an event arrow labeled FORM TRANSMITTED.
		   e. � Place a state below the GET TRAINING CLASS state. Label it GET TRAINING CLASS.

Connect the two states with a downward event arrow labeled SEND COURSE NUMBER.
		   f. � Place a state in the CLIENT WEB PAGE swimlane to the left of the GET TRAINING CLASS

state. Label it TRAINING CALENDAR COURSE DISPLAY. Connect the two states with a left
pointing event arrow labeled SEND TRAINING CLASS XML VALUES.

		   g. � Place an exit circle at the bottom of the CLIENT WEB PAGE swimlane. Connect the
TRAINING CALENDAR COURSE DISPLAY state with the exit circle. Connect the

M10_KEND3442_09_SE_C10_CPU.indd 6 1/7/13 11:15 AM

TRAINING CALENDAR COURSE DISPLAY state with an event arrow to the right and up the
right side of the WEB SERVER swimlane to the GET TRAINING CLASS state. Label it DATE
CHANGE OR SORT CHANGE.

E-7. � Modify and print the REGISTER FOR TRAINING sequence diagram. Add two new entity classes to
the right side of the diagram and extend the lifeline down to the bottom of the diagram. The classes are
Employee and Class. Add the following messages from the REGISTER FOR CLASS CONTROLLER
and add the focus of control rectangles where the messages interact with the class lifeline:

		   a.  getEmployee() from the controller to EMPLOYEE
		   b.  return employeeData from the EMPLOYEE class to the controller
		   c.  findSoftwareClass() from the controller to the CLASS entity class
		   d.  return softwareClassList from the CLASS entity class to the controller
		   e.  updateClassParticipant() from the controller to the CLASS entity class
		   f.  return success from the CLASS entity class to the controller
E-8. � Create and print the TRAINING CALENDAR sequence diagram. Add the Faculty actor in the

upper-left corner of the diagram and then the following classes from left to right along the top of
the diagram:

		   a.  Display Training Classes interface class
		   b.  Display Training Classes control class
		   c.  Class entity class
		   d.  Course entity class

Add the following messages between the classes or the actor to the class:

		   a.  Load Training Calendar web page from Faculty to the Display Training Classes interface class
		   b.  sendWebPageURL from Display Training Classes to Display Training Classes Controller
		   c.  getClass() from the controller to the Class entity class
		   d.  return classList from the Class entity class to the controller
		   e.  getCourseDescription() from the controller to the Course entity class
		   f.  return courseDescription from the Course entity class to the controller
		   g.  update courseList from the controller class to the Display Training Classes interface class
		   h.  Lab Software web page from the Display Training Classes interface class to the actor
		   i.  Change Month/Year from the actor to the Display Training Classes interface class
		   j. � A self-transition on the Display Training Classes interface class (using JavaScript to update the

calendar)
		   k.  New Calendar from the Display Training Classes interface class to the actor
		   l.  Change Date from the actor to the Display Training Classes interface class
		   m.  getNewClass() from the Display Training Classes to the controller
		   n.  Repeat steps c through g.
		   o.  Course List Available from the Display Training Classes interface class to the actor
E-9. � Modify and print the Training statechart diagram. Add two states after the CANCELED

TRAINING CLASS on the left side of the diagram. They are ACTIVE TRAINING CLASS and,
below it, COMPLETED TRAINING CLASS. Add a class below SCHEDULED TRAINING
CLASS called ENROLLED TRAINING CLASS. Add the following transitions:

		   a. � PARTICIPANTS ENROLLED from the SCHEDULED TRAINING CLASS state to the
ENROLLED TRAINING CLASS state

		   b. � IN SESSION CLASS from the ENROLLED TRAINING CLASS state to the ACTIVE
TRAINING CLASS state

		   c. � TRAINING SESSION ENDED from the ACTIVE TRAINING CLASS state to the
COMPLETED TRAINING CLASS state

		   d.  An ending arrow from the COMPLETED TRAINING CLASS state to a blank area to the right
E-10. � Create and print the COMPUTER statechart diagram. There are two columns of states. In the left

column, include the following states from the top to the bottom: NEW COMPUTER, CLEANING
COMPUTER, and RECYCLED COMPUTER. In the right column, include the following states
from the top to the bottom: INSTALLED COMPUTER, FUNCTIONAL COMPUTER, and
REPAIR HELD COMPUTER. Add the following transitions:

		   a. � COMPUTER RECEIVED, going from a point in space above the state rectangle into the NEW
COMPUTER state

		   b. � COMPUTER INSTALLED, going from the NEW COMPUTER state to the INSTALLED
COMPUTER state

		  c. � SOFTWARE INSTALLED, going from the INSTALLED COMPUTER state to the
FUNCTIONAL COMPUTER state

		   d. � MAINTENANCE SCHEDULED, going from the FUNCTIONAL COMPUTER state to the
CLEANING COMPUTER state

M10_KEND3442_09_SE_C10_CPU.indd 7 1/7/13 11:15 AM

		   e. � MAINTENANCE COMPLETE, going from the CLEANING COMPUTER state to the
FUNCTIONAL COMPUTER state

		   f. � PROBLEM REPORTED, going from the FUNCTIONAL COMPUTER state to the REPAIR
HELD COMPUTER state

		   g. � REPAIR COMPLETED from the REPAIR HELD COMPUTER state to the FUNCTIONAL
COMPUTER state

		   h. � REFRESH IDENTIFIED COMPUTER, going from the FUNCTIONAL COMPUTER state to
the RECYCLED COMPUTER state

		   i. � UNFEASIBLE REPAIR IDENTIFIED, going from the REPAIR HELD COMPUTER state to
the RECYCLED COMPUTER state

		   j.  An ending arrow from the RECYCLED COMPUTER state to a blank area below the state
E-11. � Modify and print the COMPUTER class diagram. Each computer may have one or more operat-

ing systems installed. Move the Operating System class to the right of its current location and add
a new class called Computer Operating System below the Computer class. Change the connecting
line from Computer to Operating System to connect the Operating System class to the Computer
Operating System class. Add a new relationship between the Computer class (the one end) to the
Computer Operating System class (the many end). Add the following attributes to the Computer
Operating System class:

HardwareInventoryNumber
operatingSystemCode

Add the following methods to the Computer Operating System class:

addComputerOperatingSystem()
removeComputerOperatingSystem()

The exercises preceded by a www icon indicate value-added material is available from the website www.pearsonhighered.
com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or a Microsoft Access
file that can be used to complete the exercises.

M10_KEND3442_09_SE_C10_CPU.indd 8 1/7/13 11:15 AM

www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall

