

Visible Analyst®

Operation Manual

Version VA2013

 Systems Corporation

Information in this document is subject to change without notice and does not represent a commitment on the part of

Visible Systems Corporation. The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used or copied only in accordance with the terms of this agreement.

It is against the law to copy the software onto any medium except as specifically allowed in the license or non-

disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,

including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible
Systems Corporation.

Copyright 2013 by Visible Systems Corporation
All rights reserved.

Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows 2000 and updated using Microsoft Word for Windows

2010. Information used in examples is fictitious and for purposes of example only.

Visible Analyst

Version VA2013
Operation Manual

Visible Analyst is a registered trademark of Visible Systems Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product and company names are trademarks or registered trademarks of their respective owners.

Visible Systems Corporation

63 Fountain Street

Kenwood Centre Suite 301B

Framingham, MA 01702

Technical Support: 781-778-0200

Fax: 508-628-1515

Internet: http://www.visible.com

E-mail: support@visible.com

http://www.visible.com/

iii

Table of Contents

INTRODUCTION ... 1

VISIBLE ANALYST .. 1
Visible Analyst Diagramming Tool... 1
Visible Rules ... 1
Visible Repository ... 1

VISIBLE ANALYST TOOL SETS .. 2
Strategic Planning .. 4
Visible Analyst Data Modeling Tool Set ... 4
Visible Analyst Process Modeling Tool Set .. 5
Visible Analyst Object Modeling Tool Set.. 5
Local Area Networks ... 6

GETTING STARTED... 7

STARTING OUT .. 7
SYSTEM REQUIREMENTS .. 7

Hardware Configuration .. 7
The Visible Analyst Database Manager .. 8

VISIBLE ANALYST INSTALLATION .. 11
Prior to Installing Visible Analyst ... 12
Installation Procedure .. 13
Completion of Single User Installation ... 13
Other installation Information ... 13
Uninstalling Visible Analyst ... 13
The VAW.INI File ... 14
Using the Mouse .. 15
Finding Help Whenever It’s Needed ... 15
Keyboard Shortcuts ... 16
Recognizing Illegal Commands ... 17
Don’t Forget To Save and Back Up .. 17
Information About Your Copy of Visible Analyst .. 19
Visible Analyst Menu Functions ... 20

UNDERSTANDING PROJECT TREES .. 35
Modifying a Project Tree ... 38
Inserting New Diagrams into a Project Tree ... 38
Copying Existing Diagrams Between Projects .. 41

PRINTING YOUR WORK ... 43
Print Options .. 43
Selecting Pages for Printing .. 45

iv

Printing ...46

STRATEGIC PLANNING ..47

PLANNING PHASE ..47
PLANNING STATEMENTS ..47

Object Links ...48
Statement Priority ..48
Statement Description ..48

DEFINING PLANNING STATEMENT TYPES ..49
PLANNING WINDOW ...51

Using the Planning Window ..52
Building a Planning Outline ...53
Control Bar Buttons ...53
Adding a New Statement ...54
Moving Statements ..55
Adding Additional Detail to a Planning Statement ..56

DRAWING DIAGRAMS ..59

THE DIAGRAMMING PROCESS ...59
Before You Begin ..59

CREATING A NEW PROJECT ..60
Rules and Repository Considerations ..61
ERD Notation ...62
Selecting an Existing Project ...62
The Uses of Different Diagram Types ...63
Creating a New Diagram ..65
Opening an Existing Diagram for Editing ..69

USING BOILERPLATES ...69
Enabling and Disabling Boilerplate ...69
Using Boilerplate Diagram Keywords ...72
More Information about Keywords ..72

A LOOK AT THE DOCUMENT WORKSPACE ...73
The Document Window ...73
The View Menu ...74
Window Menu..79

DRAWING DIAGRAMS ..80
Diagram Menu ...80
Scrolling a Diagram ...80
Drawing Modes ..81
Selecting Diagram Objects ...81
Drawing Symbols ...85
Drawing Lines ..99
Entering Text ...112

v

EDITING A DIAGRAM — OTHER DIAGRAMMING FUNCTIONS 126
Control Bar .. 127
Object Browser .. 128
The Edit Menu Functions .. 129
The Change Item Function .. 131
The Stylize Function .. 132
Changing the Size of a Symbol ... 133
Snap Symbols .. 134
The Project History Function .. 134
The Erase Changes Function ... 135

USING CONSTRUCTS .. 135
Creating a Construct .. 135
Loading a Construct .. 135
Deleting a Construct .. 136

NESTED DECOMPOSITION .. 137
Nesting Considerations .. 137
The Nest Procedure ... 138
Generating Process Decomposition Diagrams .. 140
Using Spawn with FDDs ... 140

THE DIAGRAM VIEW FUNCTIONS ... 143
Creating a New View .. 144
Creating a Process View .. 146
Creating or Printing a Global View ... 146
Modifying the Current View ... 146

LINKING MULTIPLE PAGE DIAGRAMS .. 146
Page Link Considerations When Using Rules ... 147
Selecting Page Link Symbols for Data Flow Diagrams .. 147
Page Linking for Structure Chart Diagrams .. 149
Page Linking for FDDs ... 152

CLUSTER DIAGRAMS ... 152
SAVING YOUR WORK... 153

Saving a New Diagram .. 154
EXAMPLE DIAGRAMS .. 154

THE VISIBLE RULES ... 163

VISIBLE RULES OVERVIEW .. 163
DATA FLOW DIAGRAMS ... 163

Structured Analysis Methods Overview .. 163
Process Modeling Graphics ... 165
Splitting Data Flows .. 167
Analyzing Data Flow Diagrams .. 170

FUNCTIONAL DECOMPOSITION DIAGRAMS .. 184
Business Planning Analysis Methods .. 184

vi

Analyzing FDDs ..187
STRUCTURE CHARTS ..194

Structured Design Overview ..194
Structure Chart Graphics ..195
Linking Structure Chart Pages Together ..203
Analyzing Structure Charts ..203
Analysis Statistics ..210

ENTITY RELATIONSHIP DIAGRAMS..212
Data Modeling Overview ...212
Data Modeling Graphics ..212
Analysis for Entity Relationship Diagrams ..213

CLASS DIAGRAMS ...230
Object Modeling Overview ..230
Object Modeling Graphics ...231
Analysis for Class Diagrams ..232

STATE TRANSITION DIAGRAMS ..235
Dynamic Modeling Overview ..235
Analysis for State Transition Diagrams ...236

ENTITY LIFE HISTORY DIAGRAMS ...238
Data Modeling Overview ...238
Entity Life History Graphics ..238
Analysis for Entity Life History Diagrams ..239

USE CASE DIAGRAMS ...242
Use Case Modeling Overview ...242
Use Case Graphics ...242
Analysis for Use Case Diagrams ..243

SEQUENCE DIAGRAMS...245
Sequence Modeling Overview ...245
Sequence Graphics ...245
Analysis for Sequence Diagrams ...245

COLLABORATION DIAGRAMS..247
Collaboration Modeling Overview...247
Collaboration Graphics ..247
Analysis for Collaboration Diagrams ...247

ACTIVITY DIAGRAMS...248
Activity Modeling Overview ...248
Activity Graphics ...249
Analysis for Activity Diagrams..249

THE VISIBLE REPOSITORY ...271

AN ORGANIZED PRESENTATION OF PROJECT DATA ...271
REPOSITORY BASICS ..272

Accessing the Repository ...272

vii

Hyperlinks ... 273
Understanding the Repository Dialog Box .. 274
The Repository Dialog Box Buttons.. 274
Repository Searches .. 277
Copying Data To and From DOS Files ... 279
Copying Data To and From the Windows Clipboard .. 280
Repository Object Menu .. 280
Enterprise Links... 280
Read-Only Indicator .. 280
Understanding Repository Fields .. 280
Planning Statement Links .. 311
External Links ... 312
Planning Statements .. 317
SQL View Support (IntelliViews) ... 317
Data Element Physical Information ... 331
Other Physical Characteristics Information ... 336
Extended Attributes ... 336
Other Repository Information ... 341

CLUSTERS ... 342
Creating Clusters ... 343
Modifying Clusters .. 343
Deleting Clusters ... 343

REPOSITORY REPORTS .. 343
Report Functions ... 344
Predefined Reports .. 345
Repository Report Formats .. 346

REPORT QUERIES — CUSTOM REPORTS ... 349
Custom Report File Format ... 350
Custom Report Definition Syntax ... 350

SHELL CODE GENERATION .. 357
Overview ... 357
Code Generation Requirements ... 359
Processing and Storage Redefinition ... 360
The Code Generation Process .. 360
Code Generation Output .. 362
Configuration Options ... 363
Parameter ... 368

SQL SCHEMA GENERATION ... 369
Generating a Schema for Part of a Project ... 373
Adding SQL Schema Generation Information for Entities and Relationships 374
Adding SQL Schema Generation Tablespace Information ... 380

COMPARE MODEL AGAINST SCHEMA ... 385
DATA DESCRIPTION SPECIFICATION GENERATION .. 386

viii

GENERATING STRUCTURE CHARTS FROM THE REPOSITORY387
Regenerating Existing Structure Charts ...387

LOCAL AREA NETWORKS ...389

MULTI-USER ACCESS TO PROJECTS ...389
LAN OPERATING CHARACTERISTICS ...389

LAN Visible Analyst Features and Capabilities ..390
Novell NetWare Compatibility ..390
Preventing Editing Collisions ..392
Local Operation..392

RUNNING ON THE NETWORK ...392
Defining Default Path Settings ...392
Implementing Security ...393
Assigning Access Rights ..394
Creating Projects on the Network ..396
Project-Level Security ..398

MESSAGING ..399
REVIEWING PROJECT ACTIVITY ...400
LAN HELP FUNCTION ...400

VISIBLE ANALYST TOOLS ...403

GENERAL INFORMATION ..403
BACKING UP A PROJECT ..404
RESTORING A PROJECT ..405
COPYING A PROJECT ..406
DELETING A PROJECT ..406

Deleting Projects with No Project Files ...406
RENAMING OR MOVING A PROJECT ...407
REBUILDING A PROJECT ..407
EXPORTING REPOSITORY DATA ...407

Relational Database Repository Exports ..409
VSC-Format Repository Exports ...415

IMPORTING DATA INTO THE REPOSITORY ...438
General Import Information ...439
The Import Procedure ..443
Import Formats ...444

ENTERPRISE MODELING...461

ENTERPRISE MODELING OVERVIEW..461
Divisions ..461
Enterprise Copy..467
Displaying Enterprise Links ...473
Removing Enterprise Links ..473

ix

Database Synchronization ... 473

ERROR MESSAGES .. 505

INTRODUCTION ... 505

CUSTOMIZING AN SQL DIALECT ... 546

CUSTOMIZING THE TRIGGER WIZARD ... 549

INDEX .. 557

x

Introduction

1

Introduction

VISIBLE ANALYST
Visible Analyst is an easy-to-use Computer Aided Software Engineering (CASE) strategic

planning; analysis; design; and object, data, and process modeling tool. It is supplied as a

Microsoft Windows-based set of integrated tool sets that can be easily installed on any

current Windows operating system. Its powerful yet easy-to-master diagramming, analyzing,

and modeling capabilities enhance not only the productivity of software developers but also

the overall efficiency of software analysis, design, and modeling practices. In addition, the

software’s ease of use permits people outside the traditional software development function to

become involved in the development process. Even non-technical managers and system end-

users are able to use Visible Analyst to effectively communicate system requirements and

goals, proposed modifications, etc. The three main components of Visible Analyst are

summarized below.

Visible Analyst Diagramming Tool
The Visible Analyst diagramming tool is an easy-to-use, mouse-driven graphics package that

allows you to draw virtually any type of diagram. Standard symbol and line types and text

entry capabilities, combined with menu-selectable editing features, allow you to create and

update diagrams that are unstructured and unencumbered with any methodology or rules and

to organize them on a project basis.

Visible Rules
The Visible rules are built into Visible Analyst to give you guidance and to provide

consistency in carrying out your activities. The various methodologies supported by your tool

set(s) are codified in the rules. They are implemented in two different ways. Some are

applied as you draw items onto project diagrams. Violations of the methodologies are not

allowed and certain required actions are automatically taken. Other rules are applied on

request when you execute the Analyze function from the Diagram menu. Analysis also

displays some error and warning messages, suggesting further action for you to take.

Visible Repository
The Visible repository includes a database that acts as a central repository for all information

pertaining to a project. The Visible repository is tightly integrated with all process modeling,

data modeling, and object modeling tool sets, providing data repository support for diagrams

that are created under the guidance of one of the supported methodologies. All additions and

modifications to diagrams are automatically reflected in the repository with corresponding

repository entries. Fields of ample size are provided for each repository entry so that detailed

definitions may be created for all entries. Different object types have different repository

entry fields available. Wildcard and selective search facilities make navigation within the

Introduction

2

repository easy. Reports may be generated on virtually any section or subsection of the

repository.

VISIBLE ANALYST TOOL SETS
Visible Analyst consists of five tool sets as described below.

 The Visible Analyst data modeling tool set allows you to create entity relationship

diagrams (ERDs), with the requisite rules for disciplining data model creation and

including the repository to capture the information. Visible Analyst supports ERDs

based on data modeling notations defined by IDEF1X, Bachman, and Information

Engineering (IE).

 The Visible Analyst process modeling tool set allows you to create data flow diagrams

(DFDs), functional decomposition diagrams (FDDs), structure charts, and entity life

history (ELH) diagrams. There is a choice of four sets of methodology rules for data

flow diagrams: Yourdon, Gane & Sarson, SSADM, and Métrica. There are rules for the

Yourdon/Constantine method for doing structured design. The data flow diagrams and

structure charts share a common repository to capture all information from the diagrams.

 The Visible Analyst object modeling tool set allows you to create class, state transition,

use-case, sequence, collaboration, component, deployment, and activity diagrams for

object model creation including the repository to capture the information. Visible

Analyst supports the UML standard, giving you a bridge between traditional structured

and relational techniques and the newest object-oriented technologies, including use-case

diagrams, sequence diagrams, collaboration diagrams, and activity diagrams.

 With the introduction of the Business Process Modeling Notation (BPMN) the Visible

Analyst provides a modeling notation that can be communicated to and understood by all

business users, from the business analysts developing the models, to the technical

analysts implementing the model processes, to the business people who manage and

monitor the processes.

 The Visible Analyst Custom Diagramming capability empowers users to create their own

diagram types. Using custom icons or free symbols downloaded from the Web, users

define a new diagram Template, specify the symbols to be used on the template, and

determine the repository characteristics of the symbols. Each symbol can be created with

the same properties as a user-defined object, that is, with the capability to define

composition items and establish links to one or more repository entry types.

These tool sets work from a common repository. The integrated repository is accessible from

any modeling tool set, and items within it may be used by all tool sets where applicable. The

analysis function does some balancing of a data model against a process model according to

criteria that you configure. It is also possible to create a process view of your data model that

shows all entities affected by a certain process. A process model and a data model can be

developed in either order. Classes can be used on entity relationship diagrams and entities

can be used on class diagrams. The reporting function generates reports that cross the

boundaries between the tool sets.

Introduction

3

Visible Analyst is available in the following editions:

 Visible Analyst Professional Edition is the most robust of all the Visible Analyst editions,

containing all of the Visible Analyst features. It is suitable for large projects with

multiple groups of users, with advanced database engineering capabilities, multi-user

access controls, and transition to object-oriented methods. Support for the Zachman

Framework cell artifacts and the ability to link these artifacts to the diagrams and/or

repository entries make this the flagship edition of Visible’s line of modeling tools.

 The Visible Analyst University Edition supports all of the models types supported by the

Professional Edition in a concurrent multi-user access capability stored in a relational

repository. Individual user and group access can be specified for project collaboration.

The Assignments feature enables instructors to easily setup courses and assignments for

students. Instructors create their own list of courses and assignments and then add

students to those assignments. Student submissions to assignments are easily viewed and

assigned a score. Forward Engineering is included for those courses related to database

design and implementation.

 The single user Student Edition is a sub-set of the University and supports all of the

model types in a relational repository. This edition is limited to 2 active projects at one

time and users are limited to 10 diagrams per diagram type per project. Custom

diagramming is not included.

 The Free Editions of the Visible Analyst support a specific limited subset of the Visible

Analyst Professional Edition’s modeling capabilities enabled for 90 days from the date of

installation. The free editions are only available as single user versions.

 The “Concept and Idea Modeler” edition supports the custom diagramming feature.

Users can create any diagram type using custom symbols. Neither diagram analysis

nor any of the other methodology diagrams are included in this edition.

 The “Business Process and Activities Modeler” edition supports the BPMN

diagramming capability. Diagram analysis is included in this edition.

 The “Data Entity and Entity Relationships Modeler” support the creation of entity

relationship diagrams, SQL DDL Generation, Key Analysis and Key

Synchronization as well as diagram analysis.

 The “UML Use Case, Class and Object Modeler” supports all of the UML diagrams

supported in the Professional Edition. Diagram analysis, model linkage and

repository support is included.

 The Professional Edition of the Visible Analyst is available in two versions:

 A single-user version, licensed for use on a single workstation.

 A LAN version with true multi-user capabilities. The LAN version supports

simultaneous access to shared projects or groups of projects. It can be licensed for as

many nodes as you require.

The University Edition is only available as a concurrent multi-user version.

Introduction

4

Zachman Framework

Today the Zachman Framework has become a standard for Enterprise Architecture used by

many of the most successful organizations in the world. Evidence of the acceptance of the

Framework has been apparent at the annual forums conducted by the Zachman Institute for

Framework Advancement (ZIFA, www.zifa.com). At each forum, attendees hear

presentations on the many different aspects and practical uses of the Framework. Visible fully

supports both the concept and philosophy of the Zachman Framework. Visible helps clients

gain greater control of their information systems and technology requirements through

development of an enterprise-wide architecture.

Visible takes an engineering approach to developing an enterprise architecture. We use a

combination of forward and reverse engineering to establish the enterprise architecture.

Forward engineering tasks include business planning and data and process modeling. Reverse

engineering tasks include analysis and documentation of all existing structures for the

organization. The result is a model that represents an integrated view of the enterprise

architecture framework, with redundancies and discrepancies resolved and documented. All

conceptual and logical architecture components can all be maintained in Visible Analyst.

Visible Analyst supports the tasks and techniques involved in the creation and management of

an enterprise architecture, with sufficient flexibility to integrate and support other approaches

to software engineering. Visible Analyst captures business plans of multiple organization

levels and maintains the hierarchy of planning components (mission, goals, strategies,

measures, business rules, etc.).

Strategic Planning
Planning and requirements identification is often the initial phase in an enterprise-engineering

project. During the planning phase, you develop a comprehensive strategic business plan that

meets the identified mission and purpose of the organization. Visible Analyst not only allows

you to create these statements, but also to link them to other objects in your repository. This

allows you to track the software development process from the planning stages through

analysis, design, and implementation. Linking planning statements to model objects helps

you determine the significance of each object and ensures that each object is essential in

supporting the organization’s business plan. Strategic planning is available in the Corporate

Edition of Visible Analyst.

Visible Analyst Data Modeling Tool Set
The data modeling tool set gives you the ability to create several varieties of the entity

relationship diagrams originally developed by Peter Chen. All of the capabilities of the

diagramming tool are incorporated into this tool set. Rules for this type of data modeling are

intelligently applied to your diagrams. You can use four different notations to display

Introduction

5

relationship cardinality: IDEF1X notation, crowsfoot notation, double arrow notation, and

Bachman notation. Visible Analyst’s flexible symbol template and custom symbol

implementation give you control over the other data modeling symbols you use. The analysis

capabilities of the data modeling tool set help you by detecting syntactical and some

normalization errors, as well as by doing key analysis and migration. An Entity Life History

(ELH) diagram, a component of the SSADM and Métrica methodologies, can be exploded to

from an instance of an entity on an entity relationship diagram. The ELH shows how events in

a system affect data entities. The data modeler automatically draws views for you based on

information from the repository that you choose to include in those views. You even have the

ability to create views too large to edit in Visible Analyst; the repository maintains them, and

you can print them. Because large views can become cluttered and hard to understand,

Visible Analyst allows you to limit detail and still show an overall picture by creating cluster

diagrams. On these, a cluster of entities is represented by a single symbol, while still showing

relationships between entities in different clusters.

Visible Analyst Process Modeling Tool Set
The process modeling tool set enables the rules of popular structured analysis and design

methodologies to be intelligently applied to your diagrams. Yourdon/DeMarco, Gane &

Sarson, SSADM, and Métrica methodologies are supported for structured analysis diagrams

(data flow diagrams). The Yourdon/Constantine structured design rules are supported for

structured design diagrams (structure charts). All of the capabilities of the diagramming tool

are incorporated in this tool set.

Rules are provided for creating and validating diagrams, including automatic process

numbering, level-to-level data flow balancing, decomposition of data by splitting data flows,

complexity ratings for structure charts, consistency and completeness checks, and much more.

Functional decomposition diagrams allow you to do high-level project planning. From your

FDDs, you can have Visible Analyst generate a set of data flow diagrams, from which you

can proceed with a detailed analysis. Diagrams in a project are automatically organized in a

tree structure. For DFDs, the tree structure is hierarchical, and this lends itself nicely to the

concept and process of top-down decomposition. A process decomposition diagram can be

generated for all or part of a process model. This unstructured diagram illustrates the top-

down decomposition of a process and all of its descendants.

Visible Analyst Object Modeling Tool Set
The object modeling tool set gives you the ability to create class, use case, collaboration,

component, sequence, deployment, state, and activity diagrams using a variety of notation

styles. All of the capabilities of the diagramming tool are incorporated into this tool set. The

analysis capabilities of the object modeling tool set help you by detecting syntax and user

errors. Information stored in the repository about classes includes attributes, methods, and

friends. The object modeler automatically draws views for you based on information from the

repository that you choose to include in those views. You even have the ability to create

views too large to edit in Visible Analyst; the repository maintains them, and you can print

Introduction

6

them. The object modeler is tightly integrated with the data modeler so that classes can be

used on entity relationship diagrams, and entities can be used on class diagrams.

Visible Analyst Business Process Modeling (BPMN) Tool Set
The primary goal of BPMN is to provide a modeling notation is an effective communication

medium across all the constituencies in computing technology-supported organizations.

BPMN is specifically designed to communicate process behavior information in a manner

easily understood by business end users while providing supporting technology organizations

with sufficient information about process execution, flow and dependencies to understand the

workings of the business processes being modeled. BPMN notation is designed therefore to

support the needs of not only business end users but also the business analysts who develop

models and technical analysts who implement the model processes.

BPMN models describe business process behavior and as a result use an event based

paradigm. Both parallel and conditional behavior is supported in the modeling notation and

also in the Visible Analyst’s implementation of BPMN. A number of symbols are used to

describe process flows, events and decisions and allow the viewer to easily differentiate

between sections of the BPMN diagram.

Visible Analyst provides support for Business Process Modeling Notation (BPMN) diagrams

based on the Business Process Modeling Initiative developed by the Object Management

Group (OMG). The complete specification is available for download from the OMG website,

www.omg.org.

The Visible Analyst Custom Diagramming Tool Set
The custom diagramming capability allows users to create their own diagram templates,

specify symbols for each diagram type, and define the repository entries for the diagram

symbols. Users can create Network Diagrams, Security Diagrams, Flowcharts, or any diagram

type that meets their modeling needs.

Local Area Networks
The LAN version is compatible with Novell’s Advanced NetWare™ versions 1.0 and above.

Adding this capability to your Visible Analyst allows an unlimited number of users to have

access to Visible Analyst. For more detailed information on the LAN version of Visible

Analyst, refer to the manual chapter Local Area Networks.

There are two network versions of Visible Analyst available. The Visible Analyst Novell

LAN version uses the file and record locking mechanisms within Novell NetWare. The

Generic DOS LAN version supports networks other than Novell that perform standard DOS

file locking.

http://www.omg.org/

Getting Started

7

Chapter 1

Getting Started

STARTING OUT
Getting started with Visible Analyst is easy. All you need to do is verify your PC‘s

compatibility, install Visible Analyst onto your hard disk, and configure the hardware

configuration menu. All of this should take less than 10 minutes.

SYSTEM REQUIREMENTS

Hardware Configuration
Before you install Visible Analyst, verify that your PC components meet the hardware

configuration and random access memory (RAM) storage requirements.

To run Visible Analyst, you need a hardware configuration that supports Microsoft Windows

XP, Vista, Windows 7, 8, Windows 2000, 3003, or 2008 server. This can cover a range, from

the minimum processor and memory size absolutely necessary to the “fastest with the

mostest.” Visible Analyst runs anywhere in this range; but as with many other Windows

applications, the software runs faster and with less swapping to disk at the higher end of the

range. Graphics put a substantial load on the processor, so a faster processor improves

performance. Another factor that affects performance under Windows is the number of

applications you have running and the amount of system resources they consume. One

gigabyte of RAM, or better still two gigabytes or more will also improve performance. The

Visible Analyst files consume approximately twenty eight megabytes of hard disk space. This

does not include your project files.

 Note

 If you are using one of the supported RDBMS engines (Centura SQLBase®,

SYBASE SQL Server®, or Oracle Server®) as your Visible Analyst database

manager, your hardware requirements may be different. Refer to the next section

for details.

Getting Started

8

The Visible Analyst Database Manager
Project information is stored in a relational database format using one of several database

engines, including Btrieve®, SQLBase, Microsoft or SYBASE SQLServer or OracleServer.

Each project you create can be stored in a different database format.

Btrieve

Visible Analyst has traditionally used the Btrieve record manager as its underlying database

engine. For the Windows version, this is implemented as a dynamic link library (DLL) named

VAWBTR32.DLL. By default, all database processing is performed on the workstation where

Visible Analyst is running.

If you have the LAN version of Visible Analyst, you have the option of using the client-server

version of Btrieve, Pervasive SQL, so that most of the database processing is handled by the

file server. To implement the client-server version of Pervasive SQL, do the following:

Note

 It is not necessary to use the client-server version of Btrieve to get all of the

multi-user capabilities of the LAN version of Visible Analyst. However, in some

circumstances it improves network performance.

 Install Pervasive SQL on the file server. This is a separate product that can be purchased

directly from Pervasive Software (www.pervasive.com). You will need to purchase the

same number of Pervasive SQL licenses as the number of Visible Analyst Nodes. You

will have to reboot the server after installation.

 Install the client Pervasive software on each PC that will access the Visible Analyst.

 Edit the PATH of the computer to include the local Pervasive SQL 2000 BIN directory in

the PATH of the PC: <local drive>\Program Files\Pervasive Software\PSQL\bin

o Rename the following files in the Visible Analyst install folder as shown

here:W32MKDE.EXE to W32MKDE_orig.EXE

o W32NKDE.REG to W32NKDE_old.REG

o W32MKRD.DLL to W32MKRD_orig.DLL

o VAWBTR32.DLL to VAWBTR32_orig.DLL

 Copy the file WBTRV32.DLL from the Pervasive SQL folder into the Visible Analyst

install folder and rename the file to VAWBTR32.DLL

 While logged into the client PC as an admin level user, start the Visible Analyst so that

the Pervasive Registry key is created on the local PC. The users logging into the PC using

non-admin level logon ID’s will have to be assigned full access rights to this setting.

 To improve client performance make the following changes on the server:

o Open the Pervasive Control Center and Documentation program and click

the "Configure Microkernel Router" option.

o Select the Performance Tuning listing and check the option to use the Cache

Engine. You must click the Apply button to save the change.

Getting Started

9

o Select the Cache Engine listing and check the option to Allocate Resources

at Startup. Again, click Apply, then OK to save these changes.

Note

 You can install the client Pervasive software on more client PC’s than the

number of Visible Analyst nodes purchased to connect to the Visible Analyst.

The Visible Analyst tracks the number of connected clients and prevents

connections that exceed the purchase number of nodes.

If you installed Visible Analyst specifying a relational database engine for your repository

format and would like to create a Btrieve project, you can do this by selecting Btrieve at the

Repository dialog box when creating a new project. You can also convert a relational

database project to Btrieve and vice versa. To do this, select Rebuild from the Tools menu,

and check the database format you want the project to be rebuilt in. If you want to create or

convert a project to a relational format, you are asked to enter site-specific database

information in the Project Database Location Information dialog box.

An additional procedure to convert a Btrieve project to a relational database project, or to

convert a relational database project to a Btrieve project, is to create a Tools | Backup of the

project, and choose Tools | Restore. On the Restore dialog, choose the appropriate database

format.

SQLServer

SQLServer can be used as the Visible Analyst database engine. Versions 4.x, 6.x, 7.x, 2000,

2005 and System 10/11 are supported. The advantage of creating a project using a relational

format is the ability to use third-party report writers to access information in your data,

process, object, and structure models.

When using Visible Analyst SQLServer, be aware of the following:

 The Visible Analyst SQLServer driver cannot create a database; you must create the

database that will be used by Visible Analyst beforehand.

 There is no automatic clearing of SQLServer log files. This must be done manually. Logs

should be purged frequently, especially when rebuilding a project.

 When rebuilding or creating new projects, SQL DDL commands are issued that are not

included in the SQLServer log files. A restore of the log files may not be complete.

 SQLServer requires space for each database created. The log files grow quickly. For

large projects with many concurrent users, approximate the space needed by adding the

size of the database and index and multiplying by 10. As an example, the LIB project

shipped with the product requires 8 MB of space to run properly. You can use the

“sp_space” command in ISQL to determine the space values.

Getting Started

10

 If you are running Visible Analyst under Windows NT, the 16-bit version of the drivers

must be accessible.

Oracle Server

Oracle Server can be used as the Visible Analyst database engine. To use Oracle 7.x, 8.x, 9x

or 10x Server as the database engine, you must have Oracle Server installed and the proper

DLLs included in your path during the Visible Analyst installation. If you performed a

Typical installation, these files were installed. If you performed a Custom installation and did

not elect to install these files, perform a Custom installation again and choose these files to

install. When you choose to create or convert a project to Oracle format, you are asked to

enter site-specific database information in the Project Database Location Information dialog

box (described below).

When using Oracle Server, be aware of the following:

 Visible Analyst Oracle Server driver cannot create a database, you must create the

database that will be used by Visible Analyst prior to creating a project.

 Visible Analyst uses the SQL*Net driver (ociw32.dll). This driver must be in your path.

 The LIB project shipped with Visible Analyst requires 2 MB of space in the database to

run if converted to an Oracle server format.

ODBC

ODBC (Open Database Connectivity Driver) can be used as the Visible Analyst database

engine. ODBC supports:

 Informix. This driver should be used to access Informix databases.

 DB2 5, 6, 7, 8. This driver should be used to access DB2 5, 6, 7, 8 databases.

 Access. This driver should be used to communicate with Access databases.

 ODBC Compliant. This driver should be used to create projects if the ODBC driver

supports ON DELETE CASCADE.

 ODBC Entry Compliant. This driver should be used to create projects if the ODBC

driver does not support ON DELETE CASCADE.

To use ODBC, you must have the ODBC driver manager installed, as well as the specific

driver you are using to access a database. If you add this software after the initial Visible

Analyst installation, run the installation again and the proper Visible Analyst DLLs will be

installed.

Connecting to an RDBMS Engine

If you choose to create or convert a project to a relational format, you are asked to enter site-

specific database information in the Project Database Location Information dialog box. The

dialog box prompts you for the following:

 Connect String defines where the DBMS is located. For local versions of the database

server this field should be left blank. For databases accessed across a network, use the

Getting Started

11

following syntax: for Oracle Server “protocol letter:servername” or the database alias, for

SQLBase “servername”, and for SQLServer “servername” as defined in the local

configuration. All users must use the same connect string to look at a database.

 Database is where the project files are located. If you are using SQL*Net SPX for

Netware or SQL*Net TCP/IP this entry should be left blank as these versions of Oracle

Server do not support multiple active databases. In the case of SQL*Net TCP/IP, the sid

or instance name should be specified in the connect string as follows “protocol

letter:servername:instance.” (If you enter any characters in the database field and then

decide you should leave it blank, make sure you delete the field using the DELETE key

or blanks are left in the field and your connection fails.)

 Schema or authorization ID is used to create and access the project tables for Visible

Analyst in a specific space within the specified database. You must have access rights to

the space you specify. If you leave this blank, the default schema assigned to your

database username is used, and all other users must log on as that schema name.

 Prefix is unique to Visible Analyst and is a prefix that must be attached to any tables

created within a project if your site stores multiple projects within the same schema. The

maximum length is six characters and the default is VA<ROOT>, where <ROOT> is the

project name.

 Username/Password is your user ID and password to access the database. You must

have the appropriate rights. The minimum rights needed to access Visible Analyst

projects are insert, update, and delete. The owner of a project also needs create rights to

the database.

VISIBLE ANALYST INSTALLATION
Installation can be accomplished in approximately 10 minutes by carefully following the

procedures that follow. If you have any questions or problems, please call the Visible Systems

technical support staff at:

 781-778-0200

In addition, you can visit our web site www.visible.com for a wealth of information regarding

product support, free “How To…” videos and consulting services.

Another resource that you have available is the Visible Community Forum, located at

www.visibleforum.com. The Visible Community Forum Discussion Groups are an open

forum for users of our products to exchange ideas, discuss modeling issues, and get solutions

to problems. This is a great resource for data analysts, data administrators, IRM analysts,

quality assurance analysts, and others dedicated to providing high quality information

systems. Topics that are included in our discussions include:

http://www.visible.com/
http://www.visibleforum.com/

Getting Started

12

 Installation

 Upgrades

 Model Management

 Forward and Reverse Engineering

 Enterprise (Scaling) Issues

 Wish List (Enhancements)

Prior to Installing Visible Analyst
If you are installing an updated version of Visible Analyst, the installation procedure copies

the new version directly over the old version. You should not delete the old version; the

installation program does this for you, if you want it to. Your project data files and any

symbol set modifications you made are not affected by this installation procedure.

Near the beginning of the installation procedure, you are prompted for the install-to path. You

may simply press ENTER to install to \VA; while we recommend this path, you may specify a

different path. If you specify a different path, you need not include VA in the specification; if

you do not, it will be assumed. For example, typing \CASE is equivalent to typing

\CASE\VA.

The default path for a location installation of the Visible Analyst is the C:\Program

Files\Visible\VA folder on 32-bit Windows 7, 8 while the default path on Windows 7,8 64-bit

is C:\Program Files (x86)\Visible\VA. In both cases a separate default System Data Path of

C:\ProgramData\Visible\va\ is created. The system data files are written to this path, while the

projects are written to a separate Projects sub folder.

It is always good practice to maintain up-to-date backups of your files. If you have an existing

version of Visible Analyst on your computer, we recommend that you back up your projects

prior to installing a new version. You should do this using the Backup function of Visible

Analyst, rather than a DOS-based backup, because it is easier to restore projects to Visible

Analyst using the internal procedure should you ever need to.

If you are installing to a LAN:

 Visible Analyst must be installed onto a file server from the server console.

 You must be able to refer to the install-to drive with a letter designation (for example, F:).

 If you are installing to a Novell server, the procedure assumes that you are familiar with

NetWare. Specifically, you should be fluent with its security system and know how to set

search paths.

 It is recommended that the system supervisor perform the installation; however, as long

as the above points are satisfied, any user can do it.

Getting Started

13

.

Installation Procedure
To install Visible Analyst:

1. Place the Visible Analyst installation media into the appropriate drive. The auto-run

process will begin the installation process. If you downloaded the Visible Analyst

installation file, double click on the file to begin the installation procedure

2. If the auto-run process does not begin, access the VA folder and double click the

setup.exe file

3. Click Next at the Welcome screen

4. Accept the License Agreement.

5. In the dialog box, type your name and company information. If Visible Analyst has

previously been installed, you cannot change this information.

6. Type the serial number of your copy of Visible Analyst. Make sure that the letters are

entered in upper case and that you include the dashes.

7. Select the drive and folder where you want the Visible Analyst program files to be

placed, or accept the default folder when installing the single user version. NOTE: Do

not install to the root of the drive, but to the VA or another named folder.

8. Next, type the drive and folder where you want the Visible Analyst data files to be

placed. By selecting separate folders for programs and data, you can assign different

access rights. Refer to Local Area Networks for more information. This option is not

available in the University, Student, and Free edition versions.

9. Select the type of installation: typical, custom, or minimum. We recommend typical.

10. Click Next or press ENTER. The installation program copies and expands the necessary

files to your hard disk. When the installation is complete, a message to that effect is

displayed on your screen. You are asked if you wish to review updates.

Completion of Single User Installation
When the installation procedure is completed, Visible Analyst resides in the selected path of

your install-to drive. For information on starting Visible Analyst, refer to Basic Operating

Principles in the section that follows.

Other installation Information
In order to perform the installation on the Windows 2000, Windows XP, Vista and Windows

7, 8 operating systems, the user performing the installation must be logged into the PC as an

Administrator level user.

Uninstalling Visible Analyst
If you should ever need to uninstall Visible Analyst from your hard disk, perhaps to move it

to another machine, you need only follow these steps:

Getting Started

14

 Open the Add/Remove Programs in Control Panel, select Visible Analyst and click the

Remove button.

 Run the installation again to display the Modify, Repair or Remove dialog. Choose the

Remove option, click Next, and click the Remove button.

Additional Installation Considerations for LAN

There are additional steps that must to be performed when installing the LAN version of

Visible Analyst. Refer to Local Area Networks, for specific instructions.

Security in Single-User Visible Analyst

Visible Analyst is shipped with a default supervisor name of SUPERVISOR. To log on as a

supervisor for the first time, use this user ID. No password is necessary. Thereafter, you may

change this user ID as you wish and add any password you like. Make sure you keep a record

of your passwords and user ID, as they are encrypted within Visible Analyst and can’t be

looked up if you forget them. Security is off by default.

The VAW.INI File
There is a file in your \VA directory named VAW.INI. It holds the default values for

numerous Visible Analyst settings. If you are using the LAN version of Visible Analyst, you

also have a file named VAW#.INI, where # is user number of your node on the network.

Visible Analyst copies the contents of VAW.INI into VAW#.INI when it creates it and

thereafter doesn’t use the original any more. The single-user version always uses the original

version of the file. The only reasons for you to edit this file are:

 To establish default paths for network users.

 To define a minimum line length.

 To add user-defined attributes to the repository.

 To allow a number to be the first character of a line or symbol.

A FEW WORDS ABOUT ERROR MESSAGES

There are many messages displayed as the result of an activity you do that doesn’t conform to

the rules of a methodology, as a result of some other occurrence (missing or corrupted files,

etc.), or even because of some error made by Visible Analyst. You, as the user, need to know

what happened, why it happened, and how to fix it. Where you turn for advice depends on the

kind of activity performed when the error occurred. Below is a list of the types of activities

that cause errors and where you can turn for an explanation:

 If you are running one of the project analysis functions (Analyze, Key Analysis, Key

Synchronization, or Model Balancing), errors supplied at the end of the process relate to

the sometimes complex rules of the methodologies that underlay the operation of Visible

Analyst. An explanation of these errors can be found in The Visible Rules chapter. In this

chapter, error messages are organized by the diagram type of the diagrams being

checked.

Getting Started

15

 Messages produced by import, export and shell code or DDS generation are generally

simple, direct and self-explanatory. However, if you find a message that baffles you,

please call Visible Systems technical support number for an explanation.

 Other messages, such as those that are displayed when you attempt some illegal drawing

operation, are listed alphabetically, with explanations, in Appendix A.

 All error messages are described in the online help system.

BASIC OPERATING PRINCIPLES

Before you begin using any of the capabilities supplied with Visible Analyst, take about 20

minutes to become familiar with the following basic operating principles that apply to all of

the Visible Analyst tool sets. By understanding these basics, you’ll get off to a good start and

become more effective with Visible Analyst in a shorter period of time.

Accessing Visible Analyst

You access Visible Analyst in the normal Windows fashion, by double-clicking on the Visible

Analyst icon.

Using the Mouse
Although Windows does not absolutely require it, we recommend using a mouse with Visible

Analyst, which is used to perform a variety of functions in Visible Analyst. The standard

Windows functionality for the mouse is implemented here. The specific ways the mouse is

used to perform various tasks are discussed throughout this manual as those tasks are

introduced.

In general, the left mouse button is used to select objects and confirm actions, while the right

mouse button displays an object menu listing actions that are valid for the current object.

Notes

 Unless stated to the contrary, instructions to click a mouse button refer to the left

button. Instructions for the right button are explicitly mentioned.

 Left-handed mouse users: if you use a mouse with the buttons reversed, you should

reverse references to left and right mouse buttons in this text.

 For detailed instructions how to use the keyboard entries and keyboard shortcuts to

draw diagrams and edit the repository without using a mouse, contact our support

department at support@visible.com or call 781-778-0200.

Finding Help Whenever It’s Needed
Visible Analyst includes an extensive help system that displays information and instructions

about the use of the program. The help screens are accessible by pressing the F1 key on your

keyboard from anywhere in Visible Analyst or by using the Help menu. Clicking the “?”

mailto:support@visible.com

Getting Started

16

symbol on a dialog and clicking on a field will display the Help topic associated with the

field.

Context-Sensitive Help

The Visible Analyst Help system has context-sensitive help for all menus and dialog boxes.

You can access it in either of the standard Windows ways.

 First, you can highlight a menu item and press F1 to display the Help topic for the menu

item you specified. Once a menu has opened, you cannot select a menu item for the

purpose of getting Help by simply clicking on it with the mouse. If you try to do this, the

function is executed before you have the opportunity to request Help for it. You should

use either the keyboard arrow keys to highlight the item and press F1 or use the mouse to

drag the highlight to the desired item and press F1 before you release the mouse button.

 Second, you can press SHIFT+F1 and Visible Analyst changes into Help mode and the

cursor changes as shown in Figure 1-1. Use the mouse to select any menu item. When

you do, the cursor changes back to the standard cursor, indicating that Visible Analyst is

no longer in Help mode, and the help topic for the menu item you selected displays.

 Figure 1-1 Help Cursor

Keyboard Shortcuts
Many menu functions can be accessed with keyboard shortcuts in the standard Windows

manner. The shortcut key is shown on the menu next to the command. To use the Edit menu

functions Cut, Copy and Paste from edit boxes, you must use the keyboard shortcuts. The

following table lists all keyboard shortcuts used in Visible Analyst.

Table 1-1 Visible Analyst Keyboard Shortcuts
CTRL+A Analyze

CTRL+C Copy to Clipboard

CTRL+D Define Repository Object

CTRL+E Connect Selected Symbols

CTRL+F Find Diagram Object

CTRL+L Line, Add to Diagram

CTRL+N New Diagram

Getting Started

17

Table 1-1 Visible Analyst Keyboard Shortcuts
CTRL+O Open Diagram

CTRL+P Print Diagram(s)

CTRL+Q Query Report

CTRL+R Report

CTRL+S Save

CTRL+T Text, Add to Diagram

CTRL+U Clear (Deselect) Diagram Object or Block

CTRL+V Paste from Clipboard

CTRL+X Cut to Clipboard

CTRL+T Snap Symbols to Horizontal or Vertical Row

SHIFT+F10 Display Repository Object Menu for Field Options

CTRL+Z Undo (Erase Partially Drawn Line or Undo Moved Line)

ALT+R Delete Project with No Project Files

DEL Delete Object from Diagram

F1 Help, Context Sensitive

SHIFT+F1 Enter Help Mode to Get Help on Menu Item

Insert Add a line segment to an existing line

Recognizing Illegal Commands
An extensive array of message boxes is displayed by Visible Analyst to alert you to illegal

actions and procedures and to notify you of other irregularities that may occur.

Don’t Forget To Save and Back Up
As with any software program, it is good practice to save your work at regular intervals while

working on a project and to back up your files each time you make significant changes. While

a computer and its programs can be very helpful, it can also be extremely insensitive if a

power outage or another unscheduled event should occur.

To avoid the frustration that goes along with lost work, always remember to save and back up

your work. The function to Save the diagram on which you are working can be found on the

File menu. The Backup function, as well as the Restore function, can be found on the Tools

menu. These functions are described in more detail later.

THE VISIBLE ANALYST WORKSPACE

Whenever you access Visible Analyst, the workspace is presented as shown in Figure 1-2.

The workspace is the starting point for all functions, and it has five major sections:

 The menu bar at the top gives you access to all of the menus in Visible Analyst

containing all of the functions of the tool.

Getting Started

18

 The control bar below the menu bar gives you quick access to commonly used Visible

Analyst functions.

 The diagram area in the center of the screen contains the diagrams you have open,

whether maximized and ready to edit or minimized to an icon.

 The help bar at the bottom of the screen displays the current menu item, the name of the

current object, the current zoom level, and current project.

 The object browser displays a list of the objects in the repository in a resizable window.

The control bar, the help bar, and the object browser can be toggled off (or on again) from the

Options menu if you don’t want them visible.

Getting Started

19

 Figure 1-2 Visible Analyst Workspace

Information About Your Copy of Visible Analyst
Information about your copy of Visible Analyst can be accessed using the About Visible

Analyst selection from the Help menu. This screen shows you:

 The version of Visible Analyst you are running.

 The serial number of your copy.

 The network under which you are operating (LAN version only).

 The number of network nodes (users) that can concurrently use your copy of Visible

Analyst (LAN version only).

 Your user name (the name you used to log in to Visible Analyst if you are using a single

user version and Security was turned on from the Options menu, or your network login

name for the LAN version).

 Your user number (LAN version only).

 A Purchase button allowing you to upgrade to a different edition of the Visible Analyst or

Purchase an edition if you installed a demonstration copy of the software.

 The capabilities of the tool in the configuration that you purchased. Capabilities available

but not included in your configuration are shown in gray.

Control Bar

Project Root

Object Browser

View

Tool Bar

Standard

Tool Bar Diagram

Tool Bar Font

Tool Bar

Help Bar

Document Workspace

Getting Started

20

Visible Analyst Menu Functions
The functions available on Visible Analyst menus provide the starting point for all Visible

Analyst operations. A list of these functions, with a description for each, is referenced below.

Table 1-2 Menu Functions
Menu Command Description

File New Project Select New Project to create a new project. A dialog box

displays allowing you to specify information about the new

project.

 Select Project Select Select Project to open an existing project. A dialog

box displays a list of the project from which to choose.

 Project History Select Project History to display a box that provides a

descriptive overview of the current project. The following

descriptive information is included:

 Project name or root

 The name of the project manager

 A short description of the project

 The rules methodology that applies to the project

 Repository enabled or disabled for the project

 Who created the project (if security has been enabled)

 DOS path where project files are stored

 List of diagrams in the project

 List of dates showing when each diagram was last edited

 Current

Activity

Select Current Activity to display the users who are currently

using Visible Analyst and provide some information about

what each is doing (LAN version only).

 Modify User

List

In the LAN version of Visible Analyst, select Modify User

List to display a submenu that allows you to add or delete

user IDs of users who are allowed access to the current

project. You can also define users who may change project

information or just view it.

 Zachman

Framework

Select Zachman Framework to display or close the Zachman

Framework interface. Only available in the Zachman

Framework edition.

 Strategic Select Strategic Planning to open the Planning Statement

Getting Started

21

Table 1-2 Menu Functions
Menu Command Description

Planning hierarchy window. Use this window to create new planning

statements and parent-child relationships between statements.

 New Diagram Select New Diagram to create a new diagram. To add new

diagrams to an existing tree file of data flow diagrams, select

a point in the project tree where the new diagram is entered.

To add diagrams to an existing tree file of non-data flow

diagrams, the New Diagram command automatically places

them in alphabetical order among existing diagrams.

 Open Diagram Select Open Diagram to open an existing diagram. A dialog

box displays a list of the diagrams from which you can

choose. To open a diagram in Read-Only mode, right-click

on a diagram displayed in the list, then select Open Read

Only from the menu displayed.

 View of Data

Model

Select View of Data Model to create a view of a data model.

Select the type of view you want to create: global, new,

process, or cluster diagram. For a cluster diagram, you also

select the method to create the diagram: global, made from

the current view, or a custom cluster diagram.

 Draw

VIRTUAL

Chart

VIRTUAL Chart generates a structure chart from a virtual

diagram in the repository created from data imported from

the Hypersoft Application Browser. Refer to Hypersoft’s

Application Browser for more information or contact Visible

systems support at support@visible.com for more

information.

 Close Select Close to close the active document. If the active

document is a diagram, you are prompted to save the

changes.

 Save Select Save to save work done on the active diagram.

 Save With New

Name

Select Save With New Name to save the current diagram

under a new name.

 Erase Changes Select Erase Changes to undo all editing changes that have

been made to the current diagram since it was last saved.

mailto:support@visible.com

Getting Started

22

Table 1-2 Menu Functions
Menu Command Description

 Nest Select Nest to display a submenu to select one of the

following:

 Explode any process symbol in a diagram in order to

create a lower level diagram that represents the detailed

functional aspects of the process being exploded. This

only applies when the diagram type is set to data flow.

When rules are disabled, symbols other than processes

may be decomposed. If the symbol has already been

exploded, this allows you to move from the diagram

containing the parent symbol to the child diagram. The

parent diagram remains open.

 Move to the parent diagram of the current diagram.

 Detach a child diagram from its parent (break the

parent/child link).

 Automatically generate a decomposition diagram.

 Spawn Select Spawn to generate a set of leveled data flow diagrams

from a low level function and its tree of processes on a

functional decomposition diagram. It appears on the File

menu only when an FDD is the current diagram.

 Page Select Page to create a multiple page diagram. This is

generally only useful for structure charts, although you can

use it for DFDs as well. It is not available for other diagram

types. For data flow diagrams, the Analyze function does

not apply the rules across the page connections. For

structure chart diagrams, the rules are applied across multi-

page charts created with the Page function. A submenu

allows you to connect or disconnect two diagrams.

 Print Select Print to print the current diagram, to select diagrams to

add to the print queue, or to print the current project tree. If

you select print queue, you can (1) view its contents to see

how many project diagrams are currently entered into the

queue; (2) add or delete project diagrams from the queue;

and (3) print all diagrams that are listed in the queue.

Getting Started

23

Table 1-2 Menu Functions
Menu Command Description

 Print Setup Select Print Setup to change the printer you configured for

Windows. Click the Setup button to change settings for the

printer driver.

 Recent

Diagrams

Select Recent Diagrams to display a list of the eight most

recently opened diagrams.

 Recent Projects Select Recent Projects to display a list of the most recently

opened projects.

 Exit Select Exit to end the Visible Analyst session and return to

Windows.

Edit Undo Select Undo to erase a partially drawn line or restore a

moved line to its original position.

 Cut Select Cut to remove the selected object or block and place it

in the Windows Clipboard.

 Copy Select Copy to copy the selected object or block into the

Windows Clipboard.

 Paste Select Paste to copy what is in the Windows Clipboard and

place it on the current diagram.

 Clear Select Clear to deselect the current object or block on the

current diagram.

 Select All Select Select All to select all objects on the current diagram.

 Delete Select Delete to remove the selected object or block without

placing it in the Windows Clipboard. You are asked to

confirm your deletion.

 Copy To Select Copy To to store the current object or block as a

Windows metafile or JPEG file.

 Find Select Find to search for an object on the current diagram. If

the object is found, it is selected and brought into focus.

 New Statement Select New Statement to create a new planning statement. If

Getting Started

24

Table 1-2 Menu Functions
Menu Command Description

an existing statement is selected, the new statement is a child

of it. Otherwise, it is inserted at the top of the hierarchy.

 Promote Select Promote to move the selected planning statement one

level higher than its present position.

 Demote Select Demote to move the selected planning statement down

one level lower than its present position.

 Move Up Select Move Up to move the selected planning statement up

one position.

 Move Down Select Move Down to move the selected planning statement

down one position.

View Zoom Select Zoom to reduce the display size of the diagram so that

a larger portion may be viewed on the screen. The zoom

level is expressed in terms of zoom percentage that is

selected from the menu. Diagrams can be edited and printed

in zoom mode. The zoom level is also displayed on the help

bar.

 Show Level When the current document is the planning statement

hierarchy, select Show Level to select how much of the tree

is displayed. Level 1 shows only the top-level nodes; Show

All displays all nodes. You can change individual branches

by clicking the + to the left of each planning statement.

 Filter Select Filter to choose a particular branch of the planning

hierarchy to display. This is useful for projects that contain a

very large number of planning statements.

 Grid Select Grid to turn the diagram grid on and off. The grid is

useful for positioning objects on a diagram. It does not

appear on printed diagrams.

 Ruler Select Ruler to display or inhibit the screen ruler throughout

the vertical and horizontal extremes of the diagram. The

ruler is useful for positioning objects on a diagram. It does

not appear on printed diagrams.

Getting Started

25

Table 1-2 Menu Functions
Menu Command Description

 Show Line

Names

Select Show Line Names to display or inhibit the names of

lines on a diagram.

 Show Symbol

Names

Select Show Symbol Names to display or inhibit the names

of symbols on a diagram.

 Show

Discriminators

Select Show Discriminators to turn on and off the display of

discriminators on entity relationship or class diagrams.

 Show Statement

Type

Select Show Statement Type to display or hide statement

types in the planning window.

 Show Priority Select Show Priority to display or hide the priority of a

statement in the planning window.

 Class Select Class to choose the type of information displayed on a

class diagram.

 Entity Display

Options

Entity Display Options allows you to select display options

for the entity attributes displayed on the data model diagram.

 Select Entity Level to display only entity names within

entity symbols on an ERD.

 Select Primary Key Level to display entity names and

attributes composing the primary key within entity

symbols on an ERD. Refer to Entity Attributes

Displayed on Data Model Diagrams in The Visible

Rules for more information.

 Select Attribute Level to display entity names and all

attribute names within entity symbols on an ERD.

 Select IDEF1X Notation to turn on IDEF1X notation for

the current entity relationship diagram. If there are no

diagrams open, this acts as a default.

 Select Name Inside Box to display the name of an

IDEF1X entity inside the entity box. It is disabled if

IDEF1X is not the current notation for an entity

relationship diagram.

 Select Expand Associators to display a foreign key that

is represented by an associator element with the names

of the elements that comprise the primary key in the

form associator.(column one, column two, …).

Getting Started

26

Table 1-2 Menu Functions
Menu Command Description

 Physical

Schema

Select Physical Schema to display the physical name and

properties of an entity to be used during SQL generation.

 Events Select Events to select change the information that is

displayed for events on an activity diagram.

 Messages Select Messages to select change the information that is

displayed for messages on a sequence or collaboration

diagram.

Options Auto Label

Symbols

Auto Label Symbols automatically labels symbols as they

are drawn. This function can be toggled between On and Off

to enable or disable it. When On, you are prompted to enter

a label each time a symbol is drawn on your project diagram.

 Auto Label

Lines

The Auto Label Lines function automatically labels lines as

they are drawn. This function can be toggled between On

and Off to enable or disable it. When On, you are prompted

to enter a label each time a line is drawn on a diagram.

 Line Settings The Line Settings function allows you to specify default

settings for the diagram type, line type, terminator type,

terminator end type, and line orientation.

 Text Settings Text Settings allows you to specify a default font and format

for each label or caption entered onto a diagram. You can

specify that one particular typeface and format be used for

all symbols, another for all process/data store numbers,

another for all lines and data flows, another for all

paragraphs, etc.

 Security Security can be used to prevent unauthorized access to a

single-user version of Visible Analyst. When enabled, a user

must enter a valid user ID and optionally a password to gain

access to Visible Analyst. User IDs may be added by the

supervisor or a system manager via the Users function on the

Tools menu. To enable security, be sure you are defined as

the supervisor. Select this function in the menu and enter the

supervisor user ID and, optionally, a password via your

keyboard; then press ENTER.

 Colors Colors allows you to assign colors to different screen objects,

Getting Started

27

Table 1-2 Menu Functions
Menu Command Description

to enhance the appearance and clarity of your diagrams.

 Auto Connect Auto Connect allows lines to be drawn between symbols

without worrying about attaching them exactly to the border

of the symbol. With the Auto Connect selection checked, if

you start a line within one symbol and conclude it within

another, Visible Analyst draws the line using the currently

selected line and terminator types and automatically attaches

the line to the border of each symbol. Note that, for FDDs,

following this procedure draws a two-segment elbow line

connector as is usual for that diagram type. When Auto

Connect is checked, it also affects moving lines. If you drag

the endpoint of a line to within another symbol, Visible

Analyst attaches the line to the border of that symbol.

 Auto Position

Text

Auto Position Text allows you to turn Auto Position Text

either On or Off. When on, after manually positioning a line

label, moving the line results in automatic repositioning of

the text based on the text position algorithm built into Visible

Analyst. When off, after manually positioning a line label,

moving the line results in the text item moving relative to

where it was placed. The only time the latter would not

occur is if a line is radically moved on the diagram or the line

is moved to a location where the text does not fit. In this

case, the text is repositioned using the text position

algorithm.

 Include

Connections

Include Connections causes lines connected to a symbol to

remain connected and move when you move a symbol or to

be deleted when you delete a symbol.

 Grid Settings Grid Settings allows you to specify the grid settings for

placing objects on a diagram both horizontally and vertically.

 Interaction

Diagrams

Select Interaction Diagrams to select change the way objects

and messages are created on sequence and collaboration

diagrams.

 Classic User

Interface

Classic User Interface changes the method by which

component items are added to the repository. If checked, a

free-form composition field is used. If not checked,

Getting Started

28

Table 1-2 Menu Functions
Menu Command Description

attributes are added with a name, type, and reference value.

This setting only affects some repository entries, such as

entities, data flows, data stores, and data structures.

 Control Bar Control Bar allows you to customize the control bar, the row

of buttons above the diagram workspace that gives you quick

access to commonly used functions.

 Help Bar Help Bar turns the display of the help bar on and off. The

help bar displays the current menu item, the name of the

current object, the current zoom level, and the current

project.

 Object Browser Object Browser turns the display of the object browser on

and off. The browser displays a list of all objects in the

repository. When no diagrams are open, or the current

window is the diagram list, all objects are displayed. When a

diagram is open, only objects valid for that diagram are

displayed. If an object appears on that diagram, it is

displayed in bold.

 ERD Balancing

Rules

All Fundamental Elements Must be Used on a DFD: If you

choose Yes, Visible Analyst tries to balance ERDs against

DFDs in the same project; and it lets you know which entity

attributes (data elements) have not been used on any DFD. If

you choose No, it does not perform this check.

Each Entity Must Correspond to a Data Store: There is some

correlation between the entities appearing on ERDs and data

stores appearing on DFDs in a project. You can make this a

one-to-one correlation by choosing Yes. Visible Analyst

then enforces this correlation in its balancing analysis and in

other ways.

 SQL Dialect for

Schema

Generation

SQL DDL (Data Definition Language) syntax can be

generated for all entities in the repository for a project.

Dialects include:

Access 97 Paradox 7x, 8x

Getting Started

29

Table 1-2 Menu Functions
Menu Command Description

Access 97, 2000 ANSI 92

CA Datacom 8x CA Open Ingress II

Centura SQL Base 5x DB2/2 2x, 5x, 6x, 7x 8x

DBASE IV Informix 7x

Ingres 6x InterBase 4x, 5x

Progress 7x, 8x, Native 7x, 8x

MS SQL Server 4x, 6x, 7x, 2000, 2005

Netware 1x Oracle 7x, 8x, 9x, 10x

Paradox 7x, 8x Progress 7x, 8x, Native 7x, 8x

SYBASE SQL Anywhere 5x

SYBASE SQL Server 4x, 10x

Teradata SQL V2 2.1.0 Unify 2000

User Defined Vax RDB 6x

Watcom 3x xdb 1x

XML

Each dialect supports a different subset of some theoretically

complete SQL. If the SQL dialect you use is not yet

supported by Visible Analyst, you can either pick the

supported dialect that is closest, or you can choose User-

Defined SQL and customize it to meet your needs.

 DDS Name

Translation

This selection allows you to tailor how object names are

generated during AS400 DDS generation and how they are

mapped to Visible Analyst object names during DDS import.

There are three mapping schemes available:

 Logical to Alias. A Visible Analyst object name is

mapped to the ALIAS() field.

 Logical to Colhdr. A Visible Analyst object name is

mapped to the COLHDR() field.

 Logical to Text. A Visible Analyst object name is

mapped to the TEXT() field.

These mappings only occur if the object name cannot fit in

the DDS record/element name field (column positions 19-

28). If Logical to TEXT is not selected, the TEXT() field

contains the Visible Analyst description.

 Code

Generation

Options

This selection allows you to make choices about how shell

code generation is done from your project.

Getting Started

30

Table 1-2 Menu Functions
Menu Command Description

 Define User

Attributes

Define User Attributes allows you to add, modify, or delete

fields associated with repository entries.

 Define User

Objects

Define User Objects allows you to define site-specific

objects in the repository. These new objects can then be

linked to standard repository objects and reference other

standard objects within the composition field of the user-

defined object.

 Planning

Statement

Types

Select Planning Statement Types to define additional site-

specific statement types in the repository. Visible Analyst is

shipped with a predefined set of types such as Mission, Goal,

and System Requirement; but you can add new types and

define how they can be used.

 Framework

Settings

Select Framework Settings to specify which Model and

Object Types are associated with a specific cell. Click on a

cell to enable the Cell Settings.

 Symbol

Templates

Artifact

Stereotypes

Select Symbol Templates to substitute a different symbol

image for an existing methodology symbol. New template

image symbol sets can also be created.

Select Artifact Stereotypes to add custom stereotype labels

and custom stereotype images that will be displayed within

the artifact symbol.

Repository Define Select Define to go directly to the data repository for the

current project. A repository dialog box is displayed to

execute repository functions. If no diagram object is

selected, the dialog box is empty. The Visible Analyst

repository dialog box allows you to add and change

descriptive information about all objects that appear in

methodology-based projects.

 Divisions Select Division to create, modify, or delete divisions and add

users to divisions. Divisions are used to restrict access to

repository objects and to transfer data information between

an enterprise and satellite project.

Getting Started

31

Table 1-2 Menu Functions
Menu Command Description

 Key Analysis The analyze function identifies errors in the primary and

foreign key specifications you entered in the repository of

your project for the entities in your ERDs.

 Key

Synchronization

This function begins the analysis synchronization function to

review all of the primary and foreign keys you specified in

the repository of your project. It then generates foreign keys

in various entries, as necessary, to properly represent

relationships between entities.

 Model

Balancing

This function balances a data model against a process model

according to the ERD Balancing Rules you previously

selected on the Options menu.

 Syntax Check This function analyzes a class of diagrams according to the

rules of a methodology.

 Generate

Database

Schema

This function generates a database statement file schema for

your project that can be used to create the tables in your

database.

 Compare Model

Against Schema

This command compares the current model against an

existing database schema and shows the differences between

them.

 Generate DDS This command begins the generation of a DDS description of

your project.

 Generate Code This command begins the process of shell code generation

for your project.

 Reports Select Reports to display the repository reports dialog box

for the current project if the repository was enabled when the

project was created. The dialog box allows you to set report

formats and generate a variety of reports based upon the

current project repository and other project information.

 Reports Query Select Report Query to bring up the custom reports dialog

box for the current project if the repository was enabled

Getting Started

32

Table 1-2 Menu Functions
Menu Command Description

when the project was created. The dialog box allows you to

generate custom reports based upon the current project

repository and other project information.

Diagram Symbols Select Symbols to display the symbol submenu add symbols

to a diagram. The cursor changes to the symbol cursor.

 Lines Select Lines to add lines to a diagram. The cursor changes to

the lines cursor.

 Text Select Text to add or change diagram text. The cursor

changes to the text cursor.

 Picture

Select Picture to insert an image file onto the diagram.

 Construct Select Construct to create, load, or delete constructs.

Constructs can be subsections of any diagram.

 Change Item Select Change Item to change the label and/or process or data

store number of a symbol, line or caption, as well as its

appearance.

 Stylize Select Stylize to add enhancements (bold lines, relief, etc.) to

a symbol, or to change the size of any symbol.

 Connect Select Connect to connect a function or process with

subsidiary functions or processes, or two diagram objects.

 Snap Symbols The Snap Symbols function causes subsequent symbols

enclosed in a block to be aligned in a strictly horizontal or

strictly vertical row.

 Snap Lines Snap Lines causes lines enclosed in a block to be drawn in a

strictly horizontal or strictly vertical plane. Lines drawn

between symbols are connected to the center points of the

symbols.

 Analyze Select Analyze to analyze a diagram or an entire project

according to the rules of a methodology.

 Split Data Flow Select Split Data Flow to divide data flows into component

Getting Started

33

Table 1-2 Menu Functions
Menu Command Description

subflows. This function is used for data flow diagrams only,

and only with the rules enabled.

 Regenerate

Chart

Select Regenerate Chart to redraw the open structure chart

diagram, updating it with any information in the repository

that might not already be on the diagram.

 Modify View Select Modify View to modify an existing view of a data or

object model by adding and deleting entities and

relationships.

 Settings Settings allows you to change the size, orientation, and scale

of an existing diagram. If you initially selected the easel

format, you cannot decrease the page size to standard once

your diagram has been created and saved if the content of the

diagram would prevent it from fitting on a standard diagram.

The same principle applies when changing from a multi-page

diagram to one of the smaller sizes.

Tools Backup Select Backup to back up a project to a floppy disk or to a

hard disk.

 Restore Select Restore to restore a project from a floppy disk or from

a hard disk.

 Copy Project Select Copy Project to copy a project.

 Delete Project Select Delete Project to delete a project.

 Rename/Move Select Rename/Move to rename or move a project to a

different subdirectory. You can move it with or without

changing its name.

 Export Select Export to export repository information.

 Import Select Import to import repository information.

 Rebuild Select Rebuild to rebuild projects that have become

corrupted.

 Enterprise Copy Select Enterprise Copy to copy a division between an

Getting Started

34

Table 1-2 Menu Functions
Menu Command Description

enterprise project and a satellite project.

 Enterprise Tag

Maintenance

Select Enterprise Tag Maintenance to remove the link

between an Enterprise project and a Satellite project.

 Copy Diagram Select Copy Diagram to copy a diagram or a branch (data

flow diagram and all of its children/grandchildren). This

command allows you to copy similar methodology diagrams

and branches from one project to another. All data

repository information associated with the diagram(s) is also

copied into the new project.

 Delete Diagram Select Delete Diagram to delete a diagram, or a branch (a

data flow diagram and all of its children/grandchildren).

 Users Select Users to define user security information, including

User Type (System Manager, Project Manager, or User).

For single user and generic DOS network version of Visible

Analyst, you can define user names and passwords to secure

Visible Analyst access to only those users that you have

defined. Thereafter, anyone logged in as supervisor or

system manager can select any user from the list box and

view or change that user ID.

 Prototyper Select Prototyper to start the Visible Prototyper. If you

purchased this tool, you can work with the prototyping and

simulation capabilities.

Window Tile Select Tile to arrange open diagram windows as tiled

windows.

 Cascade Cascade arranges open diagram windows as cascaded

windows.

 Arrange Icons If you have minimized diagrams to icons, this function

arranges those icons on your application workspace.

 Open Diagrams The name of every diagram you have open appears on this

menu. You can move among them by selecting them here.

Getting Started

35

Table 1-2 Menu Functions
Menu Command Description

Help Contents Use Contents to display areas of help or to access the Index

search function.

 Glossary Glossary contains definitions of key terms used in Visible

Analyst.

 Menu Functions

Tutorial

Menu Functions allows you to find information about the

menus in Visible Analyst.

Selecting Tutorial opens the Visible Analyst tutorial file in

Adobe Acrobat Reader.

 Analysis Errors Analysis Errors contains an explanation of analysis error

messages.

 Miscellaneous

Errors

Check for

Updates

Miscellaneous Errors contains an explanation of

miscellaneous error messages.

Check for Updates communicates with the Visible System’s

servers and updates the Visible Analyst with the latest

versions of the Visible Analyst files.

 Visible on the

Web

Visible on the Web takes you to the Visible Systems

Corporation web site.

 Visible

Community

Forum

 Visible Community Forum takes you to the Visible Forum

site on the Web.

 About Visible

Analyst

About Visible Analyst contains information about your

version of Visible Analyst. The Purchase button on the

About dialog allows you to renew or upgrade your copy of

the Visible Analyst.

UNDERSTANDING PROJECT TREES
Visible Analyst organizes diagrams on a project basis. Before working in Visible Analyst, you

must select a project name where the work is to be kept. Every subsequent function performed

by Visible Analyst addresses the selected project, with the exception of New Project, Select

Getting Started

36

Project, Print, Recent Projects, Restore, and Copy Diagram. The selected project remains the

current project until a different project is selected.

Within each project, diagrams are automatically stored in a diagram list referred to as the

project tree or tree file (see Figure 1-3). There are separate diagram lists within a project, one

for the project’s data flow diagrams and others for activity, business process model, class,

collaboration, component, data flow, deployment, entity relationship, entity life history,

functional decomposition, sequence, state transition, structure chart, use case, custom and

unstructured diagrams. The diagram list for data flow diagrams is arranged in a hierarchical

structure, and makes use of indentation to depict relationships between diagrams on different

levels, child/parent relationships, etc. This type of diagram list organization complements the

concept and process of top-down functional decomposition.

Getting Started

37

 Figure 1-3 A Typical DFD Project Tree

The activity, business process model, class, collaboration, component, deployment, functional

decomposition diagram, entity relationship, entity life history, sequence, state transition,

structure chart, use case, custom and unstructured diagram lists do not represent diagrams

with a hierarchical structure. They are not based on the concept of top-down decomposition,

and the diagram list has a flat structure that lists all of the project diagrams in alphabetical

order.

Each project is associated with a project root designator for the project. You can change the

currently selected project selection using Select Project or Recent Projects on the File menu.

Every process-modeling project must begin with a top-level data flow diagram, from which

subsequent levels of data flow diagrams can be decomposed. The remaining levels of data

flow diagrams in the project are structured below the top-level diagram.

 You can store an unlimited number of projects in Visible Analyst.

 Each project is designated by a project root and has its own diagram list for data flow and

other types of diagrams.

 Each data flow diagram in a project can have only one parent, but may have up to 40

children.

Note

 This information applies to both data flow diagrams and to other diagram types.

All references to parent and child diagrams, and to the copying, adding, deleting,

etc., of branches and child diagrams refer only to data flow diagrams.

 The Visible Analyst allows users to create nested relationships between certain

methodology symbols and other methodology diagrams to create a parent child

relationship. The table below lists the diagrams that can be generated for these

methodology symbols.

Methodology Symbol Child diagram

Activity Activity Diagram

Business Process Model

Activity

Business Process Model diagram

Class

Component

Activity or State Transition diagram

Component diagram

Getting Started

38

Data Flow

Deployment

Data Flow diagram

Deployment diagram

Entity Entity Life History diagram

System Boundary

Use Case diagram

Use Case

Activity, Collaboration, Sequence diagram

To remove the Nest relationship between diagrams, open the nested diagram, right mouse

click on the diagram background and choose “Detach” from the Object menu. Save the

change to complete the detachment. The diagram can now be nested to another symbol when

exploded. The Detach option is also available from the Nest option on the File menu.

The next topic “Modifying a Data flow Diagram Project Hierarchy”, below has detailed

instructions how to rearrange stored diagrams and copy diagrams from one project to another.

Modifying a Data Flow Diagram Project Hierarchy
Visible Analyst gives you the capability to restructure a data flow diagram project hierarchy.

You can rearrange project data flow diagrams, as well as add or delete them at any level. You

may also copy a diagram or branch from one project to another, inserting the diagram at any

level in the receiving structure. All repository information associated with diagrams remains

attached to the diagrams when they are moved with the Copy Diagram function. However,

whenever you rearrange or add a diagram or branch to the diagram hierarchy, you may have

to recreate nest relationships to maintain the integrity of any parent/child relationships that are

impacted by the modification. This is explained in the following pages.

Inserting New Diagrams into a DFD Project Hierarchy
The New Diagram function at the File menu allows you to create and insert new diagrams

into the project hierarchy of an existing project. The dialog box asks you to pick an existing

diagram in the project hierarchy.

 If you want the new diagram to become the hierarchical parent of the diagram you select,

check Insert Level. When the inserted diagram is saved, it bumps all subsidiary levels of

the hierarchy down one level.

 Otherwise, the new diagram becomes the hierarchical child of the diagram you choose.

Any nest relationship that existed between the diagram that had occupied the insert position

and its parent are removed. However, the new diagram being inserted is nested from its new

parent diagram. There is no nest relationship between the inserted diagram and the diagram

Getting Started

39

that had occupied its new position (the diagram that was bumped down one level); however,

you can establish a nest relationship between them using the Nest function described in the

Drawing Diagrams chapter.

If you did not make a context diagram when you created the first DFD of a Yourdon-rules

project, you can check Insert Level and Context Diagram and select the top-level diagram in

the hierarchy. Your new diagram then becomes the project context diagram.

Figure 1-4 illustrates an example of the before and after results of inserting a new diagram

into a project hierarchy. In the example, diagram 8 is inserted at the position that diagram 2

had occupied. Notice that the branch of the tree containing diagrams 2, 3, and 4 is therefore

bumped down one level. The nest relationship between the old parent and child is broken, and

a nest relationship between the old parent and new child must be established manually so

proper data flow balancing can be done. All other nest relationships remain undisturbed.

 Figure 1-4 Inserting a New Diagram into the Hierarchy

Getting Started

40

Deleting Diagrams from a Project Hierarchy
Deleting a diagram from the project hierarchy is accomplished using Delete Diagram on the

Tools menu. Upon selecting Delete Diagram, you must select a diagram from the hierarchy

and indicate whether to delete the diagram only, or to delete it and all of its children. If you

delete the diagram only, it has the same effect as removing a diagram level from the hierarchy

and bumping the children up one level. Any nest relationships that existed between the

diagram being deleted and its children are removed, and there is no nest relationship to the

diagram(s) that takes the place of the deleted diagram. You must establish any desired

relationship using the Nest function.

You can also delete boilerplate diagrams with Delete Diagram.

Figure 1-5 is an example of the result of deleting a diagram from a project hierarchy. Notice

the hierarchy structure before diagram 2 is deleted, then notice how the children of diagram 2

are bumped up one level after the diagram is deleted from the hierarchy. There are no nest

relationships between diagram 8 and diagrams 3 and 4, although any nest relationship

between diagrams 1 and 8 is maintained.

Getting Started

41

 Figure 1-5 Deleting a Diagram from the Hiuerarchy

Copying Existing Diagrams Between Projects
This section describes how to copy an existing diagram from one project to another (or from

one level in a project to another) using the Copy Diagram function on the Tools menu. Upon

selecting Copy Diagram, you must first define which project root you want to copy from.

Then you must select the diagram or diagrams you want to copy. You can copy diagrams

from more than one diagram type at one time. Make selections for all of the diagram types

you want to copy and then click OK to copy them.

For non-DFDs, the standard Windows multiple selection techniques can be used. Click on

individual diagrams in any sequence to select; click on a diagram a second time to deselect it.

Because of their hierarchical nature, DFDs work slightly differently. There is a check box in

the Copy Diagram dialog box named Mark Branch. If this is checked and you click on a

diagram, all of its descendant diagram branches are selected. If Mark Branch is not checked,

Getting Started

42

only the diagram name you click on is selected. Note that if you deselect a diagram and there

are superior diagrams in the branch selected, all of its children and grandchildren, etc.,

deselect. You cannot skip levels within a project branch when selecting diagrams, as this

would disrupt nest relationships in potentially unintended ways. If you select diagrams to

copy in different branches of the project, the top diagrams of all of the branches you select

become sibling diagrams (on the same level) in the Copy Diagram destination.

You must also indicate the project to which you want to copy the diagram(s) and, for DFDs,

destination parent diagram.

For DFDs, nest relationships are not automatically set up between any diagram(s) copied and

the parent diagram being copied to. You must establish any desired nest relationships via the

Nest function described in the Drawing Diagrams chapter. When this is done, all processes

(on data flow diagrams) are renumbered according to their new locations in the project

hierarchy. Figure 1-6 is an example of how a diagram labeled 4 is copied into a project

hierarchy with diagram 2 the parent diagram copied to.

 Figure 1-6 Copying a Diagram into a Different Hierarchy

Getting Started

43

Notes

 If rules are enabled for the project into which diagrams are being copied, Visible

Analyst performs a check to assure that no diagram labels are duplicated as a

result of the copy. You are prompted to enter a new label for any diagram that

has a duplicate name to another diagram that already exists in the destination

project. Also note that if an object label in the diagram being copied conflicts

with an object label in the project being copied to, Visible Analyst does not copy

the duplicate object.

You cannot copy both boilerplate diagrams and diagrams in other diagram types in a single

execution of the Copy Diagram function. If you select both boilerplate diagrams and diagrams

in other diagram types, only one group is copied. If Boilerplate appears as the diagram type

when you click OK, the boilerplate diagrams are copied and you are prompted for a new label

for the copied diagram. Otherwise, the rest of the diagrams are copied.

If the projects involved in a copy operation have repository entries, then the repository entries

associated with the diagram(s) being copied from the source project are copied into the

repository of the destination project. These repository entries include the entries for all objects

on the diagrams being copied, as well as any derivative entries associated with the Alias and

Composition fields of these objects. (This assumes that they are copied into a project using

the same methodology rules, and that there are no conflicting labels).

In summary, the following repository functions are performed when copying a diagram

between projects:

 Visible Analyst copies all repository information that is necessary to recreate the entries

in the destination project.

 If the destination project has a repository entry with the same label and same entry type

as an entry being copied, then Visible Analyst assumes that it is the same entry. It does

not overwrite any existing fields that are already defined in the destination project. It does

copy only those entries that are not currently defined in the destination project.

 New repository entries are created in the destination project for all aliases that are

included in the entries being copied.

 New repository entries are created in the destination project for all composition items that

are included in the entries being copied.

PRINTING YOUR WORK
Printing diagrams can be accomplished from the File menu.

Print Options
When you print, you have the following options:

Getting Started

44

 You can select the target printer and access its properties. You can:

 Select a paper source.

 Select a number of other options depending on the target printer.

 You can print the diagram in the active window. By using the Print Range options, you

can determine how much of the diagram to print. All prints the entire diagram; Selection

prints the current selection; and Pages indicates only certain pages of a multi-page

diagram are to be selected. Type page numbers separated by commas, or a range of pages

separated by a hyphen, or click the Select Pages button to graphically choose the pages.

 You can view the Visible Analyst print queue, where you can add or delete diagrams. If

no diagram is open, you can print the diagrams in the queue.

 You can print a snapshot of the tree structure for any diagram type in the current project.

 If you have chosen to print a global view of a data model or a very large decomposition

diagram or cluster diagram, Visible Analyst enters a special item into the print queue that

is easily identifiable. These special items segment themselves and print over several

pages. A key to the segmentation page is printed to aid in reassembling the pages of the

view print for display. If you interrupt the printing of the queue when it contains one or

more of these special items and then redisplay the print queue, you see identifiers to the

individual diagrams in the queue.

 If you are printing one or more easel (11 x 15) or multi-page diagrams, you might want to

take advantage of scaling the diagram so that it fits on a single page. When Scale To Page

is checked, the size of everything on the diagram is reduced so that it fits on whatever

page size you selected for the diagram.

 If you choose this option for an easel diagram and your diagram is set to use portrait

orientation, the diagram objects appear quite small and there is considerable white space

at the bottom. In this case, you should also change your page orientation to landscape.

Note that for multi-page diagrams, the scaling option causes things to become quite tiny

(unless you are printing to a single page on a large plotter). Note further that the only part

of a multi-page diagram that is scaled and printed is the part that you have actually used,

not the entire 180 x 176 inch area that is possible to use.

 You can choose to scale a diagram a specific amount by entering a value in the Scaling

Percentage field. Unless you check Override Diagram Scaling, this value is combined

with the scaling for each diagram. For example, if the scaling factor for a diagram is 50%

and you set the scaling percentage to 50%, the diagram is actually be printed at 25% of its

actual size.

 You can print the diagram in color or in black and white. If the target printer does not

support color, any colors used on the diagram are dithered.

 If you are printing from the queue, you can either remove all items from the queue when

the print job has completed, or retain the list for a future print job. Retaining the queue is

useful if you plan to print a set of diagrams repeatedly.

 You can use the printer defaults for page size and orientation instead of the settings

stored with each diagram. This allows you to print a set of diagrams with the same page

characteristics, without having to change the settings for each diagram in the queue. You

Getting Started

45

can change settings for the printer driver, such as page orientation (portrait or landscape),

print to file, etc., by clicking the Setup button in the Print dialog box.

 You can choose the number of copies of each diagram to print.

 When printing multi-page diagrams, you can choose to have the page number printed in

the upper left hand corner of each page.

 Neither the grid nor the ruler is included in the printed copy of a diagram, even if you

have it displayed on the screen.

The procedure for printing is very straightforward. Choose Print from the File menu. At the

dialog box, choose from among the options described above and click one of the available

buttons.

 If you choose Modify Queue, the dialog box expands to show the current print queue. If

you want to delete diagrams from the queue, select them by clicking on them and clicking

Delete. If you want to add diagrams to the queue, click Add. Another dialog box displays,

showing you a list of all of the diagrams for the current diagram type in the active project.

As above, click on the diagrams you want to print and click the Add button. You can also

choose different diagram types and different projects from which to add diagrams to the

queue. When you are finished selecting diagrams, click OK to return to the print queue

display. You can then print the diagrams in the queue (if there are no diagrams open),

adjust the printer setup, continue the add and delete process or cancel.

 You can print a layout page that details how the separate pages of a multi-page diagram

should be assembled.

Selecting Pages for Printing
When printing a multi-page diagram, you can use the Select Pages button on the Print dialog

box to display a reduced view of the current diagram. The diagram is divided into the pages

that can be selected. When you select pages, you have the following options:

 To select a page, either click with the left mouse button to select a single page, or press

the left mouse button and drag the mouse to select a rectangular area.

 To deselect a page, click a second time with the left mouse button. You can also change

the drag mode by selecting Clear or by clicking the right mouse button. Now when you

click and drag the mouse, pages are de-selected.

 To select all pages, click Select All.

 To reverse your selections (select those pages that are not selected and de-select those

pages that are), click Invert.

 To deselect all pages, click Clear.

 When you have completed your selections, click OK. The Pages field on the Print dialog

is filled with your choices.

Getting Started

46

Printing
Choose Print from the File menu. At the dialog box (refer to Figure 1-7), select from the

available print options as described above. If there are multiple diagrams open in Visible

Analyst, you can only print the currently active one.

 Figure 1-7 The Print Dialog Box

Note that if there are multiple diagrams open in Visible Analyst, you can only print the

currently active one.

Strategic Planning

47

Chapter 2

Strategic Planning

Planning and requirements identification is often the initial phase in an enterprise-engineering

project. During the planning phase, you develop a comprehensive strategic business plan that

meets the identified mission and purpose of the organization. Visible Analyst not only allows

you to create these statements, but also allows you to link them to other objects in your

repository. This allows you to track the software development process from the planning

stages through analysis, design, and implementation. Linking planning statements to model

objects helps you determine the significance of each object and ensures that each object is

essential in supporting the organization’s business plan.

PLANNING PHASE
The Planning phase allows senior-level management to capture and document the business

vision it has for the organization. Once this business vision is captured, management can

communicate the vision effectively to the people who will implement it.

During the Planning phase, management develops a comprehensive strategic business plan

through formal or informal planning sessions.

When the Planning phase is complete, participants have a dynamic plan that meets the

identified mission and purpose of the organization. This plan is captured in a set of planning

statements that forms the foundation for the project.

Planning session participants use the following standard strategic planning techniques to

produce a business plan:

 External and internal assessment

 Goal analysis

 Strategy and objective formulation

PLANNING STATEMENTS
As the product of the Planning phase, planning statements communicate the business vision

and rules that govern the organization. Written in business language, the planning statements

provide the framework to ensure that the data model developed in subsequent phases meets

the information requirements of the business.

Each planning statement is assigned a statement type. Many predefined statement types come

with Visible Analyst:

Strategic Planning

48

 Vision  Critical Success Factor

 Assumption  Objective

 Mission  Policy

 Strength  Tactic

 Weakness  Task

 Opportunity  Business Event

 Threat  System Event

 Goal  System Requirement

 Strategy  System Design Objective

 Issue for Resolution

Your organization may use different terms for these types. You may add different statement

types using the Planning Statement Types function on the Options menu (as described later in

this chapter).

Statements support each other in a hierarchical relationship according to their types

(objectives support the mission, policies support objectives, etc.). You form this hierarchical

structure in the Planning Outline window.

Object Links
Planning statements are integrated into the analysis and design phase by links to the model

objects (entities, attributes, processes, classes, etc.) that are created to support them.

Linking planning statements to model objects helps you determine the significance of each

object you add to the model. This ensures that each model object is essential in supporting the

organization’s business plan.

For example, an organization’s business plan includes the following strategy: “When an order

is received, it is immediately processed and invoiced.” This planning statement would be

linked to the entities ORDER and INVOICE, since those entities support this strategy. These

entities can also be linked to other planning statements, and this strategy can also be linked to

other model objects.

Statement Priority
You can assign a priority level to each statement. The priority level conveys the importance

of the statement to the business plan.

Statement Description
You can display the planning statement description. When this option is selected, a window

opens below the statement hierarchy window that displays the description of the selected

planning statement. If you want to change the description, simply click on the window (or

Strategic Planning

49

press the Tab key) and begin typing. If you do not have rights to modify the object, or if

another user is editing it, you will not be able to change the description. Once the focus is set

back to the statement hierarchy, changes that you made are saved.

To change the size of the description window, move the cursor over the hierarchy/description

border. When the cursor changes to a vertical splitter , press the left mouse button and

drag the mouse until you reach the desired window size.

Note

Do not use these special characters when naming a planning statement because they are

reserved repository characters. ! @ # $ % ^ & * ; :

DEFINING PLANNING STATEMENT TYPES
You can define your own statement types, customizing Visible Analyst to your specific

strategic planning needs. This feature not only allows you to create new types, but define

how these types are related to other planning statements and linked to other objects in your

repository.

To create a planning statement type:

Select Planning 1 Select Planning Statement Types from the Options

Statement Types: menu. The Planning Statement Types dialog box appears.

Select New or 2 Click either New Project Defaults or Current Project.

Existing Project:

 New Project Defaults. Choose this option to modify

the list of statement types added to all new projects.

 Current Project. Choose this option to modify the list

of statement types defined for the current project. If

this option is selected, types can either be added or

removed, but the definition of existing types cannot

be changed. If a statement type is being used, it

cannot be removed.

Set Type Name: 3 This is the name of the new statement type being created.

Whenever you define a planning statement, this name

appears in the list of available statement types.

Set Composite Type: 4 If you choose this option by clicking your left mouse

button on the check box labeled Composite Type, you

allow any newly defined planning statements of this type

to contain other planning statements. This allows a

Strategic Planning

50

hierarchical relationship to be created between statements

according to their types (Objectives support the Mission,

Policies support Objectives, etc.). For every item created

as a child of another statement, a location reference for

this entry is created in the Locations field of the

statement’s repository entry. See the Composition section

of the Repository chapter for information on a related

topic. If Composite Type is not checked, planning

statements of this type are at the lowest level in the

hierarchy.

Set the Link Option: 5 This option allows you to establish a link or series of links

between planning statements of this type and other

repository objects and user-defined objects. To choose

this option, click the left mouse button on the check box.

Set the Link 6 This list box describes the cardinality between any linked

Cardinality: objects. The default setting is 1:1. This means that only

One planning statement object can be linked to one

repository object. There are four cardinalities allowed.

The entry to the left of the colon always refers to the

planning statement. The entry to the right always refers

to the linked repository object.

Set the Link To: 7 This field describes the repository types that can be

Linked to the planning statement. The default is All.

You can click the drop-down arrow for a list of options.

Save the Object: 8 Click Add to save the planning statement type.

Notes

 If you modify the New Project Defaults list, you must create a new project in

order to implement newly defined planning statement types. They ARE NOT

valid with the currently selected project unless you select Add to Current Project

or you choose the Current Project option in Step 2.

 If using a network version of Visible Analyst, every planning statement type is

accessible with any subsequently created project. If you create a Requirement

type, anyone with access to Visible Analyst also has that Requirement type in

any project they may create.

Strategic Planning

51

PLANNING WINDOW
Planning statements are captured and refined in Visible Analyst through the Strategic

Planning window. This window allows you to add statements to and delete statements from

your repository, as well as to edit and to organize them. In addition, the planning windows let

you link planning statements to other modeling objects such as entities, attributes and classes

created during later phases of the software development process.

To open the Strategic Planning Outline window:

Open the Window: 1 Choose Strategic Planning from the File menu, or

Click the Strategic Planning icon on the control bar.

Planning is only available in the Zachman Framework and

Corporate Editions of Visible Analyst. If this option is

grayed out, it means your version of Visible Analyst does

not support planning statements.

 Figure 2-1 Strategic Planning Outline Window

The Planning Outline window provides a hierarchical view of planning statements defined in

the project repository.

Use the Planning Outline window to:

Strategic Planning

52

 Add, edit, and delete statements.

 Move and copy statements to other positions within the outline.

 Link statements to other repository objects.

 Assign priorities to statements.

Each planning statement defined in the repository is shown in a tree-link fashion in the

planning window. For each statement, the following information can be displayed.

Statement Icon – A symbol indicating if any levels are collapsed beneath the statement.

 A plus symbol (+) means that one or more levels are collapsed beneath the

statement.

 A minus symbol (-) means that all levels beneath the statement have already

been expanded.

 No symbol means that there are no levels below the statement.

Statement Title – The title of the statement.

Statement Type – The type of statement. Statement type is shown in parentheses () after

the title.

Statement Priority – The priority level assigned to the statement. The Statement priority is

shown in curly brackets { } after the title and type.

Statement Description – A description of the selected planning statement shown in a

window below the statement hierarchy window.

The Planning Outline window displays planning statement titles in a tree arrangement similar

to the directory tree in Windows Explorer. Like Explorer, you can expand and collapse

branches of the outline to vary the level of detail displayed in the window.

The tree is hierarchical. Statements may have child (hierarchically subordinate) statements

that in turn may have their own child statements if the statement type allows it. You may

expand all hierarchy branches or collapse one or more of them to show only parent statement

branches.

You can change the appearance of the statement window by using commands on the View

menu, by right clicking on the window to display the Property menu, or by clicking on the

appropriate buttons on the control bar.

Using the Planning Window
The Planning window provides a view of the titles of statements visible in a single branch or

the entire repository. Because only the titles are displayed, you can easily rearrange the

statements to reflect their hierarchical relationships to one another. This window does not

provide detailed information about each statement. (That is the function of the Define dialog

box. See the Repository chapter of this manual.)

Strategic Planning

53

Use either the Planning window or the Define dialog box to add planning statements. Only

the planning window allows you to organize statements hierarchically. If you use the Define

dialog box, the new statement is added at the end of the hierarchy on the first level.

Building a Planning Outline
You begin building a planning outline either by adding statements to the Planning Outline

window or by rearranging existing statements into the appropriate hierarchical order.

Planning statements are usually arranged from the top down (following strategic management

principles). This means that strategic statements, such as the mission statement, are placed in

the highest level of the outline. Operational statements, such as policies, are placed in the

lower levels.

New statements appear as a child of the currently selected statement; otherwise, they appear at

the top of the outline. You can use the mouse or the control bar buttons to select, move or

copy statements to other locations in the outline.

Control Bar Buttons
The control bar for the Strategic Planning Outline window is shown below.

 Figure 2-2 Strategic Planning Outline Window Control Bar

 Insert a new planning statement.

 Promote the selected planning statement one level higher than its present position.

 Demote the selected planning statement down one level lower than its present

 position.

 Move the selected planning statement up one position

 Move the selected planning statement down one position.

Show Level – Select how much of the tree is displayed. Level 1 shows only the top-

level nodes, while All displays all nodes. You can change the display of individual

branches by clicking on the + to the left of the planning statement.

 Click on Filter to choose a particular branch of the planning hierarchy to display.

Strategic Planning

54

 This is useful for projects that contain a very large number of planning statements.

 Display statement types

 Display statement priority.

 Display the statement description.

In addition to the control bar, options for changing the statement hierarchy are available on

the Edit and View menus, as well as by right clicking on the planning window to display the

Properties menu.

Adding a New Statement
To add a new planning statement to the hierarchy:

Select the Parent: 1 Click on the planning statement to which you would like

to add a child statement. If no statement is selected, the

new statement will be added to the top of the hierarchy.

Open the New Statement 2 Click the New Statement icon on the control bar, or

Dialog Box: right-click the parent and select New from the Properties

menu to display the Add Planning Statement dialog box.

Strategic Planning

55

 Figure 2-3 Add Planning Statement Dialog Box

Define the Statement: 3 Enter a name for the statement. Statement names must be

unique. NOTE: Do not use these special characters in the

name of the statement because they are reserved

repository characters: ! @ # $ % ^ & * ; :

4 Select the statement type from the list.

5 Set the priority. This is an option field that can contain

any value that you like. Generally, a numeric value is

used to set the relative priority against other statements.

6 Describe the statement.

Save the Statement: 7 Click OK. The statement is added to the hierarchy.

Moving Statements
There are several ways that the hierarchy can be modified. The Move Up and Move Down

options on the control bar, the Edit menu, and the Properties menu move the selected

statement up or down one position. In addition, you can use the mouse by holding down the

Strategic Planning

56

left button and dragging the statement to its new position. While you are moving the mouse,

an insertion marker appears showing you where the statement will be placed.

Adding Additional Detail to a Planning Statement
Like all objects that are stored in the repository, planning statements can have more

information associated with them, such as a short description, notes, and especially links to

other objects. To modify a statement’s complete definition, click on the desired statement and

select Define from the Repository menu, right-click on the item and select Define from the

Properties menu, or double-click on the item. For detailed information on the Define dialog

box, see The Visible Repository chapter of this manual.

Strategic Planning

57

Drawing Diagrams

59

Chapter 3

Drawing Diagrams

THE DIAGRAMMING PROCESS
In its most simplified terms, Visible Analyst diagramming is a three-step process consisting of

adding symbols to a diagram, adding lines to a diagram, and entering text. The sequence in

which you perform the process is entirely up to you. For example, you may choose to position

all of the diagram symbols before positioning any lines. Then you could position text to label

each symbol and line; or you could enable the Auto Label function and be prompted to label

each symbol or line as it is positioned. You can also perform editing functions on any

diagram, allowing you to stylize, reposition, or re-label any object as you develop the

diagram; or you can return to the diagram during a subsequent work session to perform edits.

Detailed procedures that can help you perform the diagramming and editing processes are

provided in this chapter. These procedures provide all of the information you need to draw

symbols and lines and label them. Editing procedures are also described that allow you to

stylize, copy, move, or delete any symbol, line, or text entry.

Note that all of the diagramming procedures are supplemented by helpful information when

using rules and repository functions. Other information explaining the use of nesting

functions, creating and loading constructs, etc., is also provided to help you understand the

complete Visible Analyst diagramming process. Finally, although some explanations discuss

only data flow diagramming, they are valid for all diagram types unless otherwise noted.

Before You Begin
Although the Visible Analyst diagramming procedure is easy to learn, you should understand

the basic operating principles, project diagram hierarchies, and the menu selections presented

in Getting Started before proceeding. If you understand the basic Visible Analyst operating

principles and the menus, you can interactively follow along and perform all of the procedures

presented in this chapter.

Before using Visible Analyst, you should also be aware of a few basic operation aspects and

important decisions you should make prior to creating a new project and drawing the first

diagram. These operation aspects are listed below and described in the following paragraphs.

 Rules and repository considerations.

 Changing diagram types (data flow, functional decomposition, structure chart, entity

relationship, entity life history, business process model, class, state transition, use case,

activity, sequence, collaboration, unstructured or boilerplate).

 Enabling and disabling boilerplates.

Drawing Diagrams

60

 Using boilerplate keywords.

 Adding image files to a diagram or boilerplate

 Selecting a page size.

 Selecting a project.

CREATING A NEW PROJECT

Identify the Project: 1 At the File menu, first select New Project. The Create

 New Project dialog box appears.

 Figure 3-1 Create New Project Dialog Box

2 Type a project name up to 200 characters long (if you are

creating a project on a drive that does not support long

file names, or using a database other than Btrieve you are

limited to 4 characters). Then type a short description.

Identify the path where the project is to reside. The

default location is in a subdirectory beneath Visible

Analyst with the same name as the project root.

Drawing Diagrams

61

Rules and Repository Considerations

Rules Considerations

Rules are applied to diagrams on a project-wide basis; that is, all diagrams in a particular

project must have the same rules. You must therefore be sure that the desired Rules are

selected prior to drawing the first diagram for any new project. You cannot go back and

change your selection for a project once the project has been created. You can use Copy

Diagram to copy the diagrams to a project using a different rule set. The appropriate

methodology symbols will be changed from the old rule set to the current projects rule set.

See Copy Diagram later in this manual for additional information.

You can select Yourdon/DeMarco, Gane & Sarson, SSADM, or Métrica methodology for

data flow diagrams. Yourdon/Constantine methodology is used by default for all structure

charts if the structure chart diagramming mode is selected. Refer to The Visible Rules section

of this manual for detailed information about applying rules to a project.

To make your rules selection for any new project:

Select a Methodology 3 Select Yourdon/DeMarco, Gane & Sarson, SSADM,

While Creating a New or Métrica as a methodology for your project.

Project:

 4 Continue by defining the repository function for your new

 project, as described below.

Data Repository Considerations

Rules are a prerequisite for the Visible Analyst repository; for example, Yourdon/DeMarco,

Gane & Sarson, SSADM, or Métrica methodology must be selected. Like rules, the repository

function is also applied to diagrams on a project-wide basis, where all diagrams in a particular

project share the same repository. Therefore, you must be sure that the repository rules you

want to use are enabled prior to drawing the first diagram for a new project. If a project is

created using one set of rules, you cannot go back later and change the repository rules for

that project. You can use Copy Diagram to copy the diagrams to a project using a different

rule set. The appropriate methodology symbols will be changed from the old rule set to the

current projects rule set. See Copy Diagram later in this manual for additional information.

Specific instructions for using the capabilities of the repository are provided in The Visible

Repository manual section.

To enable the data repository selection for any new project:

Select the 5 Select the database engine to be used for the repository.

Repository Prior to

Creating a New Project:

Drawing Diagrams

62

 6 Continue by defining the ERD notation for the project, as

 described below.

ERD Notation

Relationship Cardinality Notation

A relationship’s cardinality shows how many instances of one entity type relate to how many

instances of the entity type at the other end of the relationship. To show a relationship

cardinality of “Many,” a line terminator must be used. Visible Analyst gives you a choice of

four:

 Crowsfoot Notation - a three-way fork.

 Arrow Notation - a double arrowhead.

 Bachman Notation - a single arrowhead.

 IDEF1X

IDEF1X Notation

Click this check box to select IDEF1X as the default notation for your entity relationship

diagrams. Features include entity notation (independent entities, dependent entities), category

notation, cardinality notation, and group attributes. If you select IDEF1X as the relationship

cardinality when creating the project, you would then select Crowsfoot, Arrow or Bachman as

an alternate cardinality notation.

Choose a Cardinality 7 Select one of the three choices presented.

Notation:

 8 Continue by defining the number of names for

 relationships, as described below.

Number of Names for Relationships

Relationships are inherently bi-directional. However, you may not want to save relationship

names in both directions. You may save two names for each relationship or just one.

Choose the Number 9 Select one of the two choices presented.

of Relationship Names

to Use:

 10 Click OK to create the project.

Selecting an Existing Project
Once projects have been created and saved, you can easily load different projects into Visible

Analyst by choosing Select Project from the File menu and selecting the desired project from

the list. When an existing project is selected and loaded into Visible Analyst for access, all of

the original project parameters stored for the project are automatically restored.

Drawing Diagrams

63

The Uses of Different Diagram Types
The different diagram types are discussed in detail in the Drawing Diagrams section of this

manual. The paragraphs that follow are summaries to make the diagramming processes

clearer.

Functional decomposition diagrams (FDDs) give you the ability to do high-level planning of

business functions diagrammatically while concurrently populating the repository. You can

enter business functions onto diagrams and break them down into successively finer

gradations. At some point, one that is entirely up to you, you can decompose business

functions (hereinafter called simply functions) into processes semantically equal to those that

appear on DFDs. The processes can themselves be decomposed into smaller parts (still lower-

level processes) on FDDs.

Data flow diagrams (DFDs) represent the functional tasks of your project analysis. For

example, a data flow diagram might represent a particular functional area of a department

within your company. That data flow diagram might also be an integral part of a project that

consists of multiple data flow diagrams that represent multiple levels of department functions

and tasks.

Note

 A functional decomposition diagram is very different from a process

decomposition diagram. The former is a full diagramming methodology for

doing business planning. The latter is simply an unstructured diagram laying out

the hierarchy of processes that are descendants of an indicated process.

Structure charts (SCs) are a graphical representation of the top-down design of a project,

showing the program modules that carry out the system functions defined in a data flow

diagram. They also show the hierarchical relationship between these modules and how they

invoke one another. The Entity Life History (ELH) diagram is a component of both the

SSADM and Métrica methodologies and is similar to a structure chart. The ELH shows how

events in a system affect data entities.

Entity relationship diagrams (ERDs) graphically describe the data and the relationships

among data items in your project. You can draw entities (or, more properly, entity types) and

the relationships between them, including relationship names in both directions. Later, the

data elements (also called attributes) composing these entities can be added to the repository

and, with the Key Synchronization function, key information can be generated for

relationships. Later, if you choose, you can balance your data model against your process

model to further enrich the information stored in your project.

The Visible Analyst supports the concept of an SQL view for use on an ERD, which can be

thought of as a derived or virtual table. A view is similar to an entity in that it has a

Drawing Diagrams

64

composition but the items that appear in the composition of a view must belong to other

entities or be expressed based on data elements used by another entity. See the topic SQL

View Support (IntelliViews) for additional information.

Business Process Model Notation (BPM) models describe business process behavior and as a

result use an event based paradigm. Both parallel and conditional behavior is supported in the

modeling notation and also in the Visible Analyst’s implementation of BPMN. A number of

symbols are used to describe process flows, events and decisions and allow the viewer to

easily differentiate between sections of the BPMN diagram.

Class diagrams (CLDs) graphically describe the object model that contains classes (an object

is an instance of a class) and the relationships between classes in your project. You can draw

classes that contain information about attributes and member functions and relationships to

indicate association, inheritance, and aggregation.

State transition diagrams (STDs) are graphical representations of the dynamic model that

contain states and events that cause a change in state. State transition diagrams can be linked

to classes through use of the Nest function. An activity diagram is a special form of state

diagram where states represent performance of activities or subactivities, and transitions are

triggered by completion of activities or subactivities.

Use case diagrams show the relationship between a user and a computer system. A use case

diagram captures some user-visible function.

Sequence diagrams are one type of iteration diagram that describe how objects collaborate in

some behavior. Collaboration diagrams are another type of iteration diagram that show

interaction organized around the objects in the interaction and their links to each other.

Unstructured diagrams are not linked to the repository. They are simply free standing

diagrams. They can be put to any use you want. Cluster diagrams and views, generated from

ERDs, and process decomposition diagrams, generated from DFDs, are unstructured

diagrams.

Users can create Symbol Templates via the Options menu for use on unstructured diagrams.

These Templates use images as the diagram symbols allowing users to create new

unstructured diagrams, such as a Network diagram.

 Note

 You can define defaults for the line types (straight line, dashed line, arc, etc.)

and terminator types (solid arrowhead, open arrowhead, no terminator, etc.) that

can be drawn on unstructured diagrams. They can be made the same as those

used for any other diagram type. You can make this setting by selecting Line

Settings from the Options menu. From the top box, you can choose the line and

Drawing Diagrams

65

terminator values that are accessible when the diagram type is set to

unstructured. However, the line values set for a particular diagram are those in

effect at the time the diagram was created, so you should set this before you

begin the new diagram creation process.

Boilerplate diagrams do not represent project designs, but instead represent standard text and

graphics that are available for insertion into other diagrams. For example, a boilerplate

diagram might be a corporate logo or standard heading that is to be included in your diagrams.

You may create many boilerplate diagrams, and each is saved in a special Visible Analyst file

that is specifically set aside for all boilerplates. You can then select any one boilerplate for

inclusion in subsequently created diagrams if you also enable a boilerplate when you create a

diagram, as described below. It is important to understand that rules and data repository

capabilities do not apply to boilerplate diagrams.

Unstructured Diagrams

When you create a project, you can have unstructured diagrams coexisting with methodology

diagrams in the project. The methodology-based diagrams are linked to the repository.

Creating a New Diagram
Visible Analyst allows you to work with many different diagram types, so the first step in

creating any new diagram is to:

Open the Dialog Box: 1 Select New Diagram from the File menu. The New

 Diagram dialog box appears.

Drawing Diagrams

66

 Figure 3-2 New Diagram Dialog Box

Set the Diagram Type: 2 Set the desired diagram type.

Note

 Once you begin drawing your new diagram, you cannot go back and change that

diagram to another type.

Selecting a Drawing Method

If you are creating an entity relationship, class, or unstructured diagram, choose the method

by which to draw the diagram. Standard is the normal manual process where you control how

objects are added to the diagram. The view method automatically creates a diagram based on

the type of view selected. Refer to The View Functions later in this chapter for more

information.

Select the Drawing 3 Set the desired drawing method.

Method:

Drawing Diagrams

67

4 If you are creating a class diagram using one of the view

methods, and you want entities to be included as classes,

select Include Entities. Once an entity is added to a class

diagram, it is converted to a class in the repository, with

an entity subtype. It can be used freely on both entity

relationship diagrams and class diagrams.

Selecting a Page Size

When choosing the page settings for a diagram, either when creating a new diagram (New

Diagram from the File menu), or changing an existing one (Settings from the Diagram menu),

the following options are available.

Workspace

 Standard defines a single page drawing area. The dimensions of the page are determined

by the page size, scaling factor, and orientation. Prior to version 6.1, standard defined a

9 x 11 inch drawing area.

 Multi-page defines a 180 x 176 inch drawing area. On a multi-page diagram workspace

the places where the diagram breaks over pages when printed are indicated. These marks

are determined by the page size, scaling factor, and orientation, and do not print on your

diagram. While it is permissible to use this multi-page size for any diagram type, it may

not always be the wisest thing to do. Remember that one of the principles of analysis is to

break things up into small sections that take up no more than one standard page to make

the concepts more manageable and easier to understand.

Orientation

Portrait indicates the page is taller than it is wide; Landscape indicates the page is wider than

it is tall.

Page Size

Choose one of the available paper sizes for your printer. The size you choose affects the size

of the diagram workspace. If you have chosen the standard workspace, a diagram is printed on

a single piece of paper. If you chose multi-page, the number of printed pages depends on the

page size selected.

Scaling (%)

Scaling determines the size of objects on a diagram when the diagram is printed. If you

choose a scaling factor that is less than 100 percent, you have a larger workspace for each

page when editing the diagram; however when the diagram is printed, the objects are smaller.

If the scaling factor is greater than 100 percent, the workspace is smaller; and, when the

diagram is printed, the objects are larger. Scaling affects the page breaks on a multi-page

diagram. You can choose a scaling percentage between 10 and 400.

Drawing Diagrams

68

Note

 In some cases, the combination of workspace, page size, and scaling factor

selections can result in an invalid page size. This can occur if the page size is

very large and the scaling factor is very small, or the objects on a diagram do not

fit within the boundaries of the new page size. If this happens, the scaling factor

is reset to a value that results in a valid setting.

You may select a page size according to your diagram requirements. At a later time you can

change the diagram size from the Diagram menu. However, be aware that if you initially

select the multi-page format, you cannot go back and decrease the page size to standard once

your diagram has been created and saved if the content of the diagram would prevent it from

fitting on a standard diagram.

Set the Diagram 5 Select a Workspace, Page Size, Orientation, and Scaling

Page Size: (%) that corresponds to the size you want.

6 Continue by defining the Boilerplate you want to appear

on the diagram, if any. If you are creating a boilerplate

diagram, you cannot include another boilerplate diagram

in it. Boilerplates are described in detail later in this

chapter.

Hierarchy Position of the New Diagram (DFDs Only)

If this is the first diagram of a project, it is at the top of the hierarchy. If you have chosen the

Yourdon/DeMarco methodology, you can also check the box identifying this as a context

diagram. Note that when you select a position in the hierarchy, you are selecting the parent of

the new diagram. If you check the box labeled “Insert Level,” the selected existing diagram

becomes a child of the new diagram. If you choose the top level diagram of a

Yourdon/DeMarco project and you have not yet identified a diagram as a context diagram,

you can insert a level above the existing top-level diagram and make it a context diagram by

checking that box.

Note

 All of the warnings given in the discussion about inserting diagrams into the

hierarchy apply here. Actual parent/child relationships are created only with the

Nest function. Diagram insertions simply position diagrams so that they can be

nested.

Select the Hierarchy Position: 7 Select the position in the project tree hierarchy where you

 want the new diagram to be (data flow diagrams only).

Create the New Diagram: 8 Click the OK button or press ENTER. An empty

 diagram window appears, waiting for your input.

Drawing Diagrams

69

Opening an Existing Diagram for Editing
Normally when you access Visible Analyst, the current project is the one that was last

selected. In some instances, however, such as when you delete a project and then exit the

program, Visible Analyst has no current project the next time it starts. In this case and

whenever you want to work in a different project, you must choose a project before you can

open the diagram you want to edit.

Once a project is selected, choose Open Diagram from the File menu, select the diagram type

and pick the diagram you want to edit from the Diagram box. The diagram you choose opens

in a window for you to edit.

USING BOILERPLATES

Enabling and Disabling Boilerplate
When creating a new diagram, the Boilerplate box allows you to select any existing

boilerplate drawing for inclusion in the new diagram that you are about to draw. There are

three important things to remember about this:

 If the diagram type is set to Boilerplate, Visible Analyst does not allow you to enable a

boilerplate for the new diagram because you cannot include an existing boilerplate in a

new boilerplate diagram.

 If a boilerplate is enabled and the diagram type is set to something other than Boilerplate,

Visible Analyst automatically draws the selected boilerplate into the new diagram

window when a new diagram is created. The added boilerplate is always displayed as part

of the diagram whenever it is accessed. Once a boilerplate is enabled, a new diagram is

created, and the diagram is saved, the boilerplate cannot be removed as one unit from the

existing diagram; however, the individual parts making up the boilerplate can be

removed.

 If disabled, no boilerplate is included in your new diagram. As described below, a

boilerplate can be added to an existing diagram using a Construct.

 Picture files, such as a company logo or other images, can be included on any boilerplate

diagram. The image will be included as part of the new diagram when this boilerplate is

enabled.

Drawing Diagrams

70

 Figure 3-3 Blank Boilerplate Diagram With Key Words

Drawing Diagrams

71

 Figure 3-4 Data Flow Diagram With Keywords in Use

Drawing Diagrams

72

Using Boilerplate Diagram Keywords
Keywords are available for use in boilerplate diagrams. If any of the keywords are present in a

boilerplate that is loaded into a diagram, they are automatically replaced by information such

as when the diagram was created, when it was last edited, etc. You may place the keywords

anywhere within a boilerplate and they are automatically translated when the boilerplate is

loaded into any diagram. They are also updated each time the diagram is accessed by Visible

Analyst. All keywords must be placed on the diagrams as separate text entries in order to

function properly. The following keywords may be used:

 $CDATE - Identifies the date that the diagram was created.

 $CTIME - Identifies the time that the diagram was created.

 $CUSER - Identifies the user who created the diagram.

 $DIAGRAM
1
 - Identifies the diagram label.

 $EDATE - Identifies the date that the diagram was last edited.

 $ETIME - Identifies the time that the diagram was last edited.

 $EUSER - Identifies the user who last edited the diagram.

 $PARENT - Identifies the parent diagram label (data flow diagrams only).

 $PROJECT - Identifies the diagram project root.

More Information about Keywords
Boilerplate keywords may not be embedded within text; instead, they must be separate text

entries. For example, the text entry “Last edit: $EDATE” does not produce the desired result.

Instead, “Last edit:” and “$EDATE” must be separate text entries.

 The font that you use for the keyword is the font that is used for the text that replaces it.

 Keywords are case insensitive.

 A boilerplate can be added to existing diagrams by using Constructs. To do this:

1 Create a new diagram with the desired boilerplate enabled.

2 From the new diagram, save a construct that contains the entire boilerplate and

nothing else.

3 Load the construct into existing diagrams. The keywords for create date, time, and

user take on the values of the diagram from which the construct is created, not the

diagram to which they are added. All other keywords are updated appropriately.

1
 These keywords are continuously updated as necessary: $DIAGRAM, $EDATE, $ETIME,

$EUSER, $PARENT, and $PROJECT.

Drawing Diagrams

73

A LOOK AT THE DOCUMENT WORKSPACE
Whenever you create a new diagram or edit an existing diagram, the diagram or application

workspace is displayed as shown in Figure 3-5. The document workspace is the starting point

for creating, editing, and reviewing all of your diagrams. The center of the document

workspace provides the area into which you draw each diagram. When the first diagram is

opened during a work session, it is opened maximized and fills the entire application

workspace. You can also expand the application workspace to fill your entire screen. This

makes a maximized diagram even bigger. You can also, however, shrink it to a window or

minimize it to an icon, if you wish.

 Figure 3-5 The Document Workspace

The Document Window
Document windows are sizable in the standard Windows manner. If you have a maximized

document open and you open a second document of the same or a different diagram type, both

are displayed as windows; neither is maximized. You can later choose to maximize either

document. You can control how your individual windows appear and how your windows are

arranged from the View and Window menus, as described below. Note that Visible Analyst

Control Bar

Project Root

Object Browser

View

Tool Bar

Standard

Tool Bar Diagram

Tool Bar Font

Tool Bar

Help Bar

Document Workspace

Drawing Diagrams

74

appends the diagram type to the name of that diagram in the title bar of the document

window.

The Help Bar

At the bottom of the workspace is a line that gives a brief description of the menu function

currently highlighted; and displays the current zoom level, the current project, the current

object, and whether the diagram was opened as Read Only (RO). The help bar can be toggled

on and off from the Options menu.

The Object Browser

At the left side of the workspace is the object browser. The object browser displays a list of

all the objects in the repository. It can be toggled on or off from the Options menu. When

there are no documents open, or the current window is the diagram list, all objects are

displayed. When a diagram is open, only those objects that are valid for that diagram type

are displayed. If an object appears on the diagram, it is displayed in bold.

The Control Bar

At the top of the workspace is the control bar, explained later in this chapter. Control bar

options are selected from Customize Control Bar dialog box displayed when you select

Control Bar from the Options menu.

The View Menu

Zoom

Selecting Zoom from the View menu allows you to reduce the display size of a diagram, so

that a larger portion may be viewed within the workspace. Select the zoom level (expressed in

percentage of object sizes compared with those in the 100% level) you wish to use. All

diagram editing functions can be used in the zoom mode, although the on-screen resolution of

text entries in some font styles may deteriorate at the smaller display-size zoom levels. These

and other View menu functions are illustrated in Figure 3-6.

Drawing Diagrams

75

 Figure 3-6 The View Menu

Grid and Ruler

A diagram can be displayed with ruler lines along the top and left sides of the window to aid

you in the regular placement of items on the diagram. A grid can also be placed on the

diagram. The two features can be used simultaneously. Neither prints on a diagram.

Symbols and Lines Without Labels

In order to be referenced in the repository, every methodology symbol or line (except

invocation lines and data and control connections on structure charts) must carry a text label.

However, there are times when a diagram structure is clearer with these labels absent. You

can toggle the display of symbol and line labels on and off from the View menu. If you

choose to print a diagram with labels turned off, the labels do not appear on the printed

diagram.

Note

 Turning line or symbol labels off is not the same as not labeling them. A line or

symbol that has never been labeled does not exist as far as the repository is

concerned, except in the case of supertype/inheritance relationships.

Drawing Diagrams

76

Entity Attributes Displayed on Data Model Diagrams

When viewing a diagram in a data model, the level of detail can be set to show only the entity

names, the entity name and attributes that are part of the primary key, or all attributes. When

changing the detail level, entity symbols are automatically resized and the relationships are

reconnected properly.

To use this feature:

Open the View Menu: 1 Open the View menu.

Select the Detail Level: 2 Select Entity Display Options, then select the level of

detail you to see on the diagram and other entity options.

 Select Entity Level to show only the entity names.

 Select Primary Key Level to show the entity name as

well as its primary key attributes.

 Select Attribute Level to show all attributes, key and

non-key, of the entity.

 Select IDEF1X Notation to use IDEF1X modeling

notation.

 Select Name Inside Box to display the entity name

inside the entity symbol.

 Select Expand Associators to display the elements

from the parent entity that make up the foreign key

when displaying foreign keys on an entity

relationship diagram.

 Selecting Colors on the Options menu allows you to

assign specific colors for the Primary, Foreign and

Alternate keys. These colors are displayed on the

diagrams and when the diagrams are printed in color.

Physical Schema Displayed on Data Model Diagrams

When viewing a diagram in a data model, you can either show the logical model, or the

physical model that is created when SQL Schema Generation is performed. The attributes

displayed for each table are controlled by the current entity view level. When changing the

detail level, entity symbols are automatically resized and the relationships are reconnected

properly.

To use this feature:

Open the Dialog Box: 1 Open the View menu and select Physical Schema.

Select the Display 2 Select the display options to be used.

Drawing Diagrams

77

Options:

 Check Display Physical Schema if you want physical

names to be displayed instead of logical names.

Physical names are translated logical names that the

target SQL RDBMS can understand. The translation

process may change characters or truncate the names

depending the limits of the current SQL dialect.

When you select Display Physical Schema, the other

options are available.

 Check Display Data Type if you want an attribute’s

data type to be shown. If the data type has not been

determined or is not valid for the current SQL dialect,

it is marked as undefined.

 Check Display Null Option if you want an attribute’s

null specification to be shown. If the attribute is part

of a primary, alternate, or mandatory foreign key, it

cannot be null.

 Check Expand Domains if you want attributes that

reference a domain to display the data type of the

domain. Otherwise, the domain name is displayed

instead of the data type. If the current SQL dialect

does not support domains (or user-defined data

types), domains are always expanded.

 Check Use Alias Name if you want an attribute’s

alias name to be used in place of its actual name. You

may want to do this if you have long logical names

and your target RDBMS supports only short names.

If more than one alias is defined, the first item in the

list is used.

If the SQL dialect is changed, the physical attributes are

reloaded based on the capabilities of the new dialect.

Class Attributes Displayed on Object Model Diagrams

When viewing a diagram in an object model, the level of detail can be set to show only the

class names, the class name and attributes, or methods. When changing the detail level, class

symbols are automatically resized and the relationships are reconnected properly.

To use this feature:

Open the Dialog Box: 1 Open the View menu and select Class.

Select the Notation: 2 Select the notation to be used for the class diagram.

Drawing Diagrams

78

Select the Detail Level: 3 Select the items that you want to see on the diagram.

 If you want attributes displayed, check the type of

attributes to include. Public attributes have global

visibility. Private attributes can only be used by

member functions. Protected attributes are accessible

to member functions of derived classes. In addition to

the attribute name, you can choose to include its type,

initial value, and visibility.

 If you want methods displayed, check the type of

methods to include. Public methods have global

visibility. Private methods can only be used by other

members of the class. Protected methods are

accessible to member functions of derived classes. In

addition to the method name, you can choose to

include its argument list, whether it is a virtual

(abstract) function, and its visibility.

 If you want relationships displayed, check the

relationship options to include.

 If you selected a Stereotype when creating the class,

it will be displayed when you display attributes or

methods.

Events

Select Events to display setting options for events.

 Select Display Guard Condition to display guard conditions on the diagram.

 Select Display Action Expression to display action expressions on the diagram.

Messages

Select Messages to display setting options for messages.

 Select Display Message Arguments to display message arguments on the diagram.

 Select Display Argument Types to display argument types on the diagram.

 Select Display Guard Condition to display guard conditions on the diagram.

Note

 Please refer to the Strategic Planning chapter for a description of the View

menu when Strategic Planning is the open document.

Drawing Diagrams

79

Window Menu

Diagram Window Arranging

When you open more than one diagram, you can have them arranged either in cascade (each

slightly below and to the right of the previous) or tiled (arranged and sized so that they are all

visible and fill the workspace). (Refer to Figure 3-7.) You select the arrangement you want

from the Window menu. You can also size and arrange them manually.

 Figure 3-7 Window Functions Illustrated

For each diagram window, you can display it maximized or minimized to an icon. The

Window menu lets you arrange your diagrams neatly in your application workspace as well.

Move Between Diagrams

To go from one open diagram to another, you can move the cursor to within another diagram

window and click. You can also select the name of the diagram you want to move to from the

Window menu. This latter method works even if a diagram is minimized to an icon. The

currently active diagram name is marked with a check.

Drawing Diagrams

80

DRAWING DIAGRAMS
The process of drawing a diagram consists of entering symbols, lines, images and text and

arranging them on the diagram. These processes are explained in this section.

Diagram Menu
By selecting appropriate functions from the Diagram menu (Figure 3-8), you can draw objects

(such as symbols and lines) into a new diagram, choose editing functions (such as Stylize,

Change Item), add a picture onto the diagram, analyze your diagrams, etc. Descriptions and

procedures for most of the functions are provided in the following pages, and a summary of

descriptions is included at the end of the chapter.

 Figure 3-8 Diagram Menu and Symbols Submenu

Scrolling a Diagram
There are three ways to scroll a diagram; that is, to move the displayed area of the diagram

within its window. You can use standard Windows scroll bars. You can also hold down the

Drawing Diagrams

81

CTRL key while pressing the right mouse button and bump the edge of the diagram in the

direction that you want to scroll. In addition, you can use the arrow, PAGE UP, and PAGE

DOWN keys or the mouse wheel to scroll a diagram window.

Drawing Modes
When you are entering or changing objects on a diagram, you can be in one of five different

modes. They are editing mode, symbol entry mode, line entry mode, couple entry mode and

text entry mode. Each mode has a different cursor to alert you to which mode you are in.

There are several methods to change drawing mode, which is reflected in a change in the

cursor. Those methods are explained in the sections that follow. The easiest way is to click on

the object you want to add on the control bar.

Selecting Diagram Objects
Diagram editing in Visible Analyst is centered on the concept of the current or selected

object. To make some change to or get information about an object on a diagram, click on it

with the mouse. If the object is a line, click on one of its end points or handles. The object

changes color. There are then a number of operations that you can perform on the object. The

details of these operations are discussed in different areas of this manual. Clicking the left

mouse button elsewhere on the diagram or choosing Clear from the Edit menu deselects the

current object.

When a symbol or line is selected, the text label(s) it has is highlighted too. If you click on a

selected object’s label, just the label is selected. If you double-click on an object, its

repository entry appears for you to inspect or to make changes. If you click on an object with

the right mouse button, or if you click the right mouse button on an object when it is already

selected, the Object menu appears. On this menu are listed all of the operations you can

perform on the object. You can select the task you want to perform from the Object menu.

The selections available on the Object menu vary somewhat because different objects have

different operations that can be performed upon them. An Object menu for a symbol is shown

in Figure 3-9.

Drawing Diagrams

82

 Figure 3-9 Object Menu for a Symbol

There is another way to select individual objects. If you press the TAB key while an object is

selected, each of its labels is selected in turn. If you keep pressing TAB, other objects on the

diagram are selected in their turn.

Selecting Blocks

You can also select a block. To do this, you must draw a rectangle that encloses all of the

objects you want in the block. Point the cursor at one corner of the area you want to enclose

and hold down the left mouse button. A dashed rectangle draws as you move the cursor.

When the bounding rectangle encloses all of the objects you want in the block, release the

button. Everything completely within the block is selected.

There is another, more detailed way to select items into a block. If you press and hold the

SHIFT key while you click on diagram objects, they become parts of the selected block. If

you change your mind, SHIFT-click an item selected into the block to deselect it. If two

symbols are selected into a block, any line connecting them is automatically selected into the

block. (If you don’t want the connecting line in the block, SHIFT-click on either end of it to

deselect it.) Note that you can use the SHIFT-click method to remove objects within a block

created by the method described in the previous paragraph.

Note

 It is important to be aware of what mode Visible Analyst is in. An object

becomes the selected current object either when it is first added to a diagram or

when you click on it when Visible Analyst is in editing mode (when the editing

Drawing Diagrams

83

arrow cursor is displayed). When the item has been selected in either of these

manners, clicking the right mouse button brings up the Object menu. If you click

on an object when Visible Analyst displays the symbol, line, couple or caption

text cursor, a symbol, line, couple or free-form caption is entered (or attempted)

at that position on the diagram.

Moving Objects on a Diagram

You can move a selected object, including a block, to a new position on the diagram by

pointing to it, holding down the left button and dragging it to where you want it to be. When

you release the mouse button, the object redraws in its new position. If the object is a symbol

and Include Connections was enabled from the Options menu, when you drag the symbol to

its new diagram position, all lines connected to the symbol remain connected and stretch or

“rubber band” to accommodate the move. Note that, in the case of multi-segment lines, only

the last segment of the line rubber bands with the object being moved. If the resulting position

of the line is not pleasing to you, you can adjust it as described in the next section. If you

move a symbol and its attached lines in such a way that the line would have to retrace its steps

(draw over itself) in order to adjust itself to its new position, Visible Analyst redraws the line

more suitably, possibly eliminating one or more segments. (Refer to Figure 3-10.)

 Figure 3-10 Moving a Symbol with Attached Data Flows

Moving a block is similar to moving an individual symbol. If Include Connections is enabled,

lines attached both to objects within the block and to objects outside the block rubber band

and remain connected.

Drawing Diagrams

84

If you move a line to connect it to a different symbol, you should move its endpoint (handle)

to the border of the other symbol. If Auto Connect from the Options menu is selected, you can

drag the endpoint of the line to anywhere within the other symbol and Visible Analyst

attaches the line to the border of that symbol.

Notes

 Please remember the following:

 Any text associated with symbols or lines moves automatically if the

symbol or line is moved. Also, once a label has been created for these

objects, it may be moved independently of the object without affecting the

label/object relationship.

 Items not completely enclosed by a block are not moved.

 If you press ESC before you release the mouse button while dragging an

object, the move is canceled and the object snaps back to its original

position. Use the Undo operation to cancel a moved line after the mouse

button is released, or select Erase Changes from the File menu.

 Moving a symbol by itself without enabling Include Connections may

detach it from attached lines. Detaching a relationship from an entity deletes

the text on the relationship, since a relationship has no meaning without two

entities; the relationship line on the diagram is not deleted. This means that

the relationship entry in the repository is deleted if there is no descriptive

information and if it doesn’t exist on another view. Setting Include

Connections does not cause this detachment. However, if you move a

relationship so it connects a different pair of entities, the name(s) remains as

long as there is no previously existing relationship with the same name(s)

between the second pair of entities.

 While moving a line, you can add or remove segments, or change its

orientation by using shortcut keys. Refer to Adding or Changing Lines later

in this chapter for details.

Line Handles

Whenever you add a line to a diagram or whenever you select a line, you see small colored

boxes at each end of the line and at the end of every segment of the line. These are handles

(refer to Figure 3-11). You can select a line by clicking on one of its end points or handles,

even if the handle is not visible on the screen. You can point your mouse at any one of these

handles, hold down the left mouse button and drag the handle to a new position on the

diagram. When you release the button, the segment(s) involved redraws at the position you

selected.

Drawing Diagrams

85

 Figure 3-11 Line with its Handles

Drawing Symbols
The following sections describe the symbols used for diagramming and the manner in which

they are placed into position on your diagrams.

The Symbols

The symbols that you use to create all of your diagrams are stored in Visible Analyst.

Thirteen sets of symbols are provided: one each for DFDs, FDDs, ERDs, structure charts,

class diagrams, state transition diagrams, business process model, ELH diagrams, use case,

sequence, collaboration, activity, and unstructured diagrams. You can create new diagram

template symbol sets for use on unstructured diagrams using picture files as the symbols.

Refer to Using Picture Files later in this chapter for details. By selecting various symbols,

then adding lines and text as described in the sections that follow, you have the versatility to

build many types of diagrams that reflect your specific project analysis and design needs.

Depending on your configuration, Visible Analyst is shipped with one or more of the

following toolsets:

 The three standard symbols each for the Yourdon/DeMarco data flow diagramming

methodologies, as well as the symbols for functional decomposition diagrams and the

standard Yourdon/Constantine symbols for structure charts.

 The set of symbols for ERDs.

 The set of symbols for CLDs and STDs.

 The set of symbols for ELHs.

 The set of symbols for activity diagrams.

 The set of symbols for collaboration diagrams.

 The set of symbols for sequence diagrams.

 The set of symbols for use case diagrams.

 The set of symbols for BPMN diagrams.

Drawing Diagrams

86

In addition, some commonly used diagramming symbols are also included with the DFD and

unstructured symbol sets, as shown in Figure 3-13. The methodology symbols for each

diagram type are accessed from the Diagram menu or from the control bar. The symbols

available from each of these sources vary as the diagram type of the current diagram changes.

Symbol Restrictions when Applying Rules

You should be aware that rules are applied only to certain symbols for each diagram type, as

described in the following paragraphs.

Functional Decomposition Methodology Symbols

There are three symbols used under the rules for functional decomposition diagrams, as

shown in Figure 3-12.

 Figure 3-12 Functional Decomposition Diagramming Symbols

Functions

A business function is denoted by a rectangle. It is the first symbol for this diagram on the

control bar.

Processes

A process is denoted by a rectangle with rounded corners. The conceptual dividing point

between functions and processes is arbitrary and entirely up to you.

Page Connectors

A functional decomposition is viewed by Visible Analyst as one unified diagram. You can,

however, spread your FDD over multiple pages. The process for linking pages with Page is

very similar to that for DFDs. Unlike DFDs, however, the rules Analyze function recognizes

Drawing Diagrams

87

page connectors and can transparently apply the methodology across them. The page

connector symbol is the third symbol on the control bar and is identical in appearance to the

off-page connector for structure charts.

DFD Symbols

Symbols Recognized by Yourdon Methodology

When Yourdon methodology is enabled for a project, rules are applied only to the symbols

available from the Diagram menu or the diagram tools tool bar, as shown in Figure 3-13.

Figure 3-13 shows the standard Visible Analyst symbols for data flow diagramming.

The Yourdon rules function also assigns a process number to any process symbol when it is

drawn. For more information on the numbering scheme that is applied by the Yourdon

methodology, refer to The Visible Rules.

Symbols Recognized by Gane & Sarson Methodology

When Gane & Sarson methodology is enabled for a project, rules are applied only to the

symbols available from the Diagram menu or from the diagram tools tool bar, as shown in

Figure 3-13.

The Gane & Sarson rules function also assigns a number to a process or data store when

drawn. For more information on the numbering scheme that is applied by Gane & Sarson

methodology, refer to The Visible Rules.

Symbols Recognized by Métrica

When the Métrica methodology is enabled for a project, rules are applied only to the symbols

available from the Diagram menu or from the diagram tools tool bar, as shown in Figure 3-13.

The Métrica rules function also assigns a process number or data store number to any process

or data store symbol when it is drawn. If a data store or external entity is used more than once

on a diagram, or a process is exploded, it is drawn slightly differently.

Symbols Recognized by the SSADM Methodology

When the SSADM methodology is enabled for a project, rules are applied only to the symbols

available from the Diagram menu or from the diagram tools tool bar, as shown in Figure 3-13.

The SSADM rules function also assigns a process number or data store number to any process

or data store symbol when it is drawn. If a data store or external entity is used more than once

on a diagram, or a process is exploded, it is drawn slightly differently.

Drawing Diagrams

88

 Figure 3-13 Data Flow Diagramming Symbols

Symbol Set for Structure Charts

There is a separate symbol set that contains the standard symbols for the Yourdon/Constantine

method of structure chart diagramming, shown in Figure 3-14. This symbol set is

automatically loaded whenever the diagram type is set for structure charts, or whenever a

structure chart diagram is accessed. All of the symbols shown in Figure 3-14 are recognized

by the Yourdon/Constantine rules as specific method symbols with associated identities and

meanings.

1

D

Métrica and SSADM

Process Data Store External Entity

1
D

Process Data Store External Entity

0

Process File Source/Sink

Gane & Sarson

Yourdon/DeMarco

Drawing Diagrams

89

 Figure 3-14 Structure Chart Diagramming Symbols

Drawing Information Clusters

The information cluster symbol in the structure chart symbol set is a compound symbol. Each

can have a variable number of modules within it, as well as a shared data-only module. Place

one on a diagram like any other symbol (see below); the decision as to how many modules it

will contain is made in the labeling process.

ELH Symbols

There is a separate symbol set that contains the standard symbols for entity life history

diagrams. The symbol set is automatically loaded whenever the diagram type is entity life

history, or whenever an ELH is accessed. The symbols listed on the Symbols submenu or on

the diagram tools tool bar are recognized by the SSADM and Métrica rules as specific

methodology symbols with associated identities and meanings.

Drawing Diagrams

90

Figure 3-15 Entity Life History Diagramming Symbols

ERD Symbols

There is a separate symbol set that contains the standard symbols for data modeling (shown in

Figure 3-16). This symbol set is automatically loaded whenever the diagram type is entity

relationship, or whenever an ERD is accessed. The symbols listed on the Symbols submenu or

on the control bar are recognized by the data modeling rules as specific methodology symbols

with associated identities and meanings.

1

ELH Methodology Symbols

Entity Structure Box Sequence Event

Selection Event Iteration Event Operation

Parallel Life

Drawing Diagrams

91

 Figure 3-16 Entity Relationship Diagramming Symbols

Class Diagram Symbol

There is a separate symbol set that contains the standard symbols for object modeling (shown

in Figure 3-17). This symbol set is automatically loaded whenever the diagram type is class or

whenever a class diagram is accessed. The symbols listed on the Symbols submenu or on the

control bar are recognized by the object modeling rules as specific methodology symbols with

associated identities and meanings.

 Figure 3-17 Class Diagram Symbol

Drawing Diagrams

92

State-Transition Diagram Symbol

There is a separate symbol set that contains the standard symbols for creating state transition

diagrams (shown in Figure 3-18). This symbol set is automatically loaded whenever the

diagram type is state-transition or whenever an state-transition diagram is accessed. The

symbols listed on the Symbols submenu or on the control bar are recognized by the object

modeling rules as a specific methodology symbols with associated identities and meanings.

 Figure 3-18 State Transition Diagram Symbols

Symbol Set for Activity Diagrams

There is a separate symbol set that contains the standard symbols for creating activity

diagrams (shown in Figure 3-19). This symbol set is automatically loaded whenever the

diagram type is activity or whenever an activity diagram is accessed. The symbols listed on

the Symbols submenu or on the control bar are recognized by the object modeling rules as

specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

93

 Figure 3-19 Activity Diagram Symbols

Symbol Set for Use-Case Diagrams

There is a separate symbol set that contains the standard symbols for creating use-case

diagrams (shown in Figure 3-20). This symbol set is automatically loaded whenever the

diagram type is use case or whenever a use-case diagram is accessed. The symbols listed on

the Symbols submenu or on the control bar are recognized by the object modeling rules as

specific methodology symbols with associated identities and meanings.

Drawing Diagrams

94

 Figure 3-20 Use-Case Diagram Symbols

Symbol Set for Sequence Diagrams

There is a separate symbol set that contains the standard symbols for creating sequence

diagrams (shown in Figure 3-21). This symbol set is automatically loaded whenever the

diagram type is sequence or whenever a sequence diagram is accessed. The symbols listed on

the Symbols submenu or on the control bar are recognized by the object modeling rules as

specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

95

 Figure 3-21 Sequence Diagram Symbols

Symbol Set for Collaboration Diagrams

There is a separate symbol set that contains the standard symbols for creating collaboration

diagrams (shown in Figure 3-22). This symbol set is automatically loaded whenever the

diagram type is collaboration or whenever a collaboration diagram is accessed. The symbols

listed on the Symbols submenu or on the control bar are recognized by the object modeling

rules as specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

96

 Figure 3-22 Collaboration Diagram Symbols

Symbol set for Business Process Modeling Notation (BPMN) Diagrams

There is a separate symbol set that contains the standard symbols for creating BPMN

diagrams (shown in Figure 3-23). This symbol set is automatically loaded whenever the

diagram type is Business Process Model or whenever a Business Process Model diagram is

accessed. The symbols listed on the Symbols submenu or on the control bar are recognized

by the BPMN rules as specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

97

 Figure 3-23 BPMN Diagram Symbols

Symbol Set for Unstructured Diagrams

There are a number of useful symbols that can be used on unstructured diagrams; and since

there are no reserved or methodology symbols, you may eliminate or change any of them.

They are similar to the non-methodology symbols in the DFD symbol set.

You can also create symbol templates using image files as the symbol set for use on

unstructured diagrams. Refer to Using Picture Files later in this chapter for details.

Auto Labeling Symbols

Within the Options menu of Visible Analyst, there is a selection for Auto Label Symbols. The

auto label function can be enabled to instruct Visible Analyst to prompt you for a label for

each symbol you draw onto a diagram.

Drawing Diagrams

98

With the Auto Label Symbols function enabled, you still have the option to disregard each

prompt if you just want to draw each symbol and return to it later for labeling. The auto label

function can be enabled or disabled at any time before, during, or after work on a diagram.

(There is also an Auto Label Lines selection that prompts you when drawing lines, described

later in this chapter.)

Note

All methodology diagram symbols and line labels must begin with a letter. If you want an

object to begin with a numeric value, edit the VAW.INI file and add this line to the file: Allow
Numeric Prefix=Yes and then restart the Visible Analyst to enable the change. Do not use

these special characters when naming a diagram object because they are reserved repository

characters. ! @ # $ % ^ & * ;

Adding Symbols to a Diagram

There are three ways to add symbols to a diagram:

 Whenever a diagram is active, the Diagram menu (Figure 3-8) is enabled and you can

select Symbols to add to your diagram. Visible Analyst displays a cascading submenu of

the names of the methodology symbols for the diagram type of the currently active

diagram.

 You can click on any of the buttons in the control bar that represent the available

symbols. The symbol last entered is highlighted and ready to be used again, but you are

free to choose another symbol.

 Whenever a diagram is active and the object browser is displayed, you can click on an

object in the object browser list and drag it onto the diagram.

When you select symbol entry by one of the first two methods, the mouse cursor changes to

the symbol cursor (see Figure 3-24). Move the symbol cursor to where you want the center of

the symbol to appear and click; that symbol is drawn on the diagram. If you enabled Auto

Label Symbols, a Label Object dialog box appears into which you can type the name of the

symbol. If it is a process or a Gane & Sarson data store, its number also appears, and you can

change it if you want. If you click the Search button on this dialog box, the names of all of the

symbols of this type already in the repository are listed. You can find the one you want and

select it to be the name of the symbol you just added.

 Figure 3-24 The Symbol Cursor

Drawing Diagrams

99

Note

 To return to the standard mouse cursor, you can either click the  button in the

control bar, click the selected button to deselect it, press the ESC key or toggle

the Symbols selection line on the Diagram menu.

When you select symbol entry by clicking and dragging from the object browser, the cursor

changes to the object symbol and name. Move the object to where you want it on the chart

and release the mouse button.

When you finish adding the symbol to the diagram, it is highlighted in a different color,

indicating that it is the selected item. There are numerous things you can do with selected

items. This subject is explained in the section entitled Selecting Diagram Objects, above.

Drawing Lines
Lines can be added to your diagrams to indicate project and process input/outputs, depict data

flow between processes, to represent couples and connections between modules on structure

charts, relationships between entities, etc. A wide variety of line terminators and line types are

available for your selection. The line entry function is accessed by selecting Lines on the

Diagram menu or you can click on a line button in the control bar.

Lines

You can draw lines thick or thin; solid, dashed, or channeled; straight, elbow or curved; with

or without terminators; and select filled versus unfilled arrow terminators. You can draw your

lines in point-to-point mode, where you use the mouse to position both the start and end

points of the line, having the line drawn between the two points. Or you can draw straight

lines in snap mode, where you point and select a starting point then an end point, having the

straight line snap into position on the horizontal plane. Or you can draw lines containing only

right angles in elbow mode where you point and select a starting point then an end point,

having only horizontal or vertical straight lines. Except for the right angles, elbow lines work

like arcs. Additionally, lines can have multiple segments that allow you to have start and end

points distant from each other. The line terminators, such as the relationship cardinality

terminators available for ERDs, are configurable at any time from the Line Settings selection

from the Options menu

A number of BPMN sequence lines have additional line markers that indicate the flow type

depending on the behavior or type of the connected symbol. See Figure 3-29.

ERD Line Terminators

Figure 3-25 explains the proper use of relationship line terminators to show the cardinality of

relationships between entities.

Drawing Diagrams

100

Class Diagram Line Terminators

Figure 3-26 explains the proper use of relationship line terminators to show the cardinality of

relationships between classes.

IDEF1X Diagram Line Terminators

Figure 3-27 explains the proper use of relationship line terminators to show the cardinality of

relationships between entities.

UML Diagram Line Terminators

Figure 3-28 explains the proper use of relationship line terminators to show the cardinality of

relationships between entities.

BPMN Line Terminators

Figure 3-29 displays the different uses and types of BPMN sequence flow lines. See BPMN

diagramming in Chapter 4 for an overview of sequence flow line usage.

Drawing Diagrams

101

Figure 3-25 ERD Relationship Line Terminators

Drawing Diagrams

102

 Figure 3-26 Class Relationship Notation

Drawing Diagrams

103

 Figure 3-27 IDEF1X Relationship Line Terminators

 A solid line indicates an identifying relationship.

 A dashed line indicates a non-identifying relationship.

 A solid ball indicates zero or more.

 A solid ball with a P indicates one or more.
 p

 A solid ball with a Z indicates zero or more.

 z

 A number can be used to indicate a specific multiplicity.

 2

 A diamond indicates an optional relationship;

 otherwise, the relationship is mandatory.

Drawing Diagrams

104

 Figure 3-28 UML Relationship Notation

Drawing Diagrams

105

Figure 3-29 BPMN Sequence Flow Line Types

Auto Labeling Lines

Within the Options menu of Visible Analyst, there is a selection for Auto Label Lines. The

auto label function can be enabled to instruct Visible Analyst to prompt you for a label for

each line you draw onto a diagram. See the note on p.97 regarding the use of special

characters and numbers when labeling lines or diagram objects.

With the Auto Label Lines function enabled, you still have the option to disregard each

prompt if you just want to draw a line and return to it later for labeling. The auto label

function can be enabled or disabled at any time before, during, or after work on a diagram.

(There is also an Auto Label Symbols selection that prompts you when drawing symbols, as

described elsewhere in this chapter.)

Adding or Changing Lines

There are three ways to add lines to a diagram:

Drawing Diagrams

106

 Whenever a diagram is displayed, the Diagram menu is enabled and you can select Lines

to add a line to the diagram.

 You can click on any of the buttons on the control bar that represent the available line

styles. The line style last entered is highlighted and ready to be entered, but you are free

to choose another style.

 You can have Visible Analyst connect the symbols, using Connect from the Diagram

menu, with the current line style and terminator(s). This same procedure works for

connecting pairs of symbols on other types of diagrams.

When you select line entry by any of these methods, the cursor changes to the line cursor (see

Figure 3-30). Move the line cursor to where you want the beginning of the line to be. Click

and drag the cursor to where you want the end of the line and double-click. The line is drawn

on the diagram. If you are adding a line to connect two symbols, you should place its start

point and endpoint on the border of the respective symbols. If Auto Connect from the Options

menu is selected, you can start and end the line anywhere within the two symbols and Visible

Analyst attaches the line to the borders of those symbols.

 Figure 3-30 The Line Cursor

If you want a multi-segment line, simply click at the end of each segment and double-click at

the end of the line. If the line style you are using is an arc or an elbow line, you might find

that the loop of the arc or the angle of the elbow for a given segment is on the opposite side

from where you want it. This is easy to correct. While you have the left mouse button

depressed and before you click for the end of the segment or double-click for the end of the

line, simply click the right mouse button; and the arc or elbow segment inverts. To invert an

elbow or arc in an existing line, point to the line handle at the end of the segment, click and

drag a little bit. While the left mouse button is still depressed, click the right button and the

segment inverts.

If you enabled Auto Label Lines, a Label Object dialog box appears into which you can type

the name of the symbol. If you click the Search button on this dialog box, the names of all of

the lines for this diagram type already in the repository are listed. You can find the one you

want and select it to be the name of the line you just added. If you click the Change Type

button, you have the capability to change the line type, terminator type and line orientation of

line you just drew. This brings up the same dialog box explained in the Default Line

Selections section below. When you finish adding the line to the diagram, it is highlighted in a

different color, indicating that it is the selected item. There are numerous things you can do

with selected items. This subject is explained in the section entitled Selecting Diagram

Objects, above.

Drawing Diagrams

107

Notes

 To return to the standard mouse cursor, you can either click on the  button in

the control bar, click the selected button to deselect it, press the ESC key or

toggle the Lines selection line on the Diagram menu.

 When you draw a line and double-click to signal that you want the line to end at

that point, you may sometimes move the mouse little. Because of the way

Windows communicates with applications, it is possible that Visible Analyst

will interpret your action as wanting to add another segment to the line you are

drawing before terminating the line. To help prevent this, you can specify a

minimum line length. If you find that this happens to you, increase the minimum

line length setting. Thereafter, any motion of the mouse while double-clicking

that is less than the minimum line length does not cause a new line segment to

be drawn.

To change this setting, you must edit the VAW.INI file in the directory

containing the Visible Analyst executable files, usually \VA, with an ASCII text

editor. (If you have a network version of Visible Analyst, the file name has your

network user number appended to it. For example, if your user number is 11, the

file is named VAW0011.INI. You can find out your user number by looking at

the Help/About dialog box.) There is a line in this file that, by default, reads

“Minimum Line=10”. The units are internal Visible Analyst length units.

Changing this value to a higher number, say 20, should reduce the frequency of

this situation occurring.

Changing the Number or Orientation of Line Segments

You can add, remove, or straighten segments on existing diagram lines. To remove a segment

from an existing line:

Set Selection Mode: 1 Be sure you have established the standard mouse cursor

for selecting diagram objects. You can either click the 

button in the control bar, click on the selected button to

deselect it, press the ESC key or toggle the checked

selection line on Symbols, Lines or Text on the Diagram

menu.

Select the Line: 2 Select the line from which you want to remove a segment

or to which you want to add one. The line handles of the

line are displayed, one each at the beginning and end of

each segment.

Select the Segment: 3 To delete, point the cursor at the handle at the beginning

of the segment you wish to delete.

Drawing Diagrams

108

 To insert, point the cursor at the handle at the beginning

of the segment before which you wish to insert a new

segment.

To straighten, point the cursor at the handle at the

beginning of the segment that you wish to straighten.

 4 Press the left mouse button and start to drag the handle, as

if you want to move its position. Drag it just enough so

that the line changes to the dashed line used to show a line

being moved. Don’t release the mouse button yet.

Delete, Insert, or 5 To delete, press the DELETE key and that segment

Straighten Segment: vanishes, with a new segment being drawn from the

 cursor position to the end of the following segment

To insert, press the INSERT key and a new segment is

inserted at that point, but you won’t be able to see it

because it has zero length. If you drag the mouse cursor,

the new segment shows itself.

To straighten, press the S key and the line segment is

snapped either horizontal or vertical depending on the

plane the endpoint is closest to.

Position the Segment: 6 Release the mouse button when the new segment is

 positioned as you wish.

Adding a Couple to a Structure Chart Diagram

Adding a couple to a diagram is done a little differently. There are two ways to add couples:

 First, set the default line type to couple. Do this with the Line Settings function from

Options menu. Then select Lines from the Diagram menu. When you move the mouse

cursor over the drawing area of the diagram, it changes into the couple cursor shown in

Figure 3-31.

 You can click on any of the buttons on the control bar that represent the available couple

styles. The couple style last entered is highlighted and ready to be entered, but you are

free to choose another style.

 Then select an invocation line. Now click on the end of the invocation from which you

want the couple passed and the couple is drawn.

Drawing Diagrams

109

 Figure 3-31 The Couple Cursor

If you have Auto Label Lines turned on in the Options menu a Label Object dialog box opens

and allows you to enter the text for the couple label. That text is added in the font you chose

in the Text Settings function from the Options menu. If you click the Search button in the

dialog box, the repository search feature is activated and you can choose from the names of

couples of this type currently in the repository. At that time, you are also able to change the

type of the couple.

After you finish adding a couple, it remains highlighted as the selected object and the couple

handles are displayed.

Note

 The cursor remains a couple cursor until you leave the couple entry mode by

either clicking on the  button in the control bar, clicking the selected button to

deselect it, pressing the ESC key, or toggling the Diagram menu selection off. If

you don’t turn off the couple cursor in this manner, Visible Analyst starts a

couple at every invocation line you select.

Default Line Selections

If you use the same type of line and terminator often in your diagrams, you can save time by

using those selections as defaults every time you draw a line. You can define defaults for line

type (straight line, dashed line, arc, etc.), terminator type (solid arrowhead, open arrowhead,

no terminator, etc.) and line orientation (point-to-point, elbow) for each diagram type by

selecting Line Settings from the Options menu. The selections available for line and

terminator types vary with the diagram type. The dialog box displays a copy of a line drawn

with all of the selections you choose, and the defaults are saved until you change them, as

shown in Figure 3-32. Note that not all combinations of these line style settings are valid. An

error message displays when you pick an invalid combination. You do not have to use the

default selections for all lines on a diagram. You can draw it in the default style and change it,

as described above.

Drawing Diagrams

110

 Figure 3-32 Line Settings Dialog Box

This dialog box is essentially the same as the one displayed when you want to change the

style of an existing line. Here there is an additional selection box, the Unstructured Diagram

Default Values box. You can choose the line and terminator values that are accessible when

the diagram type of the active diagram is Unstructured. They can be made the same as the

lines available for any other diagram type. However, the unstructured values set for a

particular diagram are those in effect at the time the diagram was created. Note that when you

display this dialog box from an unstructured diagram, the Diagram Type box does not read

Unstructured, but rather the default type you set in the Unstructured Diagram Default Values

box.

Bi-directional Couples and Data Flows

Bi-directional couples and data flows can be added to your structure charts as any other

couple is. Set the default line type to a data flow or couple with two terminators, or change the

line to one of these types after it is drawn.

Drawing Relationships

Relationships are drawn as any other line, but labeling them is a little different. This is

explained in the section Labeling a Relationship, below.

FDD Connection Lines

The lines between functions, between processes, and from functions to processes are called

“connectors.” They allow you to specify the hierarchical relationships between the functional

Drawing Diagrams

111

elements of your model. The higher-order symbol can be referred to as a “parent” and each of

the lower-order symbols connected can be called a “child” of the parent.

The connectors between functions are purely diagrammatic in that they don’t appear in the

project repository. You can change them at will with no ramifications on other parts of your

model. The connectors between processes represent the same type of parent/child

relationships as exist on data flow diagrams. Processes with the same parent would appear on

the same DFD. Connectors between a function and one or more processes are significant at

the time you Spawn that function; the child processes of a function are placed on the top

diagram of the process model branch spawned by the FDD, and so forth.

You can change any of these connectors at any time. However, if you change the hierarchical

relationships between functions and processes, and DFDs including these processes exist, the

two diagram types are then out of sync. You should correct this with the Spawn Verify

function.

Drawing Connectors

The lines available for FDDs are the same as for DFDs. You can use any line style and any

terminator you want to make the connections necessary to show the function/process

hierarchy in your model. However, since “elbow lines” are commonly used in this type of

methodology, there is a special line drawing technique for making branched elbow line

connectors on FDDs. This procedure is as follows:

Block Method

To connect a function or process with subsidiary functions or processes, place the parent and

child symbols in a block. (Selecting symbols with the SHIFT-click method is probably the

most efficient way.) Then select Connect from the Diagram menu. Branched, elbow

connectors are drawn from the parent to the child symbols.

Individual Method

 For a function being broken down into several lower-level functions or processes, draw a

two-segment elbow line in the usual manner.

 For the second (and subsequent) connector, indicate the start point by pointing at or very

close to the beginning of the previous connector.

 Indicate the start of the second segment by pointing to a point either along or on an

extension of the second section of the previous line.

 Point to the edge of the second symbol to indicate the endpoint of the connector.

Visible Analyst superimposes the lines for as much of the length as possible, making nice,

neat, branched, hierarchical connectors. The same technique can be extended for connectors

with a greater number of segments. This drawing technique works for elbow lines on

diagrams of all types, not just on FDDs.

Drawing Diagrams

112

Unlike data flows, FDD connector lines are not designed to be labeled. If it makes your

diagram clearer to you, you can label them using the Text function from the Diagram menu.

The labels are for your own information only and are ignored by the Visible rules and

repository.

Entering Text
Visible Analyst allows (and encourages) you to label the objects drawn on your diagrams. An

object without a label does not exist, as far as the repository for the project is concerned. For

example, you can label symbols and data flows, but not invocation lines. In addition, you can

enter notes or captions in paragraph form. Finally, you can edit existing text. To allow easier

use of Visible Analyst with non-English languages, the entire ANSI character set can be used

for text, except for characters with a value of 221-222, which are used for special purposes by

Visible Analyst.

Entering Text on a Diagram

You can select Text from the Diagram menu to access the text entry function. Adding or

changing labels on screen objects is done somewhat differently from caption text and is

discussed later.

There are two ways to add free form caption text to a diagram:

 Whenever a diagram is displayed, the Diagram menu is enabled and you can select Text

to add text to the diagram.

 You can click on the large T (text) button on the control bar.

When you select text entry by either of these methods, the cursor changes to the text cursor

(see Figure 3-33). Move the text cursor to where you want the upper left of the caption to

appear and click; a dialog box displays into which you can type your text. When you click

OK, the text is drawn on the diagram. When you finish adding caption text to the diagram, it

is highlighted in a different color, indicating that it is the selected item. There are numerous

things you can do with selected items. This subject is explained in the section entitled

Selecting Diagram Objects, above.

 Figure 3-33 The Text Cursor

Drawing Diagrams

113

Note

 To return to the standard mouse cursor, you can either click on the  button in

the control bar, click on the selected button to deselect it, press the ESC key or

toggle the Text selection line on the Diagram menu.

Labeling Diagram Objects

The procedure for labeling an object (symbol or line) on a diagram is simple:

 Select the object with the mouse. If you just placed the object on the diagram, it is

already selected as the current object.

 Select Change Item from the Diagram menu to get the dialog box used for entering

labels.

 Fill in the label field(s) in the dialog box.

 Click OK when you are done, and the object is labeled and entered into the repository.

See the note on p.97 regarding the use of special characters and numbers when labeling

diagram objects.

When labeling an object on a sequence or collaboration diagram, in addition to the object

name, a class must be specified. The object name is optional; however, the class is

mandatory. Choose the class from the drop-down list; or you can enter a new class name if

you have configured the tool to operate in this manner.

When labeling a class object you can also select a Stereotype for the class. The Stereotype

will be displayed when the attributes or methods for a class are displayed.

There are variations on this procedure. You can click the right mouse button on the object,

thus selecting it and displaying the Object menu. Then select Change Item and continue as

above. You can click the right mouse button on an object already highlighted as the current

object; this also displays the Object menu. The procedure varies slightly for some specialized

objects, as described immediately below. Note that for processes and Gane & Sarson data

stores, process and data store numbers become part of the labeling process. These are

assigned by Visible Analyst, but you can change process numbers when labeling the symbol

or later. As described under symbol and line entry, you can click the Search button in the

dialog box and select the names of existing objects from the repository.

When a image is used as a methodology symbol, you are prompted to label the symbol. Non-

methodology images can be labeled as described in the above paragraph. Refer to Using

Picture Files later in this chapter for additional information.

Auto Label

The Options menu includes selections for Auto Label Symbols and Auto Label Lines. These

automatic labeling functions can be enabled to instruct Visible Analyst to prompt you for a

Drawing Diagrams

114

label as each object is drawn on a diagram. These functions are described in their own

sections earlier in this manual.

Labeling a Relationship

Relationships must be independently labeled in each direction, unless you have specified that

only one label is used for a relationship when you created the project. If Auto Label Lines is

enabled, after you draw the line you see a dialog box in which you can enter the names of the

relationships and their cardinality, the relationship type, and either denormalization

information for ERDs or role/qualifier names for class diagrams. If Auto Label Lines was not

enabled when you added the relationship to the diagram, or you chose not to label it at that

time, you can label it as described above by selecting Change Item from either the Diagram or

Object menu and completing the dialog box. With this dialog box you can also change the

cardinality of an existing relationship. As with other symbols, you can click the Search button

in the dialog box and pick the names of existing relationships from the repository. This can be

done for each relationship to be labeled by putting the cursor in each relationship name box in

turn and clicking the Search button.

Drawing Diagrams

115

 Figure 3-34 Label ERD Relationship Dialog Box

The information that is maintained for a relationship is:

 From. The name of the parent entity or class.

 Cardinality. How many instances of one entity or class relates to another. The Detail

field can be used to store a specific quantity, for example 1, 3 or 5+.

 To. The name of the child entity or class.

 Type. The type of relationship. An identifying relationship indicates the child entity

cannot exist without the parent; the child is drawn as an attributive or associative entity

depending on the number of identifying relationships attached. A supertype/subtype

relationship indicates the creation of a specialized entity (subtype) that is based on a

generalized entity (supertype) that shares common attributes. Only the attributes unique

to the specialized entity need to be listed in the subtype object. An aggregation

relationship indicates the parent class contains the child. An inheritance relationship

indicates the definition of the To class is based on the From class. The base class contains

the basic definition, while the derived class implements only those features that need to

be different. A normal relationship indicates there are no special characteristics between

the objects involved.

 Incomplete. If the relationship type is set to supertype/subtype, and all subtypes within a

group appear on the current diagram, you can force the IDEF1X category symbol to be

drawn as incomplete by clicking on the Incomplete option.

 Denormalization. The denormalization option to be used during SQL generation. None

indicates the tables should not be altered during SQL generation. Collapse Child

indicates the child columns should be added to the parent table. (If a supertype/subtype

relationship is used, a discriminator should be specified.) Duplicate Parent indicates the

columns in the parent table should be added to the child table, and the parent table should

not be generated, while Duplicate Parent and Retain indicates the parent should be

generated.

 Discriminator. The name of the discriminator used for supertype/subtype relationships.

A discriminator is used to distinguish between different subtypes when the

denormalization option for a relationship is set to collapse child. For example, if you had

a supertype named Employee, and subtypes named Salaried Employee and Hourly

Employee, and Collapse Child was the denormalization option, the discriminator

Employee Type would be used to differentiate between the two types of employees

 Role. The role names used for the parent and child classes. For normal relationships, a

role should exist as an attribute of the class at the other end of the association with the

Reference type set to Address. For aggregation relationships, it should be set to Value.

The Visibility in both cases should be Protected, and the type set to the opposite class.

 Qualifier. The qualifier names used for the parent and child classes. If a qualifier is used,

an attribute of type Void is created in the class at the other end of the association with the

Reference type set to Address and the Visibility set to Protected. You can change the type

of the qualifier by modifying the attributes field in the repository.

Drawing Diagrams

116

 Ordered. Ordering indicates the objects on the many side of a relationship have an

explicit order. The term set is commonly used to describe an unordered association, while

a list indicates an ordered association.

 Stereotype. For relationships between use case symbols, this field determines the type of

relationship. <<extend>> indicates the target use case adds functionality to the source

use case. <<include>> indicates the target includes the functionality of the source, while

<<generalize>> indicates a generalization relationship. The <<generalize>> stereotype is

not displayed on the diagram because the notation (open arrowhead as opposed to stick

arrowhead) indicates the type of relationship.

 Figure 3-35 Label Class Relationship Dialog Box

Note

 Each relationship between two entities or classes is a unique object in the

repository. The fact that two relationships between two different pairs of objects

Drawing Diagrams

117

may have the same name does not change the fact that the individual

relationships are distinct. When using the Search function to name relationships,

you are only selecting a name, not a relationship repository object. If, when you

are finished, a pair of objects on this view is connected by relationships with the

same names as relationships joining the same objects on another view in the data

or object model, then both sets of relationships are considered two different

instances (locations) of the same repository object.

When a relationship Type is selected as Identifying, the connected entity type is changed to

reflect this relationship. One identifying relationship changes the connected entity to an

Attributive entity, while two identifying relationships changes the connected entity to an

Associative entity.

See the note on p.97 regarding the use of special characters and numbers when labeling lines.

Labeling an Information Cluster

As a compound symbol, an information cluster is labeled somewhat differently from other

symbols. After you draw it onto a diagram, you must decide how many modules are to be

contained in the cluster. If Auto Label Symbols is enabled, after you draw the symbol you see

a dialog box in which you can enter the name of the information cluster, the name of the data-

only module and the names of the contained modules. See the note on p.97 regarding the use

of special characters and numbers when labeling lines or diagram objects. After you enter this

text, the information cluster is redrawn with the number of modules for which you provided

labels. If Auto Label Symbols was not enabled when you added the information cluster to the

diagram, or you chose not to label it at that time, you can label it as described above by

selecting Change Item from either the Diagram or Object menu and completing the dialog

box. As with other symbols, you can click the Search button in the dialog box and select

names of existing modules from the repository. This can be done for each module or data-

only module, or even the information cluster itself, to be labeled by putting the cursor in each

relationship name box in turn and clicking the Search button.

With this dialog box you can also change the number of modules in the information cluster by

changing the number of module labels, or reorder the modules by reordering the labels by

cutting and pasting using the Windows clipboard.

Labeling a Message

Messages must be labeled in order for an entry to be created in the repository. If Auto Label

Lines is enabled, after you draw the message line, you will see a dialog box in which you can

enter the name of the message, the message type, and other useful information.

If Auto Label Lines was not enabled when you added the message to the diagram, or you

chose not to label it at that time, you can label it by selecting Change Item from either the

Drawing Diagrams

118

Diagram or Object menu and completing the dialog box. See the note on p.97 regarding the

use of special characters and numbers when labeling lines or diagram objects.

The following information is maintained for a message:

 To. This is the name of the target object.

 Name (Method). Name is the name of the message along with its arguments. The name

is based on the name of a method in the target object’s class, or in a base class. Only

methods from the derivation tree of the target object’s class can be used. All available

methods are displayed in the drop-down list. If you want to create a new method, click

the New Method button. If the method has arguments, you can specify values for the

arguments by clicking the Values button. By default, the name and type for the method

are displayed. If you want to change the argument list of the method, click the Change

Arguments button.

 Note The degree to which you can change method or message

attributes depends on your rights to the target object’s class and the

interaction diagram settings.

 Type. This is the type of message, either Asynchronous Stimulus, Flat Flow of Control,

or Procedure Call.

 Occurs Multiple Times. This indicates that the message will be called more than once.

If this option is selected, an asterisk will appear next to the message name on the

diagram.

 Guard Condition. Specify the guard condition that controls the firing of the message.

This is a free-form text field.

 Sequence Number. This indicates the order of messages. This can either be a single

numeric value, such as 1, 2, or 3, or a decimal such as 1.2 or 1.1.4. This option is only

available on collaboration diagrams, since sequence by its very nature indicates message

ordering.

 From. This is the name of the source object.

Drawing Diagrams

119

 Figure 3-36 Label Message Dialog Box

Labeling an Event

Events must be labeled in order for an entry to be created in the repository. If Auto Label

Lines is enabled, after you draw the event line, you will see a dialog box in which you can

enter the name of the event and other useful information.

If Auto Label Lines was not enabled when you added the event to the diagram, or you chose

not to label it at that time, you can label it as described above by selecting Change Item from

either the Diagram or Object menu and completing the dialog box. See the note on p.97

regarding the use of special characters and numbers when labeling lines or diagram objects.

The following information is maintained for an event:

 Event Name. The event name is the name of the event.

 Guard Condition. Specify the guard condition that controls the firing of the event. This

is a free-form text field.

 Action Expression. Specify the action expression that executes if the event is fired.

This is a free-form text field.

 Multiple Trigger. Multiple trigger indicates that the event will be fired more than once.

If this option is selected, an asterisk will appear next to the event name on the diagram.

Drawing Diagrams

120

Labeling a Sequence Flow

Sequence flows used on a BPMN diagram should be labeled to fully document the business

processes. If Auto Label Lines is enabled, after you draw the sequence flow, you will see a

dialog box in which you can enter the name of the flow and other useful information. If you

chose not to label it at that time the default label <<unnamed>> is automatically added for the

flow when the diagram is saved. This insures that the sequence flow is defined in the

repository. The default <<unnamed>> label is not displayed on the diagram.

If Auto Label Lines was not enabled when you added the sequence flow to the diagram, or

you chose not to label it at that time, you can change the default label <<unnamed>> by

selecting Change Item from either the Diagram or Object menu and completing the dialog

box. See the note on p.97 regarding the use of special characters and numbers when labeling

lines or diagram objects.

The following information is maintained for a sequence flow:

 Sequence Flow Name. The sequence flow name is the name of the sequence flow. The

sequence flow will be saved with the default name of <<unnamed>> if choose not to

label the sequence flow when it is drawn.

 Condition Type. Specifies the conditions that are evaluated at runtime to determine

whether or not the flow will be used. The values are

 None. No expression is defined

 Default. The flow that will be used only if all other outgoing conditional flow is not

true at runtime.

 Expression. The condition evaluated at runtime to determine if the flow will be

used.

 Condition Expression. Specify the expression evaluated at runtime to determine if the

flow will be used.

 Quantity. Defines the number of Tokens that must arrive before the activity can begin.

The default value is 1.

Drawing Diagrams

121

 Figure 3-37 Label Sequence Flow Dialog Box

Editing Existing Text and Labels

The procedure for editing existing text is identical to that for entering it. The only difference

is that you must decide whether the change is to be Individual, Local, or Global. If you choose

Individual, the edit is applied to only the selected text. If the text is a label for a symbol that

exists in more than one location and you change this particular instance of it, a new repository

entry is created and it becomes a new repository item. If the new name is that of an existing

object of that kind, it becomes a new location for that object. If you choose Local, the edit is

applied to all occurrences of the selected text or label on the current diagram. If you choose

Global the edit is applied to all occurrences of the selected text within the entire project.

Text Default Settings

When entering text, you can use any fonts that you have available under Windows. Selecting

Text Settings from the Options menu allows you to make settings for different kinds of text

used in Visible Analyst: symbol, process numbers, report headings, etc. For each of these text

types, you can set the typeface and point size, as well as other characteristics such as bold,

italic, underline, centered, etc. See Figure 3-35.

Drawing Diagrams

122

 Figure 3-38 Text Settings Dialog Box

Using Picture Files
Users can add one or more image files onto any diagram in the Visible Analyst. When the

diagram is opened for editing, the Add Picture icon is displayed at the end of the tool bar.

Clicking this icon opens the Insert Picture dialog as shown in Figure 3-29.

The image support can be implemented in the following ways.

 Insert an individual image, such as a company logo, onto a diagram.

 Add one or more images to a Boilerplate file and include the image with any new

diagrams.

 Substitute an image file for a methodology symbol on a diagram. Using the Symbol

Template option on the Options menu, the user is able to map an image file to

replace the Visible Analyst methodology symbol on the diagrams. When the user

adds the methodology symbol to the diagram, the image is substituted for the Visible

Analyst symbol. All repository entries and capabilities are maintained for the

symbol.

 Create a template of image files that can be used on an Unstructured diagram, to

model a Network for example.

Drawing Diagrams

123

Notes

 Only System Manager level users in the multi-user version of Visible Analyst can create

or modify the Template files. Project Manager and User level users can add an image to a

new or existing diagram only if they are assigned Create or Modify Diagram rights in the

project.

 Symbols that can display attributes on the diagram such as the Class or Entity symbols,

may have an image file substituted for the default symbol. Changing the display level to

display the attributes of the item will overlay the attribute list on the symbol.

The following image file types are supported:

 Bitmaps (*.bmp)

 GIF File (*.gif)

 JPEG (*.jpg)

 Icons (*.ico)

 Enhanced Metafiles (*.emf)

 Windows Metafile (*.wmf)

Adding images to a diagram

Images are added to a diagram by selecting the Diagram | Picture menu item or by clicking

the Picture icon in the Diagram Tools toolbar.

Figure 3-39 Insert Picture Dialog Box

Click the … button to browse to an existing image file on the local PC or on a network drive,

or to select a file from the World Wide Web. A number of free image files are available on

Drawing Diagrams

124

the Microsoft website and by other vendors. Once the image file is selected, click OK to

display the Symbol Cursor (Figure 3-24) on the diagram. Clicking the cursor adds the image

to the diagram. The image can be manipulated on the diagram in the same way as any other

diagram symbol, and can be used on a diagram more than once. If Auto Label Symbols is

enabled and you are adding a substitute methodology symbol, you are prompted to label the

image. A non-methodology image can be labeled by selecting Change Item from either the

Diagram or Object menu and completing the dialog.

Substituting an image file for a methodology symbol

Selection Mode: 1 Select the Symbols Template option on the

Options menu to display the Symbol Templates

dialog.

Select the Diagram Template: 2 Select the diagram template from the list of

supported diagrams to display the diagram

symbol types

Select Visible Analyst symbol: 3 Click on a methodology symbol name.

Click the Image button: 4 Click the Image button to display the Select

Image for Symbol dialog, similar to the Insert

Picture dialog box.

Select Image file: 5 Select the image file to be used as a substitute for

the Visible Analyst methodology symbol and

click Open. Click OK on the Select Image for

Symbol dialog

The selected image file will be displayed in the Symbol Templates dialog as show in Figure

3-40

Drawing Diagrams

125

Figure 3-40 Symbol Template Dialog Box

When the Actor stick figure symbol is selected on the Use Case diagram toolbar, the picture

referenced by the User.jpg file will be added to the diagram If Auto Label Symbols is turned

on, the user is prompted to label the object. The new symbol has the same repository entry

and capabilities as the original methodology symbol.

Image files that have been substituted for a methodology symbol can be changed to another

symbol using the Change Item feature. Changing the symbol back to the original entry type

will not use the image file, but the default methodology symbol supplied with the Visible

Analyst.

Unstructured template files.

Unstructured template files can be defined using image files for the symbol set and used to

create diagrams not represented by the methodology diagrams. The Template file is enabled

for Unstructured Diagrams and can be used to diagram flowcharts, the network structure,

organizational charts, etc.

Defining an unstructured diagram template symbol set is similar to substituting an image file

for a methodology symbol.

Selection Mode: 1 Select the Symbols Template option on the

Options menu to display the Symbol Templates

dialog.

Drawing Diagrams

126

Add a new template: 2 Click the Add button under the Template section

of the dialog but to add and label the template

file.

Add and label the new symbol: 3 Click the Add button on the right side of the

dialog to add and label a new symbol.

Select the image file: 4 Click the Image button on the right side of the

dialog to select the image file associated with the

symbol name.

After defining the new template file, the template can be selected on the New Diagram dialog

when you select Unstructured as the Diagram Type. See Figure 3-2. When the diagram is

opened for editing, the image files you selected for the symbol set are displayed in the symbol

toolbar. Figure 3-41 shows 3 sample images.

Figure 3-41 Symbol Template toolbar

The last icon in the toolbar is the picture icon, available for all diagrams. Clicking this

icon displays the Insert Picture dialog as shown in Figure 3-39.

EDITING A DIAGRAM — OTHER DIAGRAMMING
FUNCTIONS
Editing functions deal more with the appearance of diagrams than their underlying meaning.

Other Visible Analyst functions that deal more with the semantics of diagrams or with tying

diagrams to a project repository are described in the chapters on The Visible Rules and The

Visible Repository, respectively. Editing functions can be performed while creating a diagram

as described in the previous sections of this chapter. Editing can also be performed after the

diagram is saved by initiating editing functions from File, Edit, Options or Diagram menus

and by making use of other Visible Analyst functions. The latter part of this chapter is

devoted to the description of some of the major editing functions. This section explains some

of the smaller functions not described elsewhere. Note that some of these functions appear not

only on the menus mentioned, but also in the Object menu for a selected object. The functions

explained here are:

Drawing Diagrams

127

Options menu Diagram menu File menu Edit menu

Control Bar Change Item Project History Copy

Object Browser Stylize Erase Changes Paste

 Snap Symbols Clear

 Delete

Control Bar
Control Bar, on the Options menu, displays a row of buttons above the diagram workspace

that gives you quick access to some Visible Analyst functions. For example, you can execute

the following menu functions with control bar buttons:

 Select project to open.

 Create a new diagram.

 Open an existing diagram.

 Save the current diagram.

 Print diagram(s).

 Find an object on the current diagram.

 Generate database schema

 Import RDBMS database definitions.

Other buttons on the control bar aid you in drawing diagrams. For example, to add a symbol

to a diagram, you would have to select Symbols from the Diagram menu and then pick the

symbol you want to add from the submenu that displays. With the control bar, shown in

Figure 3-42, you simply click the button representing the symbol you want to add, if it is not

already highlighted. Adding lines and couples works in the same way.

 Figure 3-42 Control Bar Buttons for Gane/Sarson DFDs

The Control Bar menu option allows you to customize the control bar. When you select

Control Bar, the Control Bar dialog box is displayed, allowing you to select the control bar

options you want displayed. The control bar can contain up to four tool bars:

 The standard tool bar contains basic buttons (Select Project, New Diagram, Open

Diagram, etc.).

 The diagram tools tool bar contains the symbol, line, text and image buttons appropriate

for the current diagram.

 The view tool bar contains controls to change the zoom level and entity/class view level.

 The font tool bar contains controls to allow changing the current font characteristics.

Drawing Diagrams

128

Object Browser
With Object Browser, on the Options menu, you can choose to have the object browser,

shown in Figure 3-43, display on your screen.

The object browser displays a list of all the objects in the repository. If there are no diagrams

open, or the current window is the diagram list, the object browser displays all the objects in

the repository. If a diagram is open, only the objects valid for that diagram type are shown. If

an object appears on the diagram, it is shown in bold.

 Figure 3-43 Object Browser Displayed on the Workspace

In the object browser you can:

 Double-click on a folder to expand or collapse it.

 Double-click on an object to display the Define dialog box.

 Right-click on an object to display a context-sensitive menu of options.

 Click and drag an object onto the diagram.

Drawing Diagrams

129

Right-click within the Object Browser window (but not on an entry) to display a context-

sensitive menu of options for the browser: Hide turns off the browser window, Refresh

reloads the repository objects, and Properties displays a dialog box that allows you to

change how the object browser appears. Properties include:

 Group Objects by Type. For each object type in the repository, a folder is displayed with

the object name. To see the objects, open the folder by clicking the + button or double-

clicking on the item. If this option is not checked, all entries in the repository are listed

alphabetically without folders.

 Differentiate Entity Types. Entities/Independent Entities, Associative Entities, and

Attributive/Dependent Entities have their own folders. If not checked, all entity types are

listed in one folder.

 Auto-Find Object When Selected. If this option is checked, the object is scrolled into

view on the current diagram.

 Attributes. The attributes (composition) for entities, classes, data flows, data stores, and

any user-defined object types created with Composite Type option are displayed.

 Primary Key. The primary key field(s) for an entity is displayed. This option is checked

by default when attributes are displayed.

 Foreign Keys. The foreign key field(s) for an entity is displayed. This option is checked

by default when attributes are displayed.

 Methods. The methods for a class are displayed.

 Base Classes/Entities. The classes or entities that are related to the current object via a

dependent relationship are displayed.

 Physical Characteristics for Elemental Types. The type, length, and null characteristics

for an elemental object (data elements or classes with an elemental subtype) are

displayed.

To resize the object browser, click on the right browser margin and drag the margin to the

size you want.

The Edit Menu Functions
The Undo, Cut, Copy, Paste, Clear and Delete functions from Edit menu are the standard

Windows editing functions and work as usual in the Visible Analyst diagram editing context.

Undo

Undo deletes a partially completed line from a diagram. Once you double-click to complete

the line, Undo no longer works. You must then use Delete.

Cut, Copy and Paste

These three functions all interact with the Windows Clipboard. The formats used to move data

to and from the Clipboard are text (used when only text is copied to the Clipboard), Windows

Drawing Diagrams

130

bitmap, Windows metafile, and a proprietary Visible Analyst format. Once data is on the

Clipboard, it can be used by any software application that recognizes that particular format.

Cut, Copy

Cut and Copy are identical in function except that when Cut is executed, whatever is placed

on the Clipboard is also removed from the diagram. Any object highlighted as the current

object or any block selected on a diagram can be cut/copied to the Clipboard. If a symbol is

selected and Include Connections is enabled, both the symbol and any connected lines

(including labels for all of these) go to the Clipboard. Selecting a line with Include

Connections enabled does not put attached symbols on the Clipboard. The formats in which

items are moved to the Clipboard are:

 Anything sent to the Clipboard (symbols, lines, either of those with attached labels,

caption text in a block with other diagram objects), resides there as a Windows bitmap, a

Windows metafile, and in the Visible Analyst proprietary format.

As is usual with Windows applications, text from edit boxes can be cut and copied to the

Clipboard by highlighting it with the cursor and pressing the shortcut key for Cut or Copy.

Paste

Paste moves data from the Clipboard into Visible Analyst. The only items that can currently

be pasted onto a diagram are Clipboard data in either text format or Visible Analyst

proprietary format. When you select Paste from the Edit menu or press the shortcut keys, the

Clipboard data is displayed on your diagram as a selected block at the cursor position. You

can then move the block anywhere on the diagram and fix its new position by clicking the left

mouse button anywhere on the diagram outside the block.

Drawing Diagrams

131

 Figure 3-44 Windows Clipboard with Visible Analyst Data

When you paste Clipboard information other than simple text onto a diagram, Visible Analyst

recognizes what it is and adds it to the diagram correctly: symbols are added as symbols, lines

as lines, etc. If you try to paste onto a diagram an object (such as a process) that must be

unique in a project, Visible Analyst does not paste it with its label if it is found to violate the

uniqueness rule. It is pasted without its label.

As is usual with Windows applications, text from the Clipboard can be pasted into edit boxes

by pressing the shortcut key for Paste.

Clear

Clear deselects the current object or block on the current diagram. It performs the same

function as clicking on a blank area of the diagram with the mouse. As is usual with Windows

applications, you can also use the shortcut key that is shown on that menu item.

Delete

Delete is identical to Cut, except that nothing is moved to the Clipboard. Since it is not

reversible as Cut is, the Delete function asks you for confirmation before deleting from a

diagram.

Note

 If Include Connections is enabled, deleting or cutting a symbol also removes its

attached lines from the diagram. For example, if the symbol is an entity, Visible

Analyst deletes any attached relationship. This means that the relationship entry

in the repository is deleted if there is no descriptive information and if it doesn’t

exist on another view. Deleting a line with Include Connections enabled does

not delete attached symbols.

The Change Item Function
As is mentioned elsewhere, Change Item on the Diagram menu allows you to change existing

caption text, symbol and line labels, relationship cardinality, information cluster module

number and order, and, for lines, the type of the line itself, as well as its terminators and

orientation (point-to-point, snap, elbow).

You can also click the Search button to search the repository for the item you wish to enter

into the label field. Items of the same repository object type are displayed alphabetically.

Drawing Diagrams

132

Generally, when you label an object on a diagram, Visible Analyst decides, based on diagram

space available, whether the label fits all on one line or it breaks over multiple lines.

However, you can force a label to spread over more than one line. Wherever you want a line

break in an object label, either press CTRL+ENTER or enter a  character by typing

ALT+0187 (hold down the ALT key and type 0187 on the numeric keypad). When the label

is drawn on the diagram, the label breaks where you specified.

The Change Type Button

Also in this dialog box is the Change Type button. With it you can change a selected symbol

already placed on a diagram to another symbol in the symbol set in use for the diagram type

currently selected. The symbols to which you can change the selected one are listed in the

Change Type dialog box. Line connections, symbol label and symbol stylizing remain as on

the original symbol. (If the new symbol is very differently shaped from the old, lines may

appear disconnected from the new symbol and certain stylizations may change.) You can also

change a selected line into one of another style or change its terminators or orientation. There

are some restrictions on what symbols and lines can be changed. If a change is not possible,

the individual selections or perhaps the button itself are not available.

Notes

 Change Type functions for most methodology symbols, but not for those on data

flow diagrams, because DFD symbols used don’t have reasonable alternative

symbols to which to change them. Change Type also works for non-

methodology symbols on structure chart, boilerplate and unstructured diagrams.

 Image files that have been substituted for a methodology symbol can be changed

to another symbol. Changing the symbol back to the original entry type will not

use the image file, but the default methodology symbol supplied with the Visible

Analyst.

The Stylize Function
The Diagram menu Stylize function allows you to enhance the appearance of symbols, or

change the size of any symbol in a diagram. After selecting a symbol and choosing Stylize

from the Diagram or Object menu, a dialog box displays containing a symbol of the type

selected. You can choose from Horizontal and Vertical, Size, Boldness, Relief Amount, and

Overlay. Size makes the symbol smaller or larger in the horizontal or vertical plane, or both.

If you select Bold, you can darken the symbol. Relief adds a shadow effect to the symbol.

Overlay creates a stacked symbol. The use of the Stylize function changes the appearance of

symbols and can be useful for special effects and presentation graphic purposes; it does not

affect the identity or recognition of methodology symbols.

For Size, Boldness and Relief Amount, use the scroll bars to select the degree of change you

want to make in the symbol. At any time, you can click the Apply button to see the effect of

the changes you have made. For Overlays, you must set the Count (the number of overlays)

Drawing Diagrams

133

and use the scroll bars of the box to specify the relative position of the overlay to the original

symbol. This relative offset is used to position each successive overlay. Again, click Apply to

see the total effect of all of the stylizing you have done.

At any time you can click Reset to undo the stylizing you have done to the symbol. Once you

click OK, the stylizing is applied to the symbol on the drawing. If the symbol originally

selected was already stylized, Stylize modifies it or, by clicking Reset, returns it to its original

state.

If you want to make a symbol size change permanent, click the Set Default Size button.

Whenever you add a new symbol of this type to a diagram, the size is set to the new size.

Notes

 If you change the size of the symbol and/or add enough overlays, the symbol

becomes too large to fit in the stylize box. In such cases, the symbol as

displayed is scaled to fit the box. However, when you click OK, the stylizing is

applied to the selected symbol on the diagram full scale; the scaling done in the

dialog box has no affect.

 Entity and class symbols can only be stylized when no attributes or methods are

displayed.

 Image symbols can be stylized as described above, but the Boldness, Relief

Amount, and Overlay options are not enabled for image files.

Changing the Size of a Symbol
Whenever you add a symbol to a diagram or whenever you select a symbol, you see small

colored boxes, or handles, in the four corners of the symbol. You can use the handles to

change the size of the symbol by pointing the cursor at any one of these handles, holding

down the left mouse button and dragging the handle to a new position. When you release the

button, the symbol is redrawn.

Notes

 Please remember the following:

 Entities and classes do not have sizing handles if attributes are displayed.

To change the symbol size, you must turn off attribute display mode.

 If you press the ESC key before you release the mouse button while

dragging a handle, the sizing operation is canceled and the object returns to

its original size.

Drawing Diagrams

134

Snap Symbols
Snap Symbols, on the Options menu eases the alignment of symbols along a grid. If you

select into a block the symbols you want to line up in one horizontal or vertical row and select

Snap Symbols, the symbols in the block snap into exact horizontal and/or vertical alignment,

whichever applies

The Project History Function
Project History, from the File menu, allows you to display a summary description of the

project as a whole. In addition to all of the settings you made when you created it, you can

view the diagram trees for each diagram type and see when each diagram was last edited. If

you have the LAN version of Visible Analyst, you can see who created the project, as listed in

the Project Manager field, change a project owner, and determine which diagrams have been

edited and by whom.

 Figure 3-45 Project History Box

Drawing Diagrams

135

The Erase Changes Function
Erase Changes, from the File menu, instructs Visible Analyst to ignore all editing changes

that have been made to the diagram since the last time it was saved. The diagram redraws as it

was last saved and any changes you made are permanently lost.

USING CONSTRUCTS
Visible Analyst provides the capability to store entire diagrams or sections of diagrams as

constructs. They may be thought of as “library” files for saving whole or partial diagrams that

you may wish to reuse throughout a project or in different projects. Constructs are stored as

system files and may be recalled for use in new diagrams as well as in other portions of an

existing diagram. Constructs may be composed of anything that appears on a diagram

(symbols, lines, text, images) and provide reusable pieces or shells of diagrams that can be

used at will. There is no limit to the number of constructs that may be stored in the construct

library, and you may load a construct into any diagram.

Working with constructs is very similar to using Copy and Paste, from the Edit menu, on

selected blocks on a diagram. The difference is that you can save them permanently, whereas

Copy and Paste deal only with the Windows Clipboard.

Creating a Construct
To create a construct:

Open a Diagram: 1 Access the diagram from which you wish to create the

 construct.

Enclose the Desired 2 Select a block enclosing the items you want to include in

Objects in a Block: the construct.

 3 Select Construct at Diagram menu. The Create a

 Construct dialog box displays.

Name and Describe 4 Enter an eight-character file name for the construct and

the Construct: and a description of it to help you remember what the

 construct is.

Save the Construct: 5 Click OK to save the construct. Your construct is

saved in a file and can be recalled by selecting Construct,

as described below.

Loading a Construct
To load a construct onto a diagram:

Drawing Diagrams

136

Open a Diagram: 1 Access the diagram to which you wish to add the

construct. Note that if you have only one diagram open

and it is minimized to an icon, you can load a construct to

it, but cannot complete the process until the diagram has

been at least enlarged to a window.

2 Select Construct at the Diagram menu. The Load a

Construct dialog box displays. The names of the

constructs currently stored in your construct library are

displayed, along with a description for each.

Select a Construct: 3 Select one of the constructs from the display and click the

Load button. It appears on your diagram as a block

enclosed in a rectangle, with the items within it shown as

selected.

Load and Position the 4 Position the construct on the diagram as you would a

Construct: a block, by clicking the left mouse button and dragging

the block to where you want it. Clicking outside of the

block finalizes the position of the construct on your dia-

gram.

Note

 If an object label in the construct conflicts with an object label already in the

project, then that label is not copied to the diagram as part of the construct. Also,

if a construct is created from one diagram type and loaded into a different

diagram type, the construct diagram appears but the objects are not recognized

as methodology objects and are transparent to the Analyze function. Further,

nothing within a construct is linked to the repository until it has been added to a

diagram and saved. To move an entire diagram between projects along with all

associated repository entries, see the section describing the Copy Diagram

function.

Deleting a Construct
To delete a construct:

Open a Diagram: 1 Access a diagram. The Diagram menu is not activated

 until a diagram is open.

2 Select Construct at the Diagram menu. The Load a

Drawing Diagrams

137

Construct dialog box displays. The names of the

constructs currently stored in your construct library are

displayed, along with a description for each.

Select a Construct: 3 Select one of the constructs from the list.

Delete the Construct: 4 Click the Delete button. You are asked for a

confirmation before the construct is deleted from your

library.

NESTED DECOMPOSITION
The Nest function, on the File menu, allows you to “explode,” or decompose a symbol,

usually a process, and create a lower level diagram that represents the detailed functional

aspects of the symbol being exploded. The newly created lower level diagram becomes

“nested” to the higher level symbol and the diagram containing it; that is, the lower-level

diagram becomes a child of the parent diagram in the project tree. (Note that only one child

diagram can be nested from any process.) Nest also allows you to create a process

decomposition. Nest functions only for data flow diagrams and only on processes; it does not

apply to the other diagrams. Nest can be used to decompose any FDD function or DFD

process symbol. For functional decomposition diagrams, it is replaced on the File menu with

Spawn. The Spawn function is described later in this chapter.

The Object menu “Explode” function can also be used to connect a class to a state transition

diagram. The “exploded” diagram shows the dynamic behavior of the class. Other symbols,

such as Use Case, Activity, Entity, etc. can also be exploded to link the item to a child

diagram.

Nesting Considerations
New data flow and business process model diagrams below the top level are normally created

using the Nest function. The following considerations also apply to nested diagrams:

 Only the process or activity symbols may be exploded into a lower-level child diagrams.

When other symbols are exploded, the selected symbol is linked to the new diagram type

as displayed on the Nest dialog

 Process numbers are automatically added to data flow processes when using rules. Refer

to The Visible Rules for additional information on the process numbering scheme.

 All data flows attached to the process being exploded are duplicated and displayed on the

lower level nested diagram when using rules. That is, all net input and net output data

flows are automatically “dragged down” to the lower level for level-to-level balancing

purposes.

 No sequence flows are included when a BPMN activity is exploded.

Drawing Diagrams

138

The Nest Procedure
The Nest function has four subsidiary functions in its submenu: Explode, Parent, Detach and

Decompose.

Each of these is explained below.

Explode

What Explode does depends upon whether the currently selected FDD or DFD symbol has an

existing nest relationship to a child diagram. If it does not, you can create a nested

decomposition to a child diagram. If the current symbol does have an existing nest

relationship to a child diagram, you immediately open that diagram, or activate it if it is

already open.

The following symbols can be used to generate child diagrams, or link a symbol with a child

diagram. Click on the symbol with the right button to activate the Object menu.

 Functional Decomposition Diagram function – Spawns to a Data Flow Diagram

hierarchy, explained later in this chapter.

 Data flow Process – explodes to create a child Data Flow diagram.

 Entity – links to an Entity Life History diagram

 Class – links to a State Transition or Activity diagram

 Activity – links to an Activity diagram

 Use Case – links to an Activity, Collaboration or Sequence diagram.

 System Boundary – links to a Use Case diagram

 Activity (BPMN) – explodes to a child Business Process Model Notation diagram

The procedure for exploding a symbol with no existing child and creating a lower-level nested

child diagram is as follows:

Select a Symbol: 1 Click on a symbol to select it. You can

also click with the right button to activate the Object

menu.

Select Nest/Explode: 2 Select Nest at the File menu, then Explode from the

submenu, or pick Explode from the Object menu. The

Nest dialog box appears.

Select New or Existing 3 You can click either of the buttons in the box:

Diagram:

 Create New. A new diagram is created and becomes

the active diagram. When exploding a data flow

process and rules are enabled, all net input and output

data flows are dragged down to the new diagram.

Drawing Diagrams

139

When exploding a Use Case or a Class symbol,

choose the new diagram type from the Diagram Type

list.

 Select Existing. This allows you to nest to an already

existing diagram. For DFDs, the dialog box expands,

showing all diagrams in the branch of the project tree

file directly below the current diagram and not

already nested. You must select one of these existing

diagrams to be the nested child. The selected child

diagram is activated, all net input and output data

flows are dragged down to the diagram and the nest

relationship created. When exploding a class or other

diagram symbol, a list of all applicable diagrams is

displayed.

You must Save the child diagram to permanently establish

the nest relationship.

Note

When a data flow process has a large number of attached input and output data flows, and the

process is exploded, only a subset of the attached data flows may be dragged down to the

child diagram. To add the other attached flows to the child diagram, move the dragged down

flows to the middle of the diagram, and explode the parent process again. The remaining

flows will be dragged down to the new child diagram.

Parent

If the currently selected diagram has an existing nest relationship to a parent process, selecting

Parent opens the parent diagram, or activates it if it is already open.

Detach

If the active diagram has an existing nest relationship to a parent diagram, selecting Detach

breaks or un-nests the relationship. For Data flow diagrams, the two diagrams retain their

relative positions in the project tree, but the parent child relationship no longer exist. This

allows the former parent process to be nested to a different child diagram and vice versa using

the Explode feature.

Using Detach with other linked diagrams removes the link from the parent symbol to the

linked diagram.

Decompose

Decompose generates a process decomposition diagram, as described below.

Drawing Diagrams

140

Generating Process Decomposition Diagrams
Process decomposition diagrams can be created automatically from a set of data flow

diagrams. By selecting a process and choosing Decompose from the Nest submenu or from

the process Object menu, a process decomposition diagram is generated that shows all

subordinate processes at their appropriate levels. If you select a process without children, the

Decompose menu selection is not available. The procedure for generating a process

decomposition diagram for a project branch, which may cover the whole project if the

highest-level process is used, is automatic once the above action is taken. Visible Analyst

draws an editable unstructured process decomposition diagram and that new diagram is the

active one.

For a large project or branch, it is possible that the process decomposition diagram is too large

to edit. If this happens, you are notified and given the opportunity to send the diagram to the

print queue. Visible Analyst proposes a name to identify the diagram in the print queue and

you are able to change it if you wish. To print it, select Print from the File menu.

Note

 A process decomposition diagram is very different from a functional

decomposition diagram. The former is simply an unstructured diagram laying

out the hierarchy of processes that are descendants of a selected process. The

latter is a full diagramming methodology for doing business planning.

Using Spawn with FDDs
For FDDs, the purpose of the Spawn function, from the File menu is to create a process model

extension of your broad functional decomposition and allow you to carry out a detailed

analysis. With Spawn, you indicate a lower-level function, one that you have decomposed on

the diagram into processes, and Spawn it. Visible Analyst creates DFDs containing these

processes, to which you can add all of the other elements normally contained on DFDs. While

it is not impossible to continue to make changes to a function branch on an FDD after

spawning DFDs from it, it would be better to do the Spawn operation after the FDD is well

thought out and complete. The concept of the Spawn operation is illustrated in Figure 3-46.

Drawing Diagrams

141

 Figure 3-46 DFDs Created by an FDD by Using SPAWN

The first time you Spawn a function on an FDD, you are given the option to create a top-level

diagram beneath which you can hang all branches of your DFD tree. This new top level

diagram would symbolize all of the functions on your FDD. If you are using Yourdon rules,

you also have the option to make this top-level diagram a context diagram. Unless you have

Drawing Diagrams

142

processes hierarchically immediately beneath your highest-level function, you should accept

this top-level diagram option. Otherwise, you have to manually insert a diagram as a parent

for your spawned DFDs. If data flow diagrams already exist at the time of the first Spawn,

Visible Analyst attempts to incorporate them into the Spawn operation.

The Spawn Procedure

The spawn procedure has four subsidiary functions: New DFD Set, Load DFD, Verify and

Unlink. Each of these is explained below.

New DFD Set
What New DFD Set does depends upon whether the currently selected function has been

decomposed on the diagram to a set of processes and whether DFDs have already been

spawned from the function. If it has not been decomposed, Spawn advises you to decompose

before you can proceed. If you created a decomposition, you can execute this function to

create the set of DFDs composing this function. If the current function does have an existing

set of DFDs, you can execute the other Spawn subfunctions described below.

The procedure for spawning a function with a decomposition and no existing set of DFDs is:

Select a Function: 1 Click on a function to select it. You can also click with

the right button to activate the Object menu.

Select the Spawn 2 Select Spawn at the File menu and New DFD Set from

Functions: from the submenu, or pick New DFD Set from the

Object menu. The Spawn dialog box appears.

Position the Diagrams 3 From the tree display in the box, choose the diagram you

in the Tree: want to be the parent to the new set of diagrams. When

you click the Update DFDs button, the new diagrams

become part of your project. Parent/child nest

relationships are established among the diagrams of the

new DFD set, as defined in the FDD. However, the top

diagram of the newly added branch is not nested to the

diagram you selected as the parent in the dialog box. You

have to Nest before this relationship is established.

Load DFD

If the currently selected function does have an existing set of DFDs and you want to edit

existing spawned DFDs (to add data flows, for instance), open the Spawn menu and choose

Load DFD. The top diagram of the spawned branch of DFDs is opened. You can open lower

level diagrams by selecting a process and exploding it.

Drawing Diagrams

143

Verify
If the current function has an existing set of DFDs, you can update and resynchronize the two

sets of diagrams (the FDD and DFDs). You may want to do this if you have made changes to

your FDD and want to update the spawned DFDs to reflect these changes. Bring up the

Spawn menu and choose Verify. Visible Analyst compares the diagrams to find

inconsistencies. If changes are needed, a dialog box describes them and asks you if you want

to proceed. If you choose to continue, Visible Analyst makes the necessary changes to the

DFDs and saves them. It then activates the top DFD of the branch for you to edit.

Unlink

If the current function has an existing set of DFDs, you can break the link between them with

the Spawn function Unlink. You may want to do this if you want to make serious hierarchical

relationship changes to your FDD or to change or delete the function from which the DFDs

were spawned. These operations are not allowed on functions linked to DFDs. You can

respawn later, if you choose. Note that this operation does not alter your DFDs in any way.

THE DIAGRAM VIEW FUNCTIONS
A “view” is an entity relationship or class diagram containing a selection of entity types or

classes and the relationships between them. Since certain data objects may interact in different

ways at different times, you have the option to look at these distinct interactions in different

combinations on different views. A view is usually a subset of a larger data/object model and,

in any given view, you are not obligated to use all of the relationships that exist in your model

for any pair of entities/classes; you may select all of them or any subset of them, and you may

create new relationships on the current view. Any new relationship you add between a pair of

objects in a view is added to the repository of the appropriate model and becomes available to

be added to any other view.

Implicit in any data or object model is a global view; that is, a view containing all of the

information in the repository. In many models, the size of a global view may be too large to

edit as a diagram (and probably too large to be visually useful, as well). That does not

preclude, however, your ability to look at the whole thing should you desire. Visible Analyst

draws your global view for you and enters it into the print queue.

There are three ways you can create a data or object model view. One is to open a new

diagram and manually draw on it the entities/classes and relationships that you want for that

view. This is how you must begin the first view in a project because it is the only way to add

relationships. (Entities and classes can be directly entered into the repository.) The second

way is to let Visible Analyst help you by using the View of Data Model group of functions:

Global, New and Process, and also Modify View, that appears on the Diagram menu and as an

option the New Diagram dialog box (Drawing Method). The third way is to select the entity,

Drawing Diagrams

144

class or relationship in the Object Browser and drag the selected item onto a new diagram. If

the selected item has a relationship to an existing item on the diagram, the relationship is

automatically added to the diagram. Dragging a relationship onto the diagram will

automatically include the attached entity or class. After your data model is well along, you

can use the functions for creating cluster views. These are described later in this chapter. After

the new view has been created, you may edit it as you wish.

Using the View of Data Model functions plus Modify View allow you to specify existing

entities, and relationships from the repository and assure yourself that the new view is

consistent with what is already in the repository. The functions then automatically draw your

new view after you have completed specifying the contents for the view (see below).

When using the View of Data Model feature, remember the following:

 A view is like any other diagram in that it must obey the same rules. View diagram

names must be unique within the data or object model for the current project.

 An entity or class may appear on any number of views at one time, but only once per

view.

 The view functions work only for entity relationship and class diagrams.

 If an entity is used on a class diagram, its type is converted to class with a subtype of the

actual entity type. If a class is used on an entity relationship diagram, the subtype is set

accordingly.

Creating a New View
To create a new view, select View of Data Model from the File menu and then New from the

submenu, or choose New Diagram from the File menu and set the Diagram Type to Class or

Entity Relationship, the Drawing Method to New View and click OK. The repository is

scanned and a window opens displaying all existing entities or classes, and relationships. As

you move through the list and select items to go in your view by clicking on their names, they

are highlighted. When you select a relationship, that relationship, the reverse relationship and

both objects to which they are attached are also selected. If you change your mind about an

item, you may click on it to deselect it and the highlight disappears.

Selecting the “Filter…” button on the Select Items for View dialog allows you to enter the

beginning text of the entity or class names into the “Select Entities Beginning With:” field.

After clicking OK, all entities or classes beginning with the filter text are selected. The

“Include Relationships” checkbox includes any relationships connected to the selected entities

matching the filter.

Note

 A database view is different from a model view. To create a database view, see

SQL View Overview.

Drawing Diagrams

145

 Figure 3-47 The View of Data Model Menu

After selecting the items to appear on the new view, click OK to confirm your choices and

have Visible Analyst automatically draw the diagram or click Cancel to start over.

Note

 You can control the scale of a new view drawn by Visible Analyst. The size of

the symbols is based on the size of the font you choose to use for symbols. The

smaller the font, the smaller the entity symbols. (Symbols only get so large, so

huge text does not result in a huge symbol.) The length of the relationship lines

and the spacing of the symbols is based upon the size of the font used for

relationship lines. The larger the font, the longer the relationship lines and the

more widely spaced the entity symbols. To make these adjustments, use the Text

Settings selection from the Options menu to set the defaults for these fonts

before beginning the creation of the new view.

Drawing Diagrams

146

Creating a Process View
A process view is an entity relationship diagram that represents a subset of your data model

and is based upon a process existing on a data flow diagram in the same project. Data

elements that enter or leave the selected process in data flows and that are also contained in

the composition of entities cause those entities to appear in the process view, along with

relationships existing between pairs of entities. (Undesired relationships may either be

eliminated manually or by editing the view and modifying it, as described below.) When you

select Process, Visible Analyst prompts you to select the name of the process on which to

base the view from a list in a dialog box.

After selecting the process, you have an opportunity to confirm your choice. When you do,

the components of the new view are automatically selected from the repository and the

diagram drawn and named for the process used. Visible Analyst then transfers control to you

to edit and/or save the diagram.

Creating or Printing a Global View
When you select Global from the View of Data Model menu, or choose Global View Drawing

Method when creating a new diagram, the repository is scanned. The global view (the view

of the entire data or object model that exists in the repository diagram) is prepared. Global

views can be too large to edit on the screen. However, Visible Analyst is capable of

automatically drawing a global view and printing it. After the view is prepared, Visible

Analyst lets you know if it is too large to edit and gives you the option to print it. If you

decide to do this, it is entered into the print queue and can be printed from the File menu.

See the Note on p. 144 how to use the Text Settings to create a smaller diagram based on a

smaller relationship font size.

Modifying the Current View
Entities, classes and relationships may be added to or deleted from a view diagram by

selecting Modify View from the Diagram menu. The procedure is identical to creating a new

view, except that all entities, classes, and relationships already in the current view are

displayed as selected. (Selecting Modify View on a blank, newly created diagram is

equivalent to choosing New from the View of Data Model submenu. Since the view is empty,

nothing is displayed as already selected.) The diagram is redrawn from scratch using the new

list of entities, classes, and relationships.

LINKING MULTIPLE PAGE DIAGRAMS
Visible Analyst provides links between multiple page diagrams with the File menu Page

function. You can create a diagram and use Page to link it to additional diagrams. You can

then move between the linked pages on your workspace by selecting Page and then Connect.

You can also break the link between two pages by selecting Disconnect.

Drawing Diagrams

147

When using Page, remember the following:

 You must use a symbol as the page link between one diagram and another.

 A symbol can be linked to only one other page. For additional page links, use additional

symbols.

 You can only page link a diagram to an existing diagram that is stored at the same level

in the project tree, or to a new diagram.

 You cannot page link the top-level data flow diagram of any project.

 The page linking situation is somewhat different for data flow or unstructured diagrams

and structure charts; see the sections below for explanations. Page doesn’t apply to the

other diagram types.

Note

 Page links diagrams on the same level in the hierarchy, whereas Nest links

diagrams on different levels of the hierarchy.

Page Link Considerations When Using Rules
It is strongly recommended that Page not be used on data flow diagrams in a project that has

rules enabled. This is because rules treat a multiple page diagram as separate diagrams. Rules

capabilities including analysis cannot be applied across linked data flow diagram pages. They

can, however, be applied across multiple page structure chart diagrams and decomposition

diagrams.

Selecting Page Link Symbols for Data Flow Diagrams
Any symbol in a data flow diagram can be used as the page link symbol, unless it is already

used for a nesting link. The symbols shipped with Visible Analyst include the recommended

page link symbol for data flow diagrams, shown in Figure 3-48, which is the standard flow

charting page symbol. However, you can select any other symbol that is already drawn into

the diagram and link it to one other page or add your symbol at the time you wish to make the

link. Although almost any symbol may be used, it is recommended that you select a particular

symbol from the unstructured diagram symbol set and dedicate it to always represent your

page links. The dedicated symbol can be any standard or custom symbol that allows you to

easily recognize the link to another page. That symbol can be used repeatedly with

incrementing page numbers in any diagram to represent links to additional pages. Although

the illustration shows each page link symbol with a “number” label, you may use any label

you desire.

Note

With the introduction of multiple pages for the diagram drawing area, most users no longer

use or need the Page capability for Data Flow Diagrams.

Drawing Diagrams

148

 Figure 3-48 Recommended Page Link Symbols for Data Flow

The Page Link Procedure for Data Flow Diagrams

The procedure for linking multiple pages within a diagram is as follows. (Note that this

example applies to a data flow diagram. The procedure for structure chart diagrams is the

same except that the off-page connector symbol must be used.)

Draw a Page Link 1 Draw and label a page link symbol on the currently

Symbol: active diagram. (You can also use an existing symbol

already in the diagram as the page link.)

Select the Page Link 2 Click the page link symbol to make it the selected

Symbol: symbol, if it is not already selected.

Start the Page Function: 3 Select Page from the File menu and then Connect.

If the symbol you selected is already linked to another

page, that diagram is activated. If not, the Page dialog box

displays.

Drawing Diagrams

149

Choose the Page to 4 Click either the Select Existing Diagram or the

Connect: the Create New Diagram button.

 Select Existing presents you with a list of diagrams

eligible to be page-connected to the current one (all

diagrams in the project tree that are at the same level

as the diagram from which you want to page). Select

one.

 Note

 For a structure chart, if there is an existing diagram with a page connector

symbol with the same label as the one which you are currently trying to link, it

is moved to the top of the list and marked with an asterisk, so you won’t have to

look for it in the diagram list.

 Create New Diagram creates a new, blank diagram.

Visible Analyst draws a page connector symbol and label

on the linked diagram that is identical to the one you used

on the connected diagram.

Save the Page Link: 5 Select Save from the File menu to make the page link

permanent. The diagrams at both ends of the link are

saved.

Page Linking for Structure Chart Diagrams
The page linking function works differently for structure chart diagrams because structure

chart diagrams do not have hierarchical relationships that data flow diagrams have, and

because it is frequently necessary to use more than one page to represent a large or complex

program structure. The basic differences are:

 There are two symbols within the structure chart symbol set that are dedicated page

connector symbols. These are the “on-page connector” and “off-page connector,” as

illustrated in Figure 3-49. Only these symbols may be used.

 The page connector symbols are fully recognized by the rules, and the analysis function

for structure chart diagrams reaches across multiple pages that are connected by off-page

connectors.

 For structure charts, paging is one directional. Since paging can be many-to-one, once

you move across a page link, Visible Analyst doesn’t always know where you came from

and thus cannot bring you back across the link. However, since both diagrams are then

opened, you can easily activate the original diagram.

Drawing Diagrams

150

 Figure 3-49 Structure Chart Page Connectors

For a detailed description of the page linking procedure, see the previous section. As with

DFDs, when you are linking structure chart diagrams, the page connector symbol on the new

diagram is given the same name as the originating page connector symbol, in order for the

invocation line to be recognized as unbroken.

Note

 There is also a special connect process for structure chart diagrams via an off-

page connector by using the Object menu. Draw the input connector on a

structure chart, name it and save the diagram. Then click on the connector

symbol with the right mouse button to display the Object menu for the

connector. Select Connect. You have the option of selecting an existing diagram

or creating a new one. After you decide and choose, the output page connector is

drawn on the other diagram and the connection established when you Save.

After the connected diagrams have been saved, the Disconnect option on the

Object menu becomes enabled, allowing you to sever the connection. Note that

after the diagrams have been connected, selecting Connect from the Object

menu moves you between the diagrams rather than making a new connection.

On-Page Connector

The on-page connector allows invocation lines between structure chart symbols to be broken

and then continued starting in another location on the same diagram. This can be necessary at

times because of diagram space considerations. The invocation line to be broken is first

terminated with an on-page connector that is labeled, and then the invocation line is started

again at another on-page connector bearing the same label elsewhere in the diagram. For

analysis purposes, the invocation line is considered unbroken. This is illustrated in Figure 3-

50. The on-page connector cannot be used to link pages together.

Drawing Diagrams

151

With the introduction of multiple pages for the diagram drawing area, most users no longer

use or need the on-page connection capability for Structure Chart Diagrams.

 Figure 3-50 On-Page Connectors

Off-Page Connector

The off-page connector symbol serves two purposes:

 To create multiple page structure charts.

 To ensure that an invocation line that crosses a page boundary to a new diagram is

recognized for analysis purposes as an unbroken invocation line.

When a multiple page structure chart is created by using the off-page connector, the analysis

function can be applied across the various diagrams. The use of an off-page connector is

illustrated in Figure 3-51. The same symbol is usually used to connect pages in FDDs and

DFDs.

Drawing Diagrams

152

 Figure 3-51 Off-Page Connector

Page Linking for FDDs
You can link pages of a functional decomposition diagram in a manner identical to data flow

diagrams. The only difference is that with FDDs, the page link is transparent to the rules.

CLUSTER DIAGRAMS
Visible Analyst provides a means to make complex entity relationship diagrams easier to

grasp with clusters. A cluster is a group of entities that can be displayed as one symbol on a

diagram. Its purpose is to reduce the amount of displayed detail. In a cluster diagram, clusters

are shown joined by pseudo-relationships wherever at least one entity in one cluster is joined

by a relationship to at least one entity in the other cluster. When using the Cluster feature,

remember the following:

 Cluster names should be unique within the data model for the current project.

 An entity may be a member of just one cluster at a time.

Drawing Diagrams

153

 Any cluster diagrams you create are unstructured diagrams. Creating a cluster diagram

does not change your existing data model in any way.

 Cluster works only for entity relationship diagrams.

Clusters are created from within the repository. The process is described in The Visible

Repository. Although clusters are stored in the repository, they have no real inherent meaning

in a data model; thus, any cluster diagrams you create are not a living part of your model.

Visible Analyst creates unstructured diagrams that you may edit or print as any other diagram;

however, they are no longer linked to the repository and any future changes you make are not

reflected in them.

First you must choose the scope of the cluster diagram; that is, whether it displays just the

entities and clusters appearing on the current view, all entities and clusters in the repository or

a custom-designed diagram displaying any clusters you choose from the whole repository.

View of Data Model on the File menu has Cluster sub-functions that are used to generate

Current View, Global, and Custom cluster diagrams. They function in the same way as to the

other View of Data Model functions described previously.

Selecting any function causes a repository scan. Selecting Current View or Global

immediately creates the diagram. Selecting Custom displays a dialog box containing a list of

existing clusters and gives you the opportunity to select the ones you want on your cluster

diagram. Visible Analyst then creates the diagram. It is possible that a global cluster diagram

for a very large data model is too large to edit. If this happens, Visible Analyst lets you know

and gives you the opportunity to print it. Visible Analyst sends your cluster diagram directly

to the print queue, and you can print it from the File menu.

SAVING YOUR WORK
All of your work during an editing session on a particular diagram can be saved or discarded.

When you edit an existing diagram, the changes do not become a permanent part of the

diagram until it is saved. Therefore, if you want to save your work, be sure to open the File

menu and select Save as the last step before quitting work on any diagram, new or old. (Note

that Visible Analyst always displays messages to remind you to save your work before

allowing you to close a diagram or exit Visible Analyst.) Conversely, if you want to revert to

the pre-edited version rather than save the edited version, simply answer No to the prompt

when you exit the diagram.

Several of the Visible Analyst functions perform an “auto save” before executing if you have

made any changes in a diagram. For example, if you make changes to a diagram then select

Define to access the repository, your changes are automatically saved before the function is

executed. The functions that perform an auto save are Analyze, Define, Nest, Page, and View

of Data Model.

Drawing Diagrams

154

Saving a New Diagram
The only difference between saving a new diagram and an existing one is that you have to

provide a name for the new diagram in the dialog box that appears. The only restrictions on

diagram labels are that they cannot exceed 128 characters and that they must be unique within

the diagram type of the project. After that, Visible Analyst saves the diagram in the hierarchy

position that you specified when the diagram was created, if it is a DFD.

EXAMPLE DIAGRAMS
The following pages contain a representative selection of the types of diagrams that can be

produced with Visible Analyst, even though formal methodologies are not yet available for

many of them. They were all created with Visible Analyst, then imported into the word

processing package used to produce this manual.

 PLANNING

 Enterprise Modeling

 Business Modeling Diagrams

 Pert Charts

 ANALYSIS
 Customized Data Flow Diagrams

 High-Level System Diagrams

 Process Flow Diagrams

 DESIGN

 State Transition Diagrams

 MISCELLANEOUS

 Organization Charts

 Requirements Matrices

 Forms

 HIPO Diagrams

Drawing Diagrams

155

 Figure 3-52 Sample Strategic Planning Model

Strategic

Profile

General

Environmental

Analysis

Missions

Policies

Goals

Program

Strategies

Tactical

Plans

Budgets

Operational

Results

Implementation

Major Expectations:

Stockholders,

Top Management

Strategic

Issues

Sample Strategic Planning Model

Drawing Diagrams

156

 Figure 3-53 Sample Real-Time Diagram

Drawing Diagrams

157

 Figure 3-54 Sample State Transition Diagram

HEATER OFF

HEATER DUTY

CYCLE MODE

FULL HEAT ON

0 = HEATER_CTL

0 < HEATER_CTL < 100

0 = HEATER_CTL0 < HEATER_CTL < 100

100 = HEATER_CTL

100 = HEATER_CTL

TURN HEATER ON

TURN AUX HEATER ON

TURN AUX HEATER OFF

DUTY CYCLE HEATER

TURN HEATER OFFDUTY CYCLE HEATER

TURN HEATER OFF

TURN AUX HEATER OFF

TURN HEATER ON

TURN AUX HEATER ON

Sample State Transition Diagram

Drawing Diagrams

158

 Figure 3-55 Sample HIPO Diagram

Update

Master

File

Get Master

Record

Get

Valid

Transaction

Update

Master

Record

Write

Master

Record

Print

Error

Message

Collect

Fields

Get

Valid

Field

Extract

Field

Get

Next

Card

Edit

Field

Get

Next

Field

Sample HIPO Diagram

Drawing Diagrams

159

Drawing Diagrams

160

 Figure 3-56 Sample PERT Chart

 Figure 3-57 Sample Gantt-Type Chart

Percent

Complete

Period Ending (Week)

25 26 27 28 29 30

Scheduled Completion

Actual ProgressOARS Project

J. Smith - Programmer Analyst

ACTIVITY

DOCUMENT

Project Plan and Status Report

Study Phase

Initial Investig.

Performance Spec.

Study Phase Report

DESIGN PHASE

Allocation of Funct.

Computer Prog Funct

Test Requirements

Design Spec.

Design Phase Report

Design Phase Review

95

100

100

100

0Study Phase Rev.

0

0

0

0

0

0

0

Sample Gantt-Type Chart

Drawing Diagrams

161

The Visible Rules

163

Chapter 4

The Visible Rules

VISIBLE RULES OVERVIEW
The Visible rules module is a set of features and functions that, collectively, allow you to

develop projects under the discipline of a structured methodology. Rules support commonly

used methodologies, two for structured systems analysis and one for structured systems

design, plus data modeling. For structured analysis, the supported methodologies are

Yourdon/DeMarco, Gane & Sarson, SSADM, and Métrica. For structured design, the

supported methodology is Yourdon/Constantine. For object modeling, both Object Modeling

Technique (OMT) and the Unified Modeling Language (UML) can be used. The Business

Process Modeling Notation (BPMN) is based on the Business Process Modeling Initiative

developed by the Object Management Group (omg.org). The complete BPMN specification

can be downloaded at www.omg.org.

Visible rules go further in life cycle coverage than simple support for structured analysis and

design techniques. To be most effective, structured design should be based on specifications

derived using structured analysis. This capability to integrate analysis and design provides

you with the knowledge that your designs reflect the reality of your specifications.

DATA FLOW DIAGRAMS

Structured Analysis Methods Overview
The primary purpose of structured analysis methodologies is to provide techniques that help

specify systems. Since most systems today are complex, structured analysis encourages

specification of the broader aspects of the system and then decomposition of these larger

views into finer and more readily understandable pieces.

The Yourdon/DeMarco and Gane & Sarson analysis methodologies have many similarities.

Differences between the two are primarily syntax; however, there are superficial semantic

differences that are explained in the following paragraphs.
 1

Some of the major concepts of

structured analysis include:

1
 For more detailed information on these analysis methodologies, you can refer to the

following books:

 DeMarco, Tom. Structured Analysis and System Specification. Englewood Cliffs:

Prentice-Hall, 1978.

The Visible Rules

164

 Nested Decomposition

 Data Flow Balancing

 Data Flow Splitting

 Logic, Balance, and Completeness Verification

 Automated Repository Maintenance

Visible Rules functions that support the above are Nest, Split Data Flow, Analyze, and

Define. In this chapter, we deal primarily with the first three. The Visible Repository provides

a full description of Define. The Drawing Diagrams chapter provides a full description of the

Nest function. In this chapter, we deal mainly with the consequences of a Nest operation

rather than the operation itself.

To make use of a specific set of rules, Yourdon/DeMarco, Gane & Sarson, SSADM, or

Métrica must be the currently enabled method. You can select a data flow methodology to use

for a project when you create it, as described in Drawing Diagrams. Once selected, the

methodology is applied on a project-wide basis. In other words, rules cannot be selected to

apply only to an individual diagram.

As you draw each diagram using rules, the following features are employed:

 Context diagrams. The Yourdon/DeMarco methodology allows you the option of

working with context diagrams. Context diagrams are simply top-level diagrams with

only one process that represents the entire system to show its relation to its environment.

 Process Numbering. Visible Analyst automatically numbers each process placed on a

diagram. The numbers allow you to keep track of all project processes and their nested

parent/child relationships. SSADM and Métrica methodologies assign a process number

to any process when it is drawn.

 Data Store Numbering. The Gane & Sarson, SSADM, and Métrica methodologies

automatically number each data store drawn onto a diagram.

 Data Flow Splitting. Visible rules provide the capability to split data flows into subflows.

This is accomplished using the Split Data Flow command on the Diagram menu. A split

flow report can also be generated using the Reports function on the Repository menu to

list split data flows and their subflows by diagram, by branch (a data flow diagram and all

of its children/grandchildren), or by project.

 Analyze Project Diagrams. Visible rules allow you to analyze a project to check for

errors within the structural framework of the applied methodology using the Diagram

menu Analyze function. Errors detected for a diagram or an entire project can be

displayed on the screen or printed in report form.

 Automatic Data Flow Balancing. Visible Analyst automatically drags down (balances) all

input and output data flows from parent processes to child diagrams.

 Gane, C., and Sarson, T. Structured Systems Analysis: Tools and Techniques.

Englewood Cliffs: Prentice-Hall, 1979.

The Visible Rules

165

Process Modeling Graphics

Methodology Symbols

Methodology symbols for a given diagram type are listed on the Symbols submenu of the

Diagram menu. In addition, they are represented by buttons on the control bar. See the topic

“Using Picture Files” in Chapter 3 for an explanation how to substitute an image file for a

methodology symbol.

Process Numbering

All process symbols are numbered. On each DFD, processes are numbered in the order that

they are drawn, not in the order that they are labeled. The single process that is allowed in a

Yourdon context diagram is always assigned the number 0. All other processes in Yourdon or

Gane & Sarson projects are numbered by level and in sequence beginning with the number 1.

For example, the first process drawn in any project diagram (other than a context diagram) is

assigned number 1. If a second process is added to the diagram, it receives the number 2, the

next process number 3, etc.

Process numbers also represent levels of decomposition on a project-wide basis. For example,

if process 1 is decomposed into three subprocesses as shown in Figure 4-1, the subprocesses

are sequentially assigned numbers 1.1 through 1.3. And if process 1.2 is further decomposed

into two other processes, they are numbered 1.2.1 through 1.2.2, and so on.

The Visible Rules

166

 Figure 4-1 Example of Process Numbering Scheme

Although all process numbers are assigned sequentially and according to decomposition level,

you can go back and modify the assigned numbers using the Change Item function if you

follow a few simple guidelines.

 You cannot duplicate any process number in the same project; if a process number has

already been assigned, you cannot use it when changing the number assigned to another

process.

 You cannot change the decomposition level being represented; if a process is numbered

1.1.3 you can change it to 1.1.4, but you cannot change it to 1.4.

 You only have to change one number. Visible Analyst carries process number changes

throughout the project on a global basis, and any processes on lower levels are

automatically renumbered.

 You can reuse a process number from any process symbol that has been deleted from a

project.

The Visible Rules

167

To change the decomposition levels of the processes on a data flow diagram, use the Detach

command to detach the child diagram from the parent process. Save the diagram. Select a

different parent process, choose the Explode command, and select the existing child diagram.

The Detach and Explode commands are explained in chapter 3.

Data Store Numbering

When working under rules for Gane & Sarson, SSADM, or Métrica methodologies, data store

symbols are numbered. Data store numbering differs from the process numbering as follows:

 Each data store number contains the prefix “D.”

 Each uniquely labeled data store is assigned a unique number.

 You cannot change data store number assignments. When a data store is drawn, it is

sequentially numbered; and it maintains the assigned number wherever it appears

throughout the project.

If you delete a data store, the deleted data store number is reassigned to the next data store

that is added to the project. For example, if a project has data stores numbered D1 through

D10, and all data stores numbered D5 are deleted, then D5 is reassigned to the next unique

data store added to the project. However, be aware that an interim Save must be performed in

order for the reassignment to occur; for example, after you delete D5 you must save the

diagram, then add the new data store. If the interim save is not performed, the new data store

is numbered D11.

Splitting Data Flows
The Split Data Flow function is enabled on the Diagram menu when the diagram type is data

flow and a data flow is selected as the current object. It also appears on the Object menu of a

selected data flow. It offers the capability to divide net input or net output data flows into

subflows, creating a more detailed representation on lower level diagrams. This capability

greatly aids the analysis process by showing more complex data flows at high levels of the

structured specification, and smaller or even atomic data flows at the lower levels of the

structured specification, thus allowing better understanding of the whole system and of its

parts. Only data flows that have labels and have been dragged down from a parent diagram as

the result of a Nest operation can be subdivided. The relationship between subflows and their

parent flows is automatically maintained within the project repository, so that data flow

balancing can be assured whenever the project is analyzed.

Whenever a data flow is split into subflows, the original data flow is erased from the

displayed diagram and replaced by the selected subflows. The original flow does not change

on the parent diagram, however. The subflows can be repositioned on the diagram by moving

them, as described in Drawing Diagrams. A split flows listing can be generated to obtain a

listing of all parent flows and their subflows throughout a diagram, a branch or an entire

project.

The Visible Rules

168

Split Data Flow Procedure

To split a data flow into subflows:

Select a Data Flow or 1 Select a data flow or a subflow of a previously split

an Existing Subflow: flow to which you want to add more subflows by clicking

 on one end of it.

Select Split Data Flow: 2 Choose Split Data Flow from the Diagram menu or from

the data flow’s Object menu.

Choose How to Split 3a If the selected data flow has not been previously split,

the Data Flow: Visible Analyst displays the Split dialog box, giving you

three edit boxes to choose from:

 Enter Subflows allows you to manually enter labels

for new subflows from your keyboard. See step 4.

 Select Components allows you to specify items that

already exist in the repository Composition field of

the selected data flow. There must be existing

components for this box to be enabled. See step 5.

 Select Flows from Diagram allows you to select data

flows that already exist on the diagram. See step 6.

You can choose any combination of the three operations

or you can Cancel.

 3b If the data flow you select is the product of a prior split

operation, Visible Analyst asks you if you want to add

more subflows to the parent flow. If you click OK, the

above dialog box displays.

If Entering Subflows 4 If you chose Enter Subflows in step 3a, you can begin

from the Keyboard: entering labels for as many subflows as you want to use to

replace the parent data flow being split. These new flows

are added to the repository and to the Composition field

of the parent, and appear on the diagram.

If Selecting Components: 5 If you chose Select Components in step 3a, the

components that are already defined in the repository

Composition field for the selected flow are displayed in

the list box. You can select one or more of them.

The Visible Rules

169

 Note

 If the selected items in the Composition field are data elements, these are

converted to data flows when selected from the Component field. These flows

are now available for use on a DFD. If you want to maintain these data

elements as elements and not data flows, enter the new flows in the Enter

Subflow section of the Split Flow dialog box.

If Selecting from the 6 If you choose Select from Diagram in step 3a, the

Diagram: list box displays the names of all net input or output

flows (depending upon the parent flow) on the diagram

that are not already subflows of flows appearing on the

parent diagram. Click on the ones that you want to

designate as subflows of this parent flow. You can select

one or more of them. If none are available, the box is

disabled.

7 When you finish, click OK. Visible Analyst erases the

data flow that is being split (if you are not adding

subflows to a flow that has already been split and erased

from the diagram) and each subflow is drawn at the edge

of the diagram. You can then move the subflows into the

positions where you want them on the diagram.

The Visible Rules

170

 Figure 4-2 Splitting a Data Flow

Analyzing Data Flow Diagrams
As a project undergoes a number of nested decompositions, data flow splits, and various

moves or other edits, there exists a significant possibility that various data flows will be

incorrectly used, or that objects will be forgotten, etc. This is a natural consequence of the

iterative nature of structured analysis. The Analyze function is designed to inform you of

completeness and logic errors that exist at any given moment.

The Analyze function checks for a variety of balance conditions by comparing and validating

data flows for a single diagram or a complete project at all levels, including the use of

subflows. When Analyze is initiated, the following checks are performed:

 Checks all objects (symbols and data flows) for labels and processes for numbers.

 Checks for dangling objects (any unattached symbols or data flows).

The Visible Rules

171

 Checks that all processes have at least one input and one output.

 Checks data flow balance. The rule for data flow balancing is: if a data flow is used as a

net input or net output (it doesn’t matter which) at any level, all occurrences of that data

flow on lower levels must be of the same direction (either input or output).

The Analysis Error Message Box

The Analysis error message box, including similar boxes from SQL schema generation, shell

code generation, etc., is a special kind of window. It allows you to keep it on the screen, size

it, and move it around while doing other things within Visible Analyst. This means that you

can keep it on the screen while you correct the errors displayed. You can size it so that it

displays only one or two errors at a time while you open and edit diagrams, work in the

repository, etc. Working this way is an alternative to printing the list of errors and working

from the printed sheet.

Data Flow Balancing Examples

The following examples illustrate data flow balancing situations:

If net input data flow “A,” attached to process #1 on diagram 0, appears on diagram 1,

attached as a net input data flow to process #1.1, no error condition exists. See Figure 4-3.

The Visible Rules

172

 Figure 4-3 Data Flow Balancing

If net input data flow “A,” attached to process #1, on diagram 0, has subflows “A1,” “A2,”

“A(n),” etc., all used as net inputs on diagram 1, attached to processes #1.1, 1.2, 1.n, etc., no

error condition exists. See Figure 4-4.

 Figure 4-4 Data Flow with Subflows

If, however, a subflow like “A2” is used on diagram 1 as a net output, an error message is

generated because data flow “A,” on diagram 0 is a net input, and the system becomes

unbalanced. See Figure 4-5.

The Visible Rules

173

 Figure 4-5 Unbalanced Data Flow

If net input data flow “A,” attached to process number 1 on diagram 0 is used on diagram 1 as

a net output data flow, two error messages are generated, one indicating that it isn’t used on

diagram 0 as a net output data flow and one indicating it isn’t used on diagram 1 as a net input

data flow. The reason for this is that flow “A” may very well be used as both input and output,

but that the systems analysis hadn’t yet indicated both needs. See Figure 4-6.

The Visible Rules

174

 Figure 4-6 Data Flow Errors

If data flow “C” is used on diagram 1 and is not attached to any process on diagram 0, an

error message is generated because it is not represented anywhere on the higher level diagram.

Note that this might not be valid in the case where flow “C” was a subflow of some other flow

on diagram 0. See Figure 4-7.

The Visible Rules

175

 Figure 4-7 Data Flow Errors

Some types of data flows are ignored by the Analyze function for various practical reasons.

These exceptions are:

1. Data flows whose labels begin with the word Error or Reject are ignored for the

purposes of balancing. These labels have special meaning under the methodologies.

They indicate trivial error conditions that are not necessary for the purpose of system

analysis, but that are entirely necessary for understanding how a target system works.

See Figure 4-8.

 Figure 4-8 Data Flows with Error Labels

2. Local process-to-file I/O data flows are ignored for upwards balancing purposes. If a

process has one or more inputs and one or more outputs to the same file (or data

store in Gane & Sarson), all the data flows going to that file are considered local file

I/O data flows and are not analyzed for upwards balance. However, if the process is

exploded using Nest, these flows balance down to the lower level diagram and are

then evaluated for balance between the two diagrams. (Figure 4-9)

The Visible Rules

176

 Figure 4-9

3. If a process has an output data flow to a file and a second process receives an input

data flow from the same file, both the input and output flows are considered file I/O

data flows, and are not analyzed for upwards balance. Here again, if one of these

processes is exploded, automatic balancing is enforced and balance is checked in the

new parent/child relationship. (Figure 4-10)

Level 0

Level 1

1

1.1 1.2

A B

A B

C D

X

File 1

Level 0

Level 1

File 1

1.1 1.2

A B

C D

1
A B

The Visible Rules

177

 Figure 4-10

4. If a data flow is attached to two processes, it is not a net input or net output data

flow, and is not analyzed for upwards balance. If one of the processes is exploded,

automatic balancing is enforced, and the new parent/child relationship is validated

for balance. See Figure 4-11.

 Figure 4-11

Structured Analysis Error Messages

The Visible rules module can generate a multitude of error and warning messages whenever

the Analyze function is invoked, presuming there are errors, of course.

The following error and warning messages are generated. Included are brief descriptions of

the meaning of the errors and warnings, as well as procedures to resolve them.

ERROR There are ‘x’ unnamed Process(es).

ERROR There are ‘x’ unnamed File(s).

A D

C X

1.1.1

FIle 1

A

C D

X B
1.1 1.2

1
A B

The Visible Rules

178

ERROR There are ‘x’ unnamed Data Store(s).

ERROR There are ‘x’ unnamed Source/Sink(s).

ERROR There are ‘x’ unnamed External Entity(s).

ERROR There are ‘x’ unnamed Data Flow(s).

The above group of error messages applies to data flow diagram-based symbols and data

flows. Unlabeled symbols and data flows generate error messages because they indicate the

incompleteness of a specification. (Note that if an unnamed data flow is attached to file or

data store, it is not necessarily an error.) See Figure 4-12.

 Figure 4-12

To resolve the error, use the Change Item function to label the unnamed symbols and data

flows.

WARNING Data flow attached to file labeled ‘x’ is unnamed.

This warning message indicates that the unlabeled data flow is incompletely described.

Though not technically an error, unnamed data flows are flagged to indicate incompleteness.

If the process this flow is attached to is nested, this flow assumes the name of the file (or data

store) it is attached to when it appears on the subsequent child diagram.

To resolve the warning, use the Change Item function to label the data flow, or the Nest

function to explode the process it is attached to, or leave the flow unlabeled. In this case, the

data flow is interpreted to mean that it carries the entire content of the file.

ERROR Process labeled ‘x’ is a dangling process.

ERROR File labeled ‘x’ is dangling.

ERROR Data Store labeled ‘x’ is dangling.

ERROR Source/Sink labeled ‘x’ is dangling.

ERROR External Entity labeled ‘x’ is dangling.

The Visible Rules

179

ERROR Data flow labeled ‘x’ is dangling.

The above error messages indicate incompleteness of analysis. They also indicate, however,

that the dangling item’s relationship to the rest of the system is undefined at the point where

the item is dangling. To resolve the error, either move the item(s) to attach dangling data

flows to symbols, or vice versa, or add any missing flows or symbols. See Figure 4-13.

 Figure 4-13

ERROR There are ‘x’ unnumbered process(es).

An unnumbered process is also unlabeled. It is illegal for the same reasons as unlabeled

processes.

To resolve the error, use the Change Item function to label the unnumbered process. This

causes the process to automatically be assigned a process number.

ERROR Process labeled ‘x’ is an input only process.

ERROR Process labeled ‘x’ is an output only process.

The above two error messages indicate incomplete analysis. Processes, by definition, must

“process” data. A process without both input and output is therefore illogical and incomplete.

To resolve the error, create or find the necessary input or output data flow and connect it to

the process. See Figure 4-14.

The Visible Rules

180

 Figure 4-14

ERROR Data flow labeled ‘x’ is not attached to a process.

This error message indicates that the flagged data flow is connecting two non-process

symbols (data stores or external entities).

To resolve the error, move the data flow to connect it to a process.

ERROR Diagram named ‘x’ has no parent diagram.

In structured analysis, all diagrams except the top level diagram must be based upon the

decomposition of a process. If a diagram is not a top-level diagram and it has no parent, then

some high level function is being left out of the specification.

To resolve the error, find or create a process on a diagram at a higher level than the flagged

diagram and explode that process using the Nest function. Nest asks you whether to Create

New Diagram or Select Existing Diagram. Choose Select Existing Diagram. Visible Analyst

presents the portion of the project tree file containing the available diagrams, and you can

select the unconnected diagram.

ERROR Input data flow ‘x’ on parent is not shown.

ERROR Output data flow ‘x’ on parent is not shown.

These two messages indicate that a data flow has been added to a higher level diagram but is

not reflected in the lower level diagram.

To resolve the error, use the Parent subfunction Nest to open the parent diagram. Then find

the process to which the unbalanced data flow is attached. Use the Nest function and Explode

that process. This drags the unbalanced flow down to the child diagram where it needs to be

used.

ERROR Net input data flow ‘x’ is not shown attached to parent process

The Visible Rules

181

ERROR Net output data flow ‘x’ is not shown attached to parent process.

These two error messages indicate that the flagged data flow needs to be attached to the

process that was exploded to create the diagram on which the error exists. An alternative

resolution is to split the data flow into a data flow previously dragged down to the current

diagram. The two resolutions are shown below:

 To resolve the error, first note the process numbers on the current diagram. Then select

Nest from the File menu or Object and select Parent subfunction (or just switch to the

parent diagram, if it is already open). Visible Analyst loads the diagram where the parent

process is located. Locate the process with the appropriate process number (if child

diagram processes are 1.1.1, 1.1.2, 1.1.3, etc., locate process 1.1 on the parent). Then find

or create a data flow with the same name as the flagged data flow and attach it to this

process.

 To resolve the error, locate a data flow on the current diagram that is either dragged down

from the parent or an already split subflow. Click on it to select it as the current object.

Select the Split Data Flow function and make it a subflow of a data flow that is shown

attached to the parent process.

ERROR ‘x’ should be shown as a Net input data flow.

ERROR ‘x’ should be shown as a Net output data flow.

These two errors indicate that a subflow has been incorrectly used in relation to its parent. A

subflow on a child diagram of a net input (or output) flow on a parent diagram cannot be used

as a net output (or input) data flow or as an internal process-to-process the data flow. Data

flows “A2” in Figure 4-5 and “A” on the bottom of Figure 4- 6 would generate such an error.

To resolve the error, locate the subflow and move it to properly attach it.

ERROR Net input data flow labeled ‘x’ is attached to a different object

 on parent.

ERROR Net output data flow labeled ‘x’ is attached to a different object

 on parent.

These two error messages indicate that a net input or output data flow is attached to an

external entity or global file on the current diagram and is not attached to an external entity or

file with the same name on the parent diagram.

To resolve the error, change either the parent or child diagram so that the data flow

attachments match.

A Complicated Error

ERROR Net data flow labeled ‘x’ is attached to a local file.

The Visible Rules

182

This error message requires some background explanation. Before explaining the reasons for

the error message, the definition of a net data flow requires review.

Net Data Flows

Input and output data flows refer to data entering or leaving, respectively, a process to which

the flow is connected. The criteria for when a flow is termed a net flow are:

 On a given diagram, a data flow is a net input or output flow if one end of the data flow is

not connected to any object or if one end of the data flow is connected to an external

entity, like “A” and “C” in Figure 4-15.

 On a given diagram, a data flow is a net input or output flow if one end of the data flow is

connected to a non-local data store, like “F” in Figure 4-15. (This somewhat circular part

of the definition is explained below.)

 A data flow is a net input or output flow if it enters or leaves the parent process of the

current diagram. When a process is decomposed with Nest, the net input and output data

flows defined for the parent process are also the net input and output flows for its

immediate child diagram. In other words, the net flows associated with the parent process

must be accounted for on its immediate child diagram; otherwise, the Analyze operation

indicates a balancing error.

 A data flow is a net input or output flow if the data flow is a subflow of a net input or

output flow. This means that the property of “net input” or “net output” is inheritable

from a parent to a child diagram using the Nest and Split Data Flow operations.

Net Local

A, C, F B, D, E, G

A

B

C

D

E

G

F

The Visible Rules

183

 Figure 4-15 Net and Local Data Flows

Any flow not characterized as a net flow on the child diagram is considered internal to the

parent process. Hence, it is local to the child diagram and is termed a local data flow.

Data Stores and Physical Files

Although the concepts of data stores and physical files are similar, the terms are not

synonymous. Access to a data store must abide by the balancing principles of data flow

diagramming. You should adhere to the following guidelines when you draw a data store:

 A data store is a container that temporarily holds data while it is flowing between

different processes. It functions as an interface between those separate processes. Beware

of cyclic connections drawn between a single process and a data store. A cyclic

connection exists if data moves in both directions between a process and a data store.

This situation strongly suggests that the data flowing between the process and data store

is really internal to the process. It would be preferable not to diagram the data store at

this level. Instead, decompose the process with the Nest function. On the child diagram,

show the processes that have been factored out from the parent process and then draw the

data store as it relates to these processes.

 When a process accesses a data store, only the net flow of data should be diagrammed.

For instance, if a process withdraws data from a data store, meaningfully generates and/or

transforms the data, and then returns some or all of it, only the net flow of data should be

diagrammed at that level.

 All references to a data store (i.e., the data flows) should appear on the diagram on which

the data store is initially drawn. This is called the “defining instance.” Subflows derived

from these data flows maintain this data store connection even if the data store does not

appear on the diagrams on which these subflows appear.

 All subsequent child diagrams should consistently access the data store. For instance, if

the defining instance of a data store is referenced by process “1” with only net output data

flows, then only net output data flows may be associated to this data store on the child

diagram of process “1” without generating an analysis error.

The Error Message Explanation

When a local data flow is connected to a data store as an input to that data store, the data store

inherits the local attribute of the data flow and that instance of the data store is viewed by

Analyze as a local data store. This represents the “defining instance” of that local data store

because it contains data derived within the parent process from the net inputs connected to the

parent process. If a net input flow is connected directly to this local data store, then a mixture

of net and derived data can occur. (Net and local output data flows work the same way.)

Allowing this mixture of derived and net data would negate the reconciliation effort intrinsic

to the methodology of data flow diagramming. Thus, Visible Analyst generates this analysis

error when this situation occurs. For example, if data flow “G” in Figure 4-15 were shown on

the parent diagram as a net output data flow, it would generate this error message because it is

used “locally” on this diagram.

The Visible Rules

184

After generating this message, Analyze thereafter looks at data flow x as a local data flow, no

longer having the property “net input” or “net output.” Analyze then tries to balance the net

flows appearing on the parent and child diagrams and is forced to issue the additional error

message:

ERROR Input/Output data flow ‘x’ on parent is not shown.

To resolve both errors at once, do one of the following:

 Make the data store to which x is connected non-local by allowing only flows entering it

(if x is a net output flow) or only flows leaving it (if x is a net input flow).

 Add an additional instance of the data store to the child diagram, one to be used as a local

data store and the other to be connected to data flow x.

 Disconnect data flow x from the data store, leaving one end connected to a process and

the other connected to nothing. (Remember that the data store connected to x or its parent

flow on the parent diagram remains implicitly connected on all descendent diagrams.)

Then the data store is only a local one on this diagram.

The source of this analysis error message might indicate that your analysis is affected by

thinking that is too “physical.” It is sometimes difficult to remember, especially for data

stores, that data acquisition or transformation at a lower level might have to be propagated

either up or down a diagram branch.

To put into practice the guidelines we have presented, we suggest that you identify the net

input and output flows for a process and create the initial version of each child diagram

without incorporating any data stores. (An equivalent data flow diagram can always be drawn

without them!) Afterwards, when all the data flows on the diagram have been documented,

insert the data stores, adhering to the previously discussed data store guidelines. Then your

project is both methodologically correct and an accurate description of your system.

FUNCTIONAL DECOMPOSITION DIAGRAMS

Business Planning Analysis Methods
Functional decomposition diagrams (FDDs) give you the ability to do high-level planning of

business functions diagrammatically while concurrently populating the repository.
2
 You can

enter business functions that you define onto diagrams and break them down into successively

finer gradations. At some point, one that is entirely up to you, you can break down business

2
 Some of the theory behind functional decomposition diagrams can be found in:

 Martin, J., and McClure, C. Structured Techniques for Computing. Englewood

Cliffs: Prentice-Hall, 1985.

The Visible Rules

185

functions (hereafter called simply functions) into processes. These processes are semantically

equal to the processes that appear on data flow diagrams. The processes can themselves be

broken down into smaller parts (still lower-level processes) on FDDs.

Functional decomposition diagrams are viewed as the highest level of business planning. It is

probably the place you want to begin when you wish to display the broadest picture of the

functions of an enterprise. There is no rule that you must begin here, but other things are

easier if you do. For designing individual projects, it might be just as effective to start with a

process model or a data model (or both at once) if you feel that the project does not have the

breadth to warrant planning at the FDD level.

After you diagram your highest-level business functions and decompose them somewhat, you

get to the level where you feel functionality below this should be subject to the detailed type

of analysis possible with DFDs. This is the point at which you want to show finer gradations

of functionality as processes. You can lay out all of the processes of this branch of your FDD

and their hierarchical relationships. After that, you can instruct Visible Analyst to produce a

set of DFDs for this branch of processes. Then you can flesh out the DFDs and add data

flows, files, external entities, etc.

Although it is possible to go back and forth between FDDs and DFDs generated from them, it

is likely that the editing you do on the different types of diagrams will introduce problems,

such as making incompatible changes in the hierarchical relationship between processes on

the two types of diagrams. Therefore, it is recommended that you complete your business

analysis on FDDs as far as possible, at least for a given branch of the diagram, and then

generate DFDs and flesh them out. If you later find that you need to add processes, it is better

to return to the FDD and add them there. You can then have Visible Analyst place the new

processes onto the proper DFDs. Proceeding in this manner keeps the two sets of diagrams in

sync and avoids compatibility problems.

Note

 A functional decomposition diagram is very different from a process

decomposition diagram. The former is a full diagramming methodology for

doing business planning. The latter is simply an unstructured diagram laying out

the hierarchy of processes that are descendants of an indicated process.

Rules Functions

Visible rules functions that support the above are Spawn, Change Item, Analyze, Page and

Define. FDDs also have full repository support, overlapping somewhat with DFDs. As

explained in Getting Started, the functionality of Spawn is somewhat similar to but not

identical to that used with the Nest function for data flow diagrams.

Since there is some overlap between DFDs and FDDs, it is significant which process

modeling methodology (Yourdon/DeMarco or Gane & Sarson) you choose when you create a

The Visible Rules

186

project. You should consider this carefully before you save the first diagram of a project.

Also, it is helpful to be familiar with the terms and techniques of the process modeling

methodology before continuing with this description of functional decomposition diagrams.

This description is given in the early pages of this chapter.

Naming Rules for FDDs

There are a couple of points to be aware of in addition to the standard Visible Analyst naming

rules of no more than 128-character names and labels cannot use certain delimiter characters,

such as ! @ # $ % ^ & * ;. A function cannot have the same name as a process in the same

project.

 Otherwise, a function can have any other valid Visible Analyst name, regardless of

whether any other object is using that label within the project.

 Any process can occur on one FDD and on one DFD.

The Rules in Action

As you create functional decomposition diagrams, the following features of Visible rules are

employed.

 Repository entries are created. When you show hierarchical relationships between

functions and/or processes, they are known to Visible Analyst, even though you cannot

see them if you look at the repository entries.

 You can Spawn a function that you have diagrammatically broken down into one or more

processes. The first time you use Spawn on a function, a branch (subtree) of DFDs

including these processes is created. Subsequent uses of Spawn allow you to move from

your FDD to the DFD at the top of the branch, to resynchronize the DFDs with your

FDD, or to break the spawn link between them.

If DFDs exist at the time of your spawn request, Visible Analyst attempts to integrate

these into the proper relationship with your FDD. Be aware, however, that this might be

impossible due to extreme contradictions between how you specified relative process

hierarchies on each of your diagram sets. In this case, Visible Analyst lets you know this

and suggests that you run Analyze to find out just what the problems are.

 After a Spawn operation is complete, the processes that appear on the created DFDs are

numbered in the usual manner for DFDs. However, these numbers do not appear on your

FDD.

 Change Item, from the Diagram menu, allows you to convert a function into a process

and vice versa, in case you change your mind about something after you have entered it

on the FDD. You cannot change a process into a function if it already exists on a DFD,

and you cannot change a function into a process if it has been spawned.

 You can Analyze your FDDs, either individually or as a group, to find inconsistencies

and violations of methodology rules. These rules and the analysis process are explained

below.

The Visible Rules

187

Analyzing FDDs

Overview

Visible rules check four classes of errors:

 Syntax errors. These are errors that make your FDD impossible for Visible Analyst to

understand.

 Connection errors. These indicate violations of the rule that a function is of a higher order

than a process and make it impossible to generate spawned DFDs.

 Balancing errors against DFDs. These are things wrong with a FDD that make it

incompatible with existing or planned DFDs.

 Page connection errors. These are errors involving improperly specified page connections

between parts of an FDD, incorrect or missing connector labels, etc.

There are two types of analysis:

 Current diagram. This checks for the first three of the above errors for the currently

selected FDD.

 Entire project. This examines all of the FDDs in the current project (Analyze moves

across page connections) and checks for all of the above errors.

It is recommended that you run Analyze before executing Spawn on your FDD for the first

time to catch errors and allow you to correct them early, when they are easiest to fix.

Functional Decomposition Error Messages

Syntax Errors

ERROR There are ‘x’ unnamed function(s).

ERROR There are ‘x’ unnamed process(es).

These errors are the result of not labeling functions or processes on your FDDs.

To resolve the errors, find and label them using the Change Item function.

ERROR Function labeled ‘x’ is a dangling function.

ERROR Process labeled ‘x’ is a dangling process.

The above error messages are the result of not connecting the indicated items with connector

lines.

To resolve the error, move the lines and/or the symbols to appropriately connect them.

The Visible Rules

188

ERROR Function labeled ‘x’ has more than one input connection.

ERROR Process labeled ‘x’ has more than one input connection.

The above error messages are the result of connecting the indicated item to more than one

superior item, like function “D” in Figure 4-16.

 Figure 4-16

To resolve the error, move or delete lines to connect the function or process to one and only

one superior symbol.

Balancing Errors Against DFDs

ERROR Process labeled ‘x’ has a different parent on a data flow

 diagram.

The above error message indicates incompatible function/process hierarchies on your FDD

and DFDs. This is probably due either to independently making changes to these diagrams or

to spawning your FDD to an already existing branch of data flow diagrams. This situation can

occur either on a single FDD or across a page connection.

To resolve the error, first decide whether your FDD or your DFDs have priority. If you use

functional decomposition for your overall business planning, it should probably be given

priority. In this case, edit the DFD to make it matches the FDD and then rerun Spawn Verify

on the parent function to synchronize the diagrams and to make sure that the error message

The Visible Rules

189

goes away. If your DFDs have priority, you can either correct the FDD or you can do nothing

and live with this error message and the fact that the FDD and DFDs are out of sync.

WARNING Process labeled ‘x’ is not used on a data flow diagram.

The above warning message indicates that either the FDD containing the process has not been

spawned or that the process has been deleted from a DFD.

To resolve the warning, Spawn the FDD (if it has never been spawned), or add the process to

a DFD manually or with the Spawn Verify function.

Connection Errors

ERROR Function labeled ‘x’ is placed illegally in the hierarchy structure – its

parent is a process.

The above error message is the result of violating the hierarchy rule for functions and

processes, like function “D” in Figure 4-17. This situation can occur either on a single FDD or

across a page connection.

 Figure 4-17

To resolve the error, use the Change Item function to make the function into a process or the

superior process into a function.

ERROR There are ‘x’ lines only connected at one end to a methodology symbol.

The Visible Rules

190

The above error message is the result of improperly connecting two symbols, as between

functions “A” and “C” in Figure 4-18. The elbow connector to function “C” was not drawn

starting at function “A”, but at the elbow of the connector joining functions “A” and “B.” It is,

in actuality, if not in appearance, dangling. Note that a visibly dangling connector line would

also generate this error message.

 Figure 4-18

To resolve the error, redraw the line so that it truly joins functions “A” and “C.”

Page Connection Error Messages

ERROR Page connector labeled ‘x’ is dangling.

The above error messages are the result of not connecting the indicated page connector with

connector lines.

To resolve the error, draw or move connector lines to connect the function or process to an

appropriate other symbol.

ERROR Duplicate appearance of page connector ‘x’.

This error message is issued when two or more instances of either an input or an output page

connector are assigned an identical label.

To resolve the error, either delete or change the label of the duplicate instance of the page

connector.

ERROR There are ‘x’ unnamed page connectors.

These errors are the result of not labeling page connectors on your FDDs.

The Visible Rules

191

To resolve the errors, find and label them using the Change Item function. The page connector

symbols on each end of the link should have the same name.

ERROR Page connector labeled ‘x’ is placed on wrong diagram.

This error message occurs when the input page connector symbol is located on a different

diagram from the page that is actually connected.

To resolve the error, delete the misplaced page connector symbol and recreate it on the page

that is actually connected. (You might want to use the Construct function to do this.)

ERROR Page connector labeled ‘x’ has more than one connection.

The above error message means that either the page connector has more than one hierarchical

parent, as in Figure 4-19, or that it has been used to substitute for a connector junction (it has

more than one hierarchical child) as in Figure 4-20.

 Figure 4-19

The Visible Rules

192

 Figure 4-20

To resolve the error in the first situation, break one of the connections from a function or

process to the page connector. In the second circumstance, move the parent of the page

connector to the paged diagram, as in Figure 4-21.

The Visible Rules

193

 Figure 4-21

ERROR Valid matching page connector cannot be found for ‘x’.

The above error message indicates that either the two page connectors for a page connection

are not labeled identically or that one or both are not labeled at all.

To resolve the error, change the name on one page connector to match the one at the other end

of the connection.

ERROR Unexpected appearance of page connector labeled ‘x’.

The above error message indicates that Visible Analyst could not match up pairs of page

connectors. Page connectors must be paired: one input and one output. The many-to-one page

connections acceptable for structure charts are not valid on FDDs. Analyze requires unique

and identical labels on each end of a page connection. If two page connectors on a diagram

are not labeled identically, Visible Analyst is unable to resolve the connections, as in Figure

4-22, and issues this message. The Page operation automatically copies a labeled page

connector to the newly connected page to insure the existence of both connector symbols and

avoid this error.

The Visible Rules

194

 Figure 4-22

To resolve the error, either eliminate one occurrence of the named page connector or rename

one of them to something else.

STRUCTURE CHARTS

Structured Design Overview
Structured design is a discipline that is complementary to structured analysis and, in fact,

builds upon it. The purpose of structured design is to provide a technique for translating

specifications generated using structured analysis into computer programs. As such, it is

almost a graphical programming technique. Structured design is practiced in a more

subjective manner than is structured analysis, meaning that there are fewer hard and fast rules

for how a given project analysis should translate into a structured design. After all, even badly

written programs can work.

Visible rules implementation of the Yourdon/Constantine
3
 structured design methodology is

intended to maintain as much design freedom as possible for the user, while providing design

3
 For more detailed information on the Yourdon/Constantine structured design technique you

can refer to the following books:

The Visible Rules

195

evaluation against known poor design practices. The error and warning messages generated

are intended to be used as guidelines rather than rules.

Visible Analyst support for the Yourdon/Constantine methodology includes four major areas.

These are symbol support, line and connector support, analysis support, and repository

support.

Structure Chart Graphics
Structured design is primarily a program description or specification technique. As such, the

symbols, lines, and connectors used by the technique represent programming constructs. The

symbols used
4
 are as follows:

Structure Chart Symbols

Module Library Module On-Page Connector

Macro Library Macro Off-Page Connector

Data Only Module Information Cluster

As with DFD symbols, they can be accessed from the Diagram menu or the control bar. All of

the symbols supported under Yourdon/Constantine methodology are program modules of

some type, except for the on-page and off-page connector.

Data only modules and information clusters are specialized types of modules. Modules,

macros, and library modules are types of normal program modules. However, there are some

differences between them.

 A module represents a contiguous sequence of program statements, in other words, a

program, subroutine, function, etc., depending upon the target development language. Its

interfaces to other modules (of all types) are not hidden from the designer.

 A library module is “a module that always executes in the same way on each separate

activation, as if it were a fresh copy of the module.”
5
 It is differentiated from a module in

usage by the fact that its interfaces to other modules (if any) are hidden from the

designer.

 A macro is “a module whose body is effectively copied in-line during translation (e.g.,

compilation or assembly) as a result of being invoked by name; that is, the bounded

 Yourdon, E.N., and Constantine, L.L. Structured Design: Fundamentals of a

Discipline of Computer Program and Systems Design. Englewood Cliffs: Prentice-Hall,

1986.

 Page-Jones, M. The Practical Guide to Structured Systems Design. Englewood

Cliffs: Prentice-Hall, 1988.
4
 For a more complete and formal definition of these symbols, see Yourdon/Constantine,

p.456.
5
Ibid., p. 459.

The Visible Rules

196

contents replace the reference to the aggregate identifier.”
6
 The only practical difference

between a macro and a module is that macros tend to make a system operate faster, but at

the expense of more memory space required to operate that system.

 A library macro is a macro whose interfaces to other modules (if any) are hidden from the

designer.

Note

 Each of these module varieties can have a subtype classification. It can be the

standard one, as described above, or it can be a check condition, stored

procedure or a trigger. These types of modules are used to store SQL procedure

code to be generated with SQL schemas.

A data only module is a module that consists solely of data – data elements or structures of

data elements. It is always a lowest-level module in that it may only be accessed by other

module types and never calls other modules itself (though it can contain lexically included

data modules).

 An information cluster is an aggregate of two or more modules and only one data-only

module. Rules support information clusters with up to seven internal modules. The

information cluster is intended to aggregate all the modules that would share a single data

only module, for the purpose of diagram clarity and understanding. It operates as a

module for all other purposes. The Drawing Diagrams chapter has a full description of

how to add an information cluster to a diagram.

 A program is a structure chart item that appears only in the repository of your project. It

represents a computer program and is composed of a number of modules. Its use is

discussed under Shell Code Generation in The Visible Repository chapter.

Structure Chart Line Types

Structure charts use four line types:

 Invocation lines

 Data and control connections

 Data, control, and generic couples

 Data, control and generic interface table rows (ITRs)

Invocation lines, along with data and control connections, are line types that connect modules

on a diagram. Invocation lines differ from data and control connections in a number of

significant ways. Couples and interface table rows are a third line type and are distinguished

from invocations and connections by the fact that they do not connect modules, but are shown

being passed to and from modules by invocations and connections. A discussion of the

differences and uses of the different line types follows.

6
Ibid., p. 455.

The Visible Rules

197

Invocation Lines

The meaning of this relationship is a passing of control: module A calls module B. Implicit in

the meaning of an invocation is the return of control to the calling module when the called

module is done processing. An invocation is shown by drawing a line from the border of one

module to the border of any other module except data only-modules. (See Figure 4-23.)

Invocation lines can pass combinations of couples and ITRs to other modules.

 Figure 4-23

Using Invocation Lines

To use an invocation line, add it to your diagram as described in the Drawing Diagrams

chapter. Any line style can be used to draw an invocation line except for the two line styles

with control and data end points (solid or open circle on one endpoint) and the loop line type.

Invocation lines can have a variety of terminators associated with their endpoints. These are

arrowhead, conditional, and lexical inclusion. Use of a terminator is optional. Terminators are

discussed later.

Data and Control Connections

Data and control connections always show data or control being passed. Implicit in their use

is that control or data is passed uni-directionally. Control does not automatically return to the

calling module as it does for invocations. They are differentiated from invocations by a

number of criteria:

 They never use conditional, lexical, or loop connectors.

The Visible Rules

198

 Pathological connections are allowed (but not encouraged).

 Data connections can pass data couples (or DITRs) between modules; control

connections can pass control couples (or CITRs) between modules.

Using Data and Control Connections

A data connection is drawn using the line selection with an open circle on one endpoint of the

line. Again, arrowhead terminators are optional on the other end. Data connections are used to

show that data only is being passed, as from module C to module A in Figure 4-24.

 A control connection is drawn using the line selection with a filled circle on one endpoint

of the line. Arrowheads are optional but recommended. Control connections are used to

show that only control is being passed, as from module A to module B in Figure 4-24.

 Figure 4-24

Terminators for Invocation Lines

As described above, invocation lines can use a variety of terminator types. Terminators add

information about how control is passed from module to module. This is generally necessary

for proper documentation when describing complex programs. Visible rules support special

terminator types and one special line type used to denote the programming constructs under

which invocations are made.

The terminator types and the special lines supported for invocation lines are:

 Arrowhead

 Conditional

 Loop (a line type)

 Lexical Inclusion

The Visible Rules

199

Conditional is the diamond shaped terminator. A conditional connector may be attached to

only the “invoking” or starting point of an invocation line. It shows that conditions apply to

the invocation. It is used primarily to indicate a decision. For instance, in Figure 4-25 module

A calls module B under one set of conditions and module C under a second set of conditions.

 Figure 4-25

The loop line is the open ellipse line type in the structure chart Line Settings dialog box. (See

Figure 4-26.) Even though it is a line, it cannot be labeled, it cannot be defined in the

repository, and its primary purpose is to show that an invocation line (of any type) is part of

an iterative and/or an ordered set of invocations. In use, a loop can be drawn around the start

point of one or more invocation lines. Loops can be nested.

The Visible Rules

200

 Figure 4-26

The lexical inclusion is the “split line” or “hat” shaped terminator for structure chart lines.

(See Figure 4-27.) Its purpose is to show that the invoked module is logically separate but

physically internal to the calling module. Its definition is “the property of one object ... being

wholly contained within the lexical boundaries of another.”
7
A lexical inclusion terminator

may only be attached at the end point of an invocation line.

7
 Ibid., p. 455.

The Visible Rules

201

 Figure 4-27

Data Couples

A data couple is a line type that is associated with invocation or data connection lines. Data

couples are the data parameters that get passed between program modules. They are

distinguished by an open circle at one endpoint and an arrowhead at the other. (See lines “W”

and “X” in Figure 4-28.) Data couples can be bi-directional; that is, two arrowheads pointing

away from each other, and one open circle in the middle of the line. Bi-directional data

couples are used for indicating in-out data coupling. Refer to Drawing Diagrams for a full

description of how to draw couples. A data couple can be changed into a data interface table

row by modifying the couple type field in the repository, as explained in The Visible

Repository chapter.

The Visible Rules

202

 Figure 4-28

Control Couples

A control couple is a line type that is associated with invocation and control connection lines.

Control couples are the control parameters that are passed between modules upon invocation

or return. Control couples are distinguished by a filled circle at one endpoint and an

arrowhead at the other. (See line “Y” in Figure 4-28.) Control couples can be bi-directional

just like data couples and are used for indicating an in-out couple. A control couple can be

changed into a control interface table row by modifying the couple type field in the

repository, as explained in The Visible Repository chapter.

Generic Couples

A generic couple is a line type that is associated only with invocation lines. Generic couples

show that both data parameters and control parameters are passed between modules upon

invocation. Generic couples are distinguished by not having a circle on one endpoint of the

line and by an arrowhead at the other. (See line “Z” in Figure 4-28.) Generic couples can be

bi-directional (like data and control couples). A generic couple can be made into a generic

interface table row by modifying the couple type field in the repository, as explained in The

Visible Repository chapter.

The Visible Rules

203

Interface Table Rows (ITRs)

An interface table row represents a group of one type of couples and is drawn on the diagram

to be a couple of that type. It is used to simplify the diagramming of complex module

interfaces that include many different types of couples and make the diagram appear less

cluttered. The couples that make up an ITR are listed in the composition field of the ITR in its

repository entry (see The Visible Repository).

Linking Structure Chart Pages Together
Structure chart diagrams, in contrast to data flow diagrams, are not hierarchically organized.

In Visible Analyst, structure charts are linked together using both on-page and off-page

connectors. The Page function is used to link the structure chart modules together over

diagram boundaries, without the loss of connection normally associated with multi-diagram

charts. The Nest and Split Data Flow functions that connected your data flow diagrams, are

disabled for the purposes of drawing structure charts. Visible Analyst recognizes page

connectors when performing an analysis validation; that is, if a structure chart is composed of

ten connected pages, Analyze reviews all ten pages as though they were one chart.

Off-page connectors can be either input connectors or output connectors. An input connector

carries an invocation from a module to another diagram. An output connector joins an

invocation from another diagram to a module on the current diagram. There are some general

rules when using off-page connectors.

 Each input connector may refer to only one output connector.

 Each set of connectors must be uniquely identified. For an input connector labeled XYZ,

there must be an output connector labeled XYZ.

 Each set of connectors must be connected with the same type of invocation line or data or

control connection.

 Input connectors can have multiple occurrences that all refer to the same output

connector.

 Input connectors can have many invocation lines or data or control connections (all of the

same type) attached to them.

 Output connectors may have only one invocation line or data or control connection going

from it to a module.

Analyzing Structure Charts
Visible rules analyze structure chart diagrams based upon heuristics. Fan-in, fan-out, design

complexity and completeness are checked. Analysis operates at two levels, module-to-module

and global. At the module-to-module level, the Analyze function reviews the connections

between modules for correctness of connection, complexity of interface, and completeness of

design. Module-to-module connections are in one of three conditions for any connection:

 A valid connection, for which no error message is generated.

 A conditionally invalid connection, for which a WARNING message is generated.

The Visible Rules

204

 An invalid connection, for which an ERROR message is generated.

All modules are analyzed for complexity of interface. The technique used is called fan-in/fan-

out analysis
8
. Fan-in and fan-out measure, respectively, the number of calls to a module from

other modules and the number of calls a module makes to other modules. Analyze gives

warnings for low fan-in and high fan-out. Additionally, Analyze implements Card’s Intrinsic

Complexity Algorithm
9
 to generate an index of a diagram’s complexity. (See Figure 4-34 for

more information.)

All modules and interfaces are analyzed for completeness of design. Modules and couples are

checked for labeling and connection. If a module or couple is unlabeled, an error message is

generated. If a module is unconnected, an error message is generated. If an invocation line

does not connect to another module, an error message is generated. This is explained in detail

below.

Structured Design Error Messages

ERROR There are ‘x’ unnamed module(s).

ERROR There are ‘x’ unnamed page connector(s).

ERROR There are ‘x’ unnamed couple(s).

ERROR There are ‘x’ unnamed information cluster(s).

These error messages are the result of not labeling symbols or couples on your structure

charts.

To resolve the errors, find and label them using the Change Item function.

ERROR Module labeled ‘x’ is a dangling module.

ERROR Page connector labeled ‘x’ is dangling.

ERROR There are ‘x’ invocation line(s) without source and/or destination.

The above error messages are the result of not connecting the indicated items with invocation

lines.

To resolve the error(s), draw invocation or connector lines or move modules or lines so that

they will be connected.

ERROR Page connector labeled ‘x’ has both input and output connections.

8
 Refer to Yourdon/ Constantine for a full description of acceptable fan-in/fan-out parameters.

9
Card, David N., and Glass, Robert L. Measuring Software Complexity. Englewood Cliffs:

Prentice-Hall, 1990.

The Visible Rules

205

The above error is the result of using the same page connector for two-way page connections.

See Figure 4-29. Rules expect page connectors to be one-way only. (This is for validation

purposes.)

Figure 4-29

To resolve the error, create a second page connector using the Page function and use it to

replace one of the directions included in the original page connector.

ERROR There are ‘x’ incorrectly placed looping structure(s).

This error message is the result of not placing a loop connector properly on the diagram.

To resolve the error, reposition any loops so that they are placed with at least one endpoint

attached to a module.

ERROR Illegal connection between module ‘x’ and module ‘y’.

ERROR Illegal connection(s) using off-page connector ‘x’.

The above error is the result of connecting two modules in an incorrect manner. In general,

this error is the result of using a library module, library macro, or data only module to call

The Visible Rules

206

another module, possibly using a page connector (there are some exceptions). See Figure

4-30.

 Figure 4-30

To resolve the error, review the module(s) with illegal connections, and change the

connections to correct or permitted types.

WARNING Connection type between module ‘x’ and module ‘y’ cannot be

 accurately determined.

The above warning message indicates that rules were unable to determine a connection type,

for instance, a pathological data connection that refers to an entire module.

To resolve the warning, review the diagram and check for proper use of the line type for the

particular situation.

ERROR ‘x’ has more than one lexical inclusion.

The above error message indicates that the flagged module is represented as lexically included

in more than one other module.

To resolve the error, either change the terminator or move the extra lexical inclusion line(s) so

that only one lexical inclusion references the flagged module.

The Visible Rules

207

WARNING Permitted but not recommended connection between module

 ‘x’ and module ‘y’.

WARNING Permitted but not recommended connection(s) using off-page

 connector ‘x’.

The above warning messages are generated when modules are connected in ways that have

been proven to have drawbacks in terms of design.

To resolve the warning(s), change the connections to more acceptable types.

ERROR Page connector labeled ‘x’ has more than one output connection

The above error is the result of using the same page connector for calling multiple modules on

another page. As discussed earlier, an output connector may only connect to one module. See

Figure 4-31.

 Figure 4-31

To resolve the error, reverse the positions of the calling module and the page connector; that

is, replace the calling module with a page connector on the calling page. This has the effect of

moving the page connector up one level in the program hierarchy. Next, place the module (the

one just replaced with the page connector) on the called diagram. Use the page connector on

the called page to connect to the module, then use the module to call the other modules.

ERROR Page connector labeled ‘x’ appears as output more than once.

The Visible Rules

208

The above error indicates that the flagged page connector is an output connector in more than

one place in your structure chart. As discussed earlier, each set of uniquely named connectors

may have only one output connector.

To resolve the error, remove or rename the flagged output connectors until only one output

connector of that name remains in the structure chart set.

ERROR Page connector labeled ‘x’ has mismatched connection types.

The above error is the result of calling to a page connector with one type of connector, and

calling from the connector, on the called page, with another type of connector. See Figure 4-

32.

Figure 4-32

To resolve the error, first decide which connector type is the desired type. Then use the

Change Item function to change the invalid connector to the desired type.

ERROR Matching page connector cannot be found for ‘x’.

The Visible Rules

209

The above error is the result of not using a page connector either on the calling or on the

called page. Also, one or more page connectors used might be incorrectly labeled.

To resolve the error, locate the page connector without a match and use the Page function to

access the paged diagram. Once on the connected diagram, review the diagram for the

presence of the offending connector. If it isn’t there, use the Symbols function to place one on

the diagram and the Lines function to connect it to the module it should be connected to.

ERROR Off-page labeled ‘x’ appears as both input and output.

The above error indicates that a connector exists as both input and output. A page connector

may be either input or output, but not both. Also, a page connector may not exist as separate

input and output connectors on the same page.

To resolve the error, remove the connections to the flagged page connector so that it is either

input or output.

WARNING Low fan-in for module ‘x’.

The above warning message is the result of a module being called by too few other modules.

This is an indication that the called module could, potentially, be moved into the body of the

calling module. This warning falls into the same category as the next warning message in that

it is a guideline, not a rule.

To resolve the warning, check the modules involved and verify whether upwards joining is

needed or not needed. Once you’ve made the determination for yourself, you can safely

ignore the warning message from then on.

WARNING High fan-out for module ‘x’.

The above warning message is the result of using too many calls from the flagged module.

The warning is based upon design principles and is meant to be a guideline indicating a

potentially overly complex control structure within the calling module.

To resolve the warning, add levels of modules to break up control issues into less complex

structures.
10

ERROR Information cluster labeled ‘x’ has unnamed modules.

10

 Refer to Yourdon/Constantine, Chapter 9, for a full discussion of how to resolve high fan-

out.

The Visible Rules

210

The above error is the result of not labeling one or more of the modules internal to an

information cluster. See Figure 4-33.

 Figure 4-33

To resolve the error, label all of the modules in the information cluster.

Analysis Statistics
Analyze generates statistics to help you evaluate your design diagrams. The figures it displays

are:

 Number of modules x

 Average module fan-out x

 Structural complexity x

Figure 4-34 explains how these statistics are calculated for the sample structure chart diagram

shown.

The Visible Rules

211

 Figure 4-34 Structural Complexity Information

Structural Complexity

Module 1

Module 2 Module 3

Module 8Module 4 Module 5 Module 6 Module 7

22

22

32

S =  f 2

 n

22 + 22 + 32 = 2.1

 8

Note: Structural complexity is equal to the sum of the square of

module fan-out (the number of invocation lines from a module)

divided by the number of modules in the system.

 S = structural (intermodule) complexity

 f = fan-out of a module

 n = number of modules in system

 Statistics:

 Number of modules 8

 Module average fan-out 0.9

 Structural complexity 2.1

The Visible Rules

212

ENTITY RELATIONSHIP DIAGRAMS

Data Modeling Overview
Entity relationship diagrams allow you to express the data model of your project

diagrammatically. You can describe the entities (or, more properly, entity types) in the data

you are modeling and the relationships between them by drawing them onto a diagram. Each

diagram or view can show an arbitrarily large or small part of your data model. You can show

multiple views of your data model by including different combinations of entities and

relationships on various diagrams. However, the entire data model is retained in the

repository. To show really large data models and still have them comprehensible, you can

cluster groups of entities and show these clusters and the relationships between them on a

view. See Drawing Diagrams for descriptions of this function.
11

All information you place in a view is, of course, captured by the repository and is available

to both your process model (data flow diagrams) and to your structure charts, where

applicable, if you have an integrated tool set. The Analyze function can help you balance a

data model against a process model and maintain consistency. Additionally, Key Analysis can

help you set up a consistent relational database key structure by data elements (sometimes

called attributes) which you designate as keys or parts of compound keys across relationships

to associated entities and create foreign keys. Using associator element names in relationship

repository entries makes this process work better.

Data Modeling Graphics
Entity relationship diagramming is designed to give you the ability to clearly show the

characteristics of your data while still allowing a certain degree of flexibility in modeling

style. By careful use of configuration settings and the line and symbol sets, you have the

ability to use different entity symbols and various line terminators that show relationship

cardinality.

Entity Symbols

There are three entity types available for you to use: fundamental, associative (sometimes

called junction entities, concatenated entities, gerunds or correlation tables) and attributive,

each with its own symbol in the symbol set. The Analyze function takes into account the type

11

 Although many of the methodological details are different from how it is done in Visible

Analyst, a good introduction to the concepts of data modeling can be found in Shlaer, S., and

Mellor, S. J., Object-Oriented Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1988.

A practical, but more advanced, book is:

 Fleming, C. C., and von Halle, B. Handbook of Relational Database Design.

Reading: Addison-Wesley, 1989.

The Visible Rules

213

of entity you specify and helps you identify certain normalization errors, as well as assists in

key migration. You can, if you wish, use a single symbol to represent entities of all types or

you can alter your symbol set so that the different types of entities have any appearance you

desire.

Entity symbols can be shown on an ERD at various levels of detail. The diagram can be set to

show only the entity names, the entity name and attributes that are part of the primary key, or

all attributes. When changing the detail level, entity symbols are automatically resized and the

relationships are reconnected properly. To set the detail level, choose Entity Display Options

from the View menu; or click one of the display level buttons on the control bar when the

diagram tools tool bar is displayed.

Selecting “Physical Schema” from the Options menu allows you to display the entity attribute

details, such as data type, alias name, null option, etc. See “Physical Schema Displayed on

Data Model Diagrams” in Chapter 3 for additional details.

Relationship Lines

Relationships can be labeled in one or both directions. You set this value when you create the

project. Relationship lines between entities usually have terminators on each end that show if

the relationship cardinality is 0:1, 1:1, 0:many, 1:many or many:many. You can set default

terminators to show relationship cardinality with Line Settings from the Options menu, as

described in the Drawing Diagrams chapter. If Auto Label Lines is enabled, after you add a

relationship to your view, a dialog box opens in which you can enter the labels for each

direction of the relationship. At that time, you also have the opportunity to change the

cardinality from the default.

View Objects

A view object is similar to an entity in that it has a composition but the items that appear in

the composition of a view must belong to other entities or be expressed based on data

elements used by another entity. View objects are described in detail in The Visible

Repository.

Analysis for Entity Relationship Diagrams
For data modeling, after selecting Analyze from the Diagram menu you have an additional

analysis choice available when analyzing either the current diagram or the entire project. You

have the option of doing normalization as well as syntax analysis. Syntax analysis identifies

unnamed entities and relationships. Normalization analysis does syntax analysis and also

identifies certain possible relationship normalization errors. This warns you of many-to-many

relationships, optional-optional relationships, mandatory one-to-one in both directions and the

fact that the identifying relationships for associative and attributive relationships are not

shown on the current view. (A relationship is identifying or defining if it comes from a

fundamental entity where the cardinality is 1:1.)

The Visible Rules

214

From the Repository menu, you have the additional analysis choices Key Analysis, Key

Synchronization and Model Balancing (balancing your data model against your process

model).

Normalization Analysis

Normalization
12

 errors at the entire project level warn you if an associative entity has fewer

than two identifying relationships and if an attributive entity has other than one identifying

relationship.

Key Analysis

Key analysis does syntax and normalization analysis, and also finds errors in primary and

foreign key specification. It notes:

 An entity without a primary key.

 A primary key on one end of a relationship without a foreign key on the other end.

 An associative entity with fewer than two foreign keys making up the primary key.

 An attributive entity with other than exactly one foreign key as a primary key.

 A foreign key without a corresponding relationship.

 A foreign key that is part of the primary key of a fundamental entity.

As described in The Visible Repository, you have the option of adding the name of a special

kind of data element called an associator to the repository entry of a relationship. When

specified and automatically created, this is used by Analyze as the name of the foreign key for

an entity at the other end of the relationship in the current direction.

Key Synchronization

Key synchronization migrates primary keys across normalized named relationships to make

foreign keys in other entities and adds descriptive information about the relationship and the

related entities. If you perform key migration on an entity pair whose relationship has no

associator element name specified, Analyze uses whatever name you have already specified

for the existing primary key (or just the abbreviations [PK] and [FK]). If you later add an

associator element name for the relationship and rerun Key Synchronization, the key is

updated with the proper associator element name. You can choose to do all of this key

migration manually, if you wish. Alternate keys ([AK#]) are not migrated.

Process/Data Model Balancing

If at least one of the balancing options is set with ERD Balancing Rules from the Options

menu, the Model Balancing function balances data elements and/or entities against existing

data flow diagrams. The first option (All Fundamental Elements Must Be Used on a DFD)

12

 Normalization is a means of eliminating redundancy in data. It is a complex topic and is

beyond the scope of this manual. Since understanding normalization is key to effective

database design, you should consult a text on the subject, such as one written by C. J. Date.

The Visible Rules

215

tells Visible Analyst whether you want to be made aware of any data elements that aren’t

used. In other words, is an element listed as part of an entity but not used by at least one

process on at least one data flow diagram? As for the second option (Every Entity Must

Correspond to a Data Store), there is some degree of correspondence between the entities in a

data model and the data stores in a process model. The nature of this correspondence is not

generally agreed upon. You can specify that every entity must correspond to a data store with

the same composition and Analyze notifies you if this is not the case.

Data Modeling Error Messages

ERROR Relationship ‘x’ is not normalized.

The above error indicates that the cardinality is not x:1 on either end (it is 0:many or

many:many in both directions). (See Figure 4-35.)

 Figure 4-35

To resolve the error, change the cardinality on one end of the relationship so that the upper

limit is one.

WARNING Reverse Relationship of ‘x’ is unnamed.

The Visible Rules

216

The above warning indicates that a relationship is labeled in only one direction, while the

project has been configured for relationships to have two labels.

To resolve the warning, find the relationship and make sure that it is labeled in both

directions.

WARNING Relationship ‘x’ is optional in both directions.

The above warning means that on both ends of a relationship, the cardinality is 0:x.

Optional:optional relationships can be difficult to implement. (See Figure 4-36.)

 Figure 4-36

To resolve the warning, make the relationship cardinality mandatory on at least one end.

WARNING Relationship ‘x’ is one to one mandatory.

The above warning indicates that there is a possible normalization error for the entities at both

ends might belong in the same table. (See Figure 4-37.)

The Visible Rules

217

Figure 4-37

To resolve the warning, either combine the two entities into one or change the relationship

cardinality. If the relationship is in fact correct, ignore the warning.

ERROR Unattached relationship ‘x’.

The above error should never happen in the normal course of things because Visible Analyst

rules do not allow you to draw and name an unattached relationship. Also, if you detach a

relationship from an entity or delete an attached entity, the name on the relationship is cleared.

(If the relationship has locations on other views, only this location is cleared.) However, a

corrupted file, such as from a power surge or system lockup at a critical time, could leave a

relationship unattached.

To resolve the error, display the diagram on which the error occurred and delete the

relationship. Then run the Rebuild function to restore synchronization between the repository

and the diagram. Finally, add the properly attached relationship back to the diagram.

ERROR There are ‘x’ unnamed entity(s).

ERROR There are ‘x’ unnamed relationship(s).

These error messages are the result of not labeling entities or relationships on your ERD(s).

The Visible Rules

218

To resolve the error, find and label them.

ERROR Attributive entity ‘x’ has no identifying relationship attached.

The above error indicates that nowhere in the repository does the required identifying

relationship for an attributive entity exist.

To resolve the error, be sure that this attributive entity has one identifying relationship.

ERROR Entity ‘x’ has no primary key defined.

The above error indicates that there is no data element listed in the composition field of this

entity marked with [PK] to indicate that it is the primary key for the relationship.

To resolve the error for a fundamental entity, be sure that at least one data element is listed in

the composition field of the entity marked with [PK]. To resolve the error for an associative

entity, run key synchronization to migrate the keys from fundamental or other associative

entities.

ERROR Associative entity ‘x’ has less than two identifying relationships attached.

The above error indicates that nowhere in the repository do the required two identifying

relationships for an associative entity exist.

To resolve the error, be sure that this associative entity has two identifying relationships. A

relationship is identifying if it comes from a fundamental entity where the cardinality is 1:1.

WARNING Associative entity ‘x’ has less than two identifying relationships

in this view.

The above warning alerts you that the identifying relationships for an associative entity might

not exist. (This error only happens when you are analyzing a single diagram. If both

identifying relationships exist in the repository, they are found by a whole-project analysis.)

(See Figure 4-38.)

The Visible Rules

219

 Figure 4-38

To resolve the warning, check to be sure that on some diagram this associative entity has two

identifying relationships. If it does, then ignore this warning. It is good practice to include

both identifying relationships on all views where an associative entity appears.

WARNING Attributive entity ‘x’ has no identifying relationship

 in this view.

The above warning exists to warn you that the identifying relationship for an attributive entity

might not exist. (This error only happens when you are analyzing a single diagram. If the

identifying relationship exists in the repository, it is found by a whole-project analysis.) (See

Figure 4-39.)

The Visible Rules

220

 Figure 4-39

To resolve the warning, check to be sure that on some diagram this attributive entity has an

identifying relationship. If it does, then ignore this warning. It good practice to include the

identifying relationship on all views where an attributive entity appears.

ERROR Attributive entity ‘x’ has no unique primary key.

The above error indicates that either no primary key or one that is not unique has been defined

for the named attributive entity. Attributive entities must be able to refer to only one

fundamental entity.

To resolve the error, add a unique primary key.

ERROR Foreign key does not exist for relationship ‘x’.

The above error indicates that a primary key has not been migrated across a relationship to

form a foreign key in another entity.

To resolve the error, you can either add a data element name preceded by [FK] to the

composition field of the indicated entity or run key synchronization and let Visible Analyst do

it for you.

ERROR Foreign key ‘x’ for entity ‘y’ already exists as associator element.

The Visible Rules

221

The above error indicates that both an associator element name and a foreign key with the

name of the primary key of the related entity have been added to the composition field of an

entity.

To resolve the error, run key synchronization; it leaves the name of the associator element as

the only name for the foreign key name.

ERROR Duplicate foreign key ‘x’ for entity ‘y’.

The above error indicates that there are two foreign keys with the same name listed in the

composition field of an entity.

To resolve the error, either eliminate the duplicate or run key synchronization again and

Visible Analyst deletes the duplicate for you.

WARNING Foreign key ‘x’ for entity ‘y’ has associator element defined.

The above warning indicates that an associator name has been added to a relationship since a

foreign key was added to the composition field of an entity.

To resolve the warning, run key synchronization; it substitutes the name of the associator

element for the existing foreign key name.

ERROR Associative entity ‘x’ has less than two foreign keys as primary key.

The above error either means that there are fewer than two identifying relationships for an

associative entity or the primary and/or foreign keys for existing identifying relationships

have not been identified in the composition field of the associative entity.

To resolve the error, be sure that both identifying relationships exist, that each identifying

entity has primary keys defined and that the keys have been migrated to form foreign keys in

the associative entity. Key synchronization accomplishes at least this last step.

ERROR Entity ‘x’ has cyclic definition - primary key cannot be

 determined.

The above error indicates that an associative entity is the identifying entity for another

associative entity that is, in turn, an identifying entity for this associative entity. There could

possibly be a chain of associative entities between them, still resulting in a cyclic definition.

(See Figure 4-40.)

The Visible Rules

222

 Figure 4-40

To resolve the error, make sure that there are no cyclic identifying relationships in your

project.

ERROR Attributive entity ‘x’ has no foreign key as primary key.

The above error either means that there is no identifying relationship for an attributive entity

or the primary and/or foreign key for an existing identifying relationship has not been

identified in the composition field of the attributive entity.

To resolve the error, be sure that an identifying relationship exists, that the identifying entity

has a primary key defined, and that the key has been migrated to form the foreign key in the

attributive entity. Key synchronization accomplishes at least this last step.

ERROR Foreign key ‘x’ for entity ‘y’ does not have corresponding relationship.

The above error indicates that a foreign key has been identified in the repository entry for an

entity, but that there is no relationship in a view that corresponds to this foreign key.

To resolve the error, add a relationship from another entity that has a primary key (or a

relationship with an associator element name) to correspond to the foreign key in the current

entity.

ERROR Primary key for fundamental entity ‘x’ contains foreign key.

The Visible Rules

223

The above error indicates that both a primary and a foreign key have been identified for a

fundamental entity.

To resolve the error, either change the symbol for the entity so that it is no longer a

fundamental entity or eliminate the [FK] notation in the composition field of the fundamental

entity.

ERROR Old foreign key column ‘x’ in entity ‘y’ should be removed.

The above error message indicates a column that had been marked as a foreign key should be

removed from the entity because it no longer appears as a key column in the parent entity, or

the relationship to which the key belonged was deleted.

To resolve the error, remove the column from the composition field, or perform key

synchronization.

ERROR Old foreign key column ‘x’ in entity ‘y’ should be removed from the

primary key.

The above error message indicates a column that had been marked as a primary foreign key

should be removed from the entity because it no longer appears as a key column in the parent

entity, or the relationship to which the key belonged was deleted.

To resolve the error, remove the column from the composition field, or perform key

synchronization.

ERROR Definition for column ‘x’ in entity ‘y’ should be updated for relationship

‘z’.

The above error message indicates that the type or physical characteristics of a foreign key

column in the child are different from the parent.

To resolve the error, change the definition in the dependent entity, or perform key

synchronization.

ERROR Extra primary key column ‘x’ in entity ‘y’ should be removed from the

primary key because of singular relationship ‘z’.

The above message indicates that there are columns included in the primary key that should

not be used. For supertype relationships and identifying relationships where the cardinality is

singular, the primary key of the child must exactly match the primary key of the parent. This

means all members of the primary key must be foreign key columns.

The Visible Rules

224

To resolve the error, remove the non-foreign key members of the primary key, or perform

Key Synchronization which removes the extra column from the primary key. The column is

not deleted from the entity.

ERROR Column ‘x’ in entity ‘y’ is used by overlapping foreign keys with

conflicting types. Relationship ‘z’ should no longer use this column.

The above message indicates the same foreign key column was used by more than one

relationship but the definition was different (physical information differs).

To resolve the error, add a new column for the conflicting key column or perform key

synchronization.

KEY SYNC Primary foreign key created for relationship ‘x’.

The above message is not an error. It exists to notify you that key synchronization migrated a

key across an identifying relationship.

KEY SYNC Foreign key created for relationship ‘x’.

The above message is not an error. It exists to notify you that key synchronization migrated a

key across a non-identifying relationship.

KEY SYNC Old foreign key column ‘x’ in entity ‘y’ has been removed.

During the key synchronization, a column that had been marked as a foreign key was

removed because it no longer appeared as a key column in the parent entity.

KEY SYNC Old foreign key column ‘x’ in entity ‘y’ has been removed from the primary

key.

During the key synchronization process, a column that had been marked as a primary foreign

key was removed because it no longer appeared as a key column in the parent entity.

KEY SYNC Column ‘x’ in entity ‘y’ is used by overlapping foreign keys with

conflicting types. Relationship ‘z’ will no longer use this column.

The above message notifies you that key synchronization removed a foreign key from the

child table because the same name was used by more than one relationship but the definition

was different (physical information differs). A new column is added for the conflicting key

column.

The Visible Rules

225

KEY SYNC Definition for column ‘x’ in entity ‘y’ has been updated for relationship ‘z’.

The above message is not an error. It notifies you that key synchronization changed the

definition of a foreign key column because the definition in the child was different from the

parent.

KEY SYNC Column ‘x’ in entity ‘y’ has been added to the foreign key of relationship

‘z’.

The above message is not an error. It notifies you that key synchronization migrated a key

across a non-identifying relationship.

KEY SYNC Extra primary key column ‘x’ in entity ‘y’ has been removed from the

primary key because of singular relationship ‘z’.

The above message is not an error. It notifies you that key synchronization removed a column

from the primary key. For supertype relationships and identifying relationships where the

cardinality is singular, the primary key of the child must exactly match the primary key of the

parent. This means all members of the primary key must be foreign key columns. The extra

column is removed from the primary key; the column is not deleted from the entity.

ERROR Foreign key for relationship ‘x’ is wholly dependent on the foreign key of

relationship ‘y’ in entity ‘z’.

The above message indicates that one of the relationships attached to the indicated entity

contains a subset of the foreign key columns used by the another relationship. This may

indicate that the relationship may be drawn between the wrong pair of entities.

To resolve the error, either remove the relationship, choose a different set of key columns for

the relationship, or redraw the relationship with a different parent entity.

WARNING Foreign key for relationship ‘x’ shares column(s) with the foreign key of

relationship ‘y’ in entity ‘z’.

The above message is not an error. It notifies you that key synchronization migrated the same

key column across multiple relationships because the same key column name was used in

more than one entity. This happens as long as all columns have the same physical

characteristics.

ERROR Foreign key for relationship ‘x’ should not be a component of the primary

key of entity ‘y’.

The Visible Rules

226

The above message indicates that the columns of the foreign key are marked as members of

the primary key for the dependent entity. This should only be true when the relationship is

identifying and the dependent entity is either associative or attributive.

To resolve the error either remove the columns from the primary key list or select the

indicated relationship, open the Change Item dialog box, and change the relationship type to

identifying.

ERROR Definition for column ‘x’ in entity ‘y’ conflicts with the definition of the

matching column on relationship ‘z’.

The above message indicates that a column that is part of the foreign key list has a different

set of physical characteristics from the corresponding primary key in the parent table.

To resolve the error, change the physical characteristics of one of the columns to match the

other.

ERROR Entity ‘x’ has multiple identifying relationships. This requires relationship

‘y’ to have a maximum cardinality greater than one.

The above message indicates that one of the identifying relationships attached to an

associative entity violates second normal form, which states that each non-key attribute must

be fully dependent on the entire primary key. By having a relationship that has a maximum

cardinality of one, you are indicating the entity is only dependent on the primary key columns

from this relationship.

To resolve the error, change the cardinality of the relationship by selecting the problem

relationship, choose Change Item from the Diagram menu, and change the Maximum

Cardinality field for the From entity.

ERROR Data Element ‘x’ is not used on data flow diagram.

The above error is generated when the process model/data model balancing criterion that all

data elements must be used has been set. It means that the specified data element is not used

by a process anywhere on any data flow diagram.

To resolve the error, be sure that the data element is listed in the composition field of some

data flow that either enters or leaves a process on at least one data flow diagram.

ERROR Entity ‘x’ has no composition defined.

The Visible Rules

227

The above error indicates that no composition has been defined for the entity. Since balancing

entities against data stores is based upon identifying identical compositions, balancing cannot

be done.

To resolve the error, add composition information.

ERROR Primary key for table ‘x’ cannot be identified.

The above error indicates that either no primary key has been specified or that the data

element named as the primary key has no physical information specified. Correct SQL

definition statements cannot be produced.

To resolve the error, either specify a primary key or correct the one that is specified.

ERROR Physical information for data element ‘x’ does not specify length.

The above error indicates that the physical information for the named data element does not

specify a length. Certain data types require a length for correct SQL definition statements to

be produced.

To resolve the error, display the physical information section for the data element and enter a

length.

ERROR Entity ‘x’ has no corresponding file.

ERROR Entity ‘x’ has no corresponding data store.

The above errors are generated when the process model/data model balancing criterion that

every entity must correspond to a data store with the same composition has been configured.

It either means that the specified entity does not correspond to a data store in the process

model or that the compositions of the entity and the intended corresponding data store differ.

The first message occurs for the Yourdon/DeMarco methodology, the second for Gane &

Sarson.

To resolve the error, be sure that there is a data store in the process model with the same

elemental composition as the named entity.

ERROR Columns for table ‘x’ cannot be identified.

The above error indicates that composition information for the entity that generates the

identified table has not been supplied. Correct SQL definition statements cannot be produced.

To resolve the error, supply composition information for the entity.

The Visible Rules

228

ERROR Entity ‘x’ is involved in a cyclic supertype/subtype relationship.

The above error indicates that two supertype relationships exist between a pair of entities,

where the supertype and subtype entities are different for each relationship. There could

possibly be a chain of entities between them, still resulting in a cyclic definition. See Figure

4-41.

Figure 4-41

To resolve the error, make sure that there are no cyclic supertype relationships in your project.

WARNING Not all subtype group members for entity ‘x’ are shown in this view.

The above warning warns you that all the subtypes that have been defined for a supertype are

not shown on a diagram. A supertype can have more than one subtype, and further, the

subtypes can be grouped together. When supertype relationships have the same origin point

on the supertype, they are considered members of the same group. There is no limit to the

number of groups that can be defined for a supertype. To resolve the warning, check to be

sure that all subtypes of a particular group are shown with all instances of the supertype and

other members of the group.

WARNING A non-supertype/subtype relationship exists between ‘x’ and ‘y’.

The above warning alerts you that there is both a supertype and normal relationship between a

pair of entities. If a supertype relationship is defined, there should not be another type of

relationship between the parent entity and any of the children defined by the supertype

structure.

The Visible Rules

229

To resolve the warning, remove the non-supertype/subtype relationship.

ERROR Syntax error in cardinality detail string (position ‘n’) for relationship ‘x’

between entities ‘y’ and ‘z’.

ERROR Syntax error in cardinality detail string (position ‘n’) for reverse

relationship ‘x’ between entities ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,

you can specify a specific quantity in the detail field using numbers or a set of intervals, such

as ‘1’, ‘1+’, ‘1-3’, or ‘2,4,6’. If this quantity does not conform to the correct syntax or it

differs from the notation specified on the line, this error message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is

consistent with the drawn cardinality.

ERROR Discriminator element ‘x’ targeted for entity ‘y’ is simultaneously used by

more than one subtype group.

The above error message indicates that the indicated entity has more than one group of

subtypes, but each group does not have a unique discriminator. If you create exclusive

subtype groups (subtypes are in the same group if the relationship lines start from the same

point on the supertype), each group must have a different discriminator if you want to

collapse the subtypes into the supertype during SQL generation.

To resolve the error, make sure each subtype group that is being collapsed has a different

discriminator. To change the discriminator, select the problem relationship and choose

Change Item from the Diagram menu.

ERROR Recursive denormalizing cycle detected. Relationship ‘x’ completing cycle

has been removed.

The above error message indicates that SQL for a group of entities involved in a relationship

chain could not be produced because the denormalization options on the relationships are in

conflict. In the figure, if all three relationships had the denormalization option set to Collapse

Child, no tables could be produced, so one of the relationships would be dropped.

To resolve the error, either remove one of the relationships in the cycle, or change the

denormalization options on the relationships. To change the denormalization option, select the

problem relationship and choose Change Item from Diagram menu.

WARNING Discrepancy between specified cardinality of x and prefix/suffix count of y.

 Collapsing into parent table ‘z’ according to prefix/suffix count.

The Visible Rules

230

The above warning message indicates that the numerical cardinality specified for a

relationship does not match the number of items in the prefix/suffix list.

To resolve the warning, change either the numerical cardinality for a relationship or the

number of items in the prefix/suffix list. To change the cardinality, select the problem

relationship, choose Change Item from the Diagram menu, and change the Cardinality Detail

field for the From entity. To modify the prefix/suffix list, select the relationship, choose

Define from the Repository menu, and select the Cardinality tab.

ERROR Specify at least x denormalizing prefix/suffix names to conform to

cardinality of relationship ‘y’.

The above error message indicates that the specified relationship has its denormalization

option set to Collapse Child and the cardinality of the relationship has its maximum set to

Many, but no prefix/suffix names have been specified. If one entity is collapsed into another,

a prefix list is used to make unique column names. For example, if there was a relationship

between customer and address, and the cardinality specified there was more than one address

for each customer, if you choose to collapse the address table into the customer table, you

would need at least two prefix names (such as Home_ and Business_) to uniquely identify the

address columns in customer.

To resolve the error, change either the cardinality of the relationship or the number of items in

the prefix/suffix list. To change the cardinality, select the problem relationship, choose

Change Item from the Diagram menu, and change the Maximum Cardinality field for the

From entity. To modify the prefix/suffix list, select the relationship, choose Define from the

Repository menu and select the Cardinality tab.

CLASS DIAGRAMS

Object Modeling Overview
Class diagrams allow you to express the object model of your project diagrammatically.

13

You can describe the classes in the data you are modeling and the relationships between them

by drawing them onto a diagram. Each diagram or view can show an arbitrarily large or small

part of your object model. You can show multiple views of your object model by including

different combinations of classes and relationships on various diagrams. However, the entire

object model is retained in the repository.

13

 For a detailed discussion, refer to Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen,

Object-Oriented Modeling and Design, Englewood Cliffs: Prentice-Hall, 1991.

The Visible Rules

231

All information you place in a view is, of course, captured by the repository and is available

to your process model (data flow diagrams), your structure charts, and your data model (entity

relationship diagrams), where applicable, if you have an integrated tool set. The Analyze

function can assist you in determining any syntax or definition problems with your object

model.

Object Modeling Graphics
Class diagramming is designed to give you the ability to clearly show the characteristics of

your classes while still allowing a certain degree of flexibility in modeling style. By careful

use of configuration settings and the line and symbol sets, you have the ability to model

different types of classes and various line terminators that show relationship cardinality.

Class Symbol

The class symbol is the primary graphic used when creating an object model. When a class is

added to a diagram, an entry is created in the repository so that additional information can be

specified regarding the class, in order to complete its definition. Each class can be associated

with other classes through the use of relationship lines. Each class symbol can have a subtype

classification assigned when modifying the definition in the repository that is used to provide

additional information about how a class is to be used.

 Standard class (the default) indicates normal class.

 Elemental indicates the class contains no attributes and physical characteristics should be

defined. (A data element and a class with an element subtype are equivalent except that

methods cannot be specified for a data element.)

 Structure indicates a C style structure should be used instead of a class. Members (or

attributes) of a structure are public by default while members of a class are private. Union

indicates a C style union should be used instead of a class.

 Entity, Associative, Attributive and View indicate the class is persistent and can be used

on an entity relationship diagram.

Class symbols can be shown on a class diagram at three levels of detail. The diagram can be

set to show only the class names, the class name and attributes, or class names, attributes and

methods. When changing the detail level, class symbols are automatically resized and the

relationships are reconnected properly. See Class Attributes Displayed on Object Model

Diagrams in the Drawing Diagrams chapter for details.

Relationship Lines

Relationships can be labeled in one or both directions. You set this value when you create the

project. Relationship lines between classes usually have terminators on each end that show if

the relationship cardinality is 0:1, 1:1, 0:many, 1:many or many:many. You can set default

terminators to show relationship cardinality with Line Settings from the Options menu, as

described in Default Line Selections. If Auto Label Lines is enabled, after you add a

relationship to your view, a dialog box opens in which you can enter the labels for each

direction of the relationship. At that time, you also have the opportunity to change the

The Visible Rules

232

cardinality from the default to whatever you choose. You can also specify a textual phrase

that describes the cardinality.

Different types of relationships can be specified on class diagrams, including inheritance and

aggregation relationships. Role names and qualifiers can also be specified.

Analysis for Class Diagrams
Visible rules check for four classes of errors :

 Syntax errors. These are errors that would make your class diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate classes are improperly associated with other classes.

Different rules apply depending on whether the relationship type is normal, inheritance or

aggregation.

 Use errors. These indicate classes have not been used, either on a diagram or in the

definition of another class.

 Definition errors. These indicate a class definition is incomplete, either attributes or

methods have not be defined. Different rules apply depending upon the class subtype.

Object Modeling Error Messages

ERROR Class ‘x’ has no attributes defined.

The above error indicates that no attributes have been defined in the repository for the

indicated class. Classes with a structure or union subtype must have attributes in order to have

a valid definition. All other class subtypes are not required to have attributes, but in most

cases a class without attributes should be defined as an elemental class. To resolve the error,

specify at least one attribute for the class.

ERROR Class ‘x’ has no methods defined.

The above error (or in some cases warning) indicates that no methods have been defined in

the repository for the indicated class. Classes with a standard subtype must have methods in

order to have a valid definition, while those with an entity subtype should have methods

defined but they are not required. To resolve the error, specify at least one method for the

class.

ERROR Class ‘x’ is involved in cyclic inheritance relationship.

The above error indicates that two inheritance relationships exist between a pair of classes,

where the base class and the derived class are different for each relationship. There could

possibly be a chain of entities between them, still resulting in a cyclic definition. See Figure

4-42.

The Visible Rules

233

 Figure 4-42

To resolve the error, make sure that there are no cyclic inheritance relationships in your

project.

ERROR Class[Element] ‘x’ is undefined.

The above error indicates that the physical information for the named elemental class has not

been specified. To resolve the error, bring up the physical information page for the class and

open the Type box to select a data type.

ERROR Role names have not been assigned for relationship ‘x’ between ‘A and ‘B’.

When a non-inheritance relationship exists between a pair of classes, roles are used to create

unique members to provide the linkage between the classes. The type and cardinality of the

relationship determine whether roles are required or optional. In all cases, at least one role

name must be specified, typically on the child class.

To resolve the error, open a diagram that contains the relationship, select it and open the

Change Item dialog box. Add the required role name(s) based on the type of relationship.

ERROR There are ‘x’ unnamed classes.

This error message is the result of not labeling classes on your class diagram(s).

To resolve the error, find and label them.

WARNING A non-inheritance relationship exists between ‘x’ and ‘y’.

The Visible Rules

234

The above warning alerts you that there is both an inheritance and a normal relationship

between a pair of classes. If an inheritance relationship is defined, there should not be another

type of relationship between the base class and any of the derived classes defined by the

inheritance structure.

To resolve the warning, remove the non-inheritance relationship.

ERROR Syntax error in cardinality detail string (position ‘n’) for relationship ‘x’

between classes ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,

you can specify a specific quantity in the detail field using numbers or a set of intervals, such

as 1, 1+. If this quantity does not conform to the syntax defined correct syntax or it differs

from the notation specified on the line, this error message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is

consistent with the drawn cardinality.

ERROR Syntax error in cardinality detail string (position ‘n’) for reverse

relationship ‘x’ between classes ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,

you can specify a specific quantity in the detail field 1-3, or 2,4,6. If this quantity does not

conform to the correct syntax or it differs from the notation specified on the line, this error

message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is

consistent with the drawn cardinality.

ERROR Set of relationships for class ‘x’ is incorrect.

This error indicates that a class appearing on several diagrams, has both inheritance and

aggregation relationships attached, but not all relationships are shown on all diagrams.

To resolve the error, check to be sure that all relationships for the class are shown on all

diagrams where the class appears.

ERROR Class ‘x’ has no aggregation attributes defined.

When an aggregation relationship exists between a pair of classes, an instance of the child

class should exist in the member list of the parent class to provide the linkage between the

classes.

The Visible Rules

235

To resolve the error, you have two options: 1) open a diagram that contains the aggregation

relationship for the class, select it, open the Change Item dialog box, and then add a role name

to the child class; or 2) select the class, open the Define dialog box, and add the child class as

a member.

STATE TRANSITION DIAGRAMS

Dynamic Modeling Overview
State transition diagrams (STDs) allow you to express the dynamic model of your project

diagrammatically.
14

 You can describe the states in the data you are modeling and the events

between them by drawing them onto a diagram. Each state transition diagram that you create

can should show the dynamic behavior of a single class. You can connect a class to a state

transition diagram through the use of the Nest facility. Once connected, every state belongs to

the class; and in the repository, the class name prefixes the state name. The Analyze function

can assist you in determining any syntax or definition problems with your dynamic model.

Dynamic Modeling Graphics

State transition diagramming is designed to give you the ability to clearly show the dynamic

characteristics of your classes while still allowing some degree of flexibility in modeling

style. There are two basic elements to a state-transition diagram: states are represented by

rectangles and events are represented by lines between states.

State Symbol

The state symbol is the primary graphic used when creating a dynamic model. When a state is

added to a diagram, an entry is created in the repository so that additional information can be

specified regarding the state in order to complete its definition. If the diagram has been

connected to a class through the use of the Nest facility, each state on the connected diagram

belongs to the exploded class, and the state name is prefixed by the class name. To represent a

transition from one state to another, an event line can be drawn between states.

Events

Events are lines drawn between states to indicate a transition. They are given a name to

describe the type of action that occurs to trigger the state change. Events are global objects

that are not tied to a specific class. This means the same event can be used on different state

14

 For more detailed information on dynamic modeling, you can refer to the following books:

Rumbaugh, James et al, Object-Oriented Modeling and Design. Englewood Cliffs:

Prentice-Hall, 1991.

Booch, Grady, Object-Oriented Design with Applications. Redwood City:

Benjamin/Cummings Publishing Company, 1992.

The Visible Rules

236

transition diagrams. Event lines between states usually have a terminator on one end to

indicate the direction of the transition. For example, the event Enter Password would cause a

state change from Request Password to Verify Account.

Analysis for State Transition Diagrams
Visible rules checks for the following problems:

 Syntax errors. These are errors that would make your state transition diagram impossible

for Visible Analyst to understand.

 Connection errors. These indicate states are improperly connected to other states either

because no events have been drawn, or because the state has only an input event or only

an output event.

 Use errors. These indicate state transition diagrams have not been connected to a specific

class.

Dynamic Modeling Error Messages

ERROR There are x unnamed state(s).

This error is the result of not labeling states on your state transition diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR There are x unnamed event(s).

This error is the result of not labeling events on your state transition diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR State labeled ‘x’ is a dangling state.

The above error message is the result of not connecting the indicated state with any event

lines.

To resolve the error, move the events and/or the state to appropriately connect them, or use

the Connect function.

ERROR Event labeled ‘x’ is a dangling event.

The above error message is the result of not connecting the indicated event to any states.

To resolve the error, move the event and/or the states to appropriately connect them, or use

the Connect function.

The Visible Rules

237

ERROR State labeled ‘x’ is an input only state.

The above error message indicates incomplete analysis. For a state change to take place, an

event must be processed. A state without both an input event and an output event is therefore

incomplete.

To resolve the error, create or find the necessary output event and connect it to the state.

ERROR State labeled ‘x’ is an output only state.

The above error message indicates incomplete analysis. For a state change to take place, an

event must be processed. A state without both an input event and an output event is therefore

incomplete.

To resolve the error, create or find the necessary input event and connect it to the state.

WARNING Event labeled ‘x’ is an input only event.

The above warning message indicates incomplete analysis. An event signals a change from

one state to another. In most cases, every event is attached to two states, the starting state

before the event and the ending state after the event. If the event is not connected to a starting

state, it could either signal an error or the initial event for the STD.

If an event is shown as an input only event on one state transition diagram, it may be shown

on another diagram attached to a starting state. In this case, this warning message is not

displayed.

To resolve the warning, create or find the necessary starting state and connect it to the event.

WARNING Event labeled ‘x’ is an output only event.

The above warning message indicates incomplete analysis. An event signals a change from

one state to another. In most cases, every event is attached to two states, the starting state

before the event and the ending state after the event. If the event is not connected to a ending

state, it could either signal an error or the final event for the STD.

If an event is shown as an output-only event on one state transition diagram, it may be shown

on another diagram attached to an ending state. In this case, this warning message is not

displayed.

To resolve the warning, create or find the necessary ending state and connect it to the event.

WARNING State diagram ‘x’ is not associated with a class.

The Visible Rules

238

The above warning message indicates the diagram has not been attached to a class using the

Nest function. When performing object modeling, a state transition diagram shows the

dynamic behavior of a class, and as such should be tied directly to the class. When a class is

exploded to a state transition diagram, all the states in the repository are members of that class

and their names are of the form class::state.

To resolve the warning, open a class diagram, select an appropriate class, and choose Nest

from the File menu. Choose Explode and select the indicated diagram. See Nested

Decomposition for more information.

ENTITY LIFE HISTORY DIAGRAMS

Data Modeling Overview
The entity life history (ELH) diagram is a component of both the SSADM and Métrica

methodologies and is similar to a structure chart. The ELH shows how events in a system

affect data entities. An ELH applies to a single entity that originates on an entity-relationship

diagram. There can be an ELH for each entity in the repository. An ELH can be exploded to

or from an instance of an entity on an entity relationship diagram.

An ELH diagram is derived from the Jackson structure diagram and represents the processing

performed on the data depicted by an entity. An ELH diagram should contain a single entity

at the top of the diagram that originates on an entity-relationship diagram, with symbols

arranged below the entity representing the events that affect an entity and the processing

performed on it.

On an ELH diagram, symbols called structure boxes are displayed below a single entity that

appears at the top of the diagram. Below the structure boxes are symbols called event boxes.

Structure boxes are used when necessary to meet two requirements of ELH diagrams:

 Event types (selection, iteration) cannot be mixed.

 Box types cannot be mixed on a particular level.

Just like structure charts, ELH diagrams are intended to be read from left to right and top to

bottom. Because an ELH diagram applies to an entity, the event processing deals with the

creation, processing, and deletion of the entity.

Entity Life History Graphics
Entity life history diagrams use a set of seven symbols to represent the relationship between

an entity, the events that affect the entity, and operations used as a result of an event.

The Visible Rules

239

Entity

The entity is the object of the diagram. The symbol originates on an entity-relationship

diagram.

Structure Box

The structure box is a placeholder symbol used to prevent the mixing of different event types.

Sequence Event

A sequence event shows a particular event that affects the entity. It is neither a selection

event nor an iteration event.

Iteration Event

An iteration event shows that an event may affect the occurrence of the entity more than once.

Operation

An operation symbol refers to the operation performed as the result of an event. An operation

can also appear on a structure chart. An operation has both a name and a number. The

number appears inside the symbol, while the name is listed in a table that is automatically

maintained by Visible Analyst.

Parallel Life

A parallel life symbol indicates that events may occur within the life of an entity, but not in a

prescribed order.

Analysis for Entity Life History Diagrams
Visible rules check for four classes of errors:

 Syntax errors. These are errors that would make your ELH diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

 Structure errors. At a minimum, there be at least event blocks defined on an ELH. In

addition, event types cannot be mixed at different levels of the tree structure.

Analysis Error Messages

WARNING There are x unnamed structure box(es).

This warning is the result of not labeling structure boxes on your entity life history diagram.

To resolve the warning, find and label them using the Change Item function. However, since

structure boxes are simply placeholders, it is not necessary to label them.

The Visible Rules

240

ERROR There are ‘x’ unnamed sequence event(s).

This error is the result of not labeling sequence events on your entity life history diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed selection event(s).

This error is the result of not labeling selection events on your entity life history diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed iteration event(s).

This error is the result of not labeling iteration events on your entity life history diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed operation(s).

This error is the result of not labeling operations on your entity life history diagram. To resolve the error,

find and label them using the Change Item function. Note that even though the name does not appear in the

operation symbol, the name must exist and will be displayed in the operation table.

ERROR There should be only one entity on this diagram.

An entity life history diagram describes the events and operations of a single entity. Remove all but the

desired entity for this diagram.

ERROR Entity labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated entity to any events on an entity life

history diagram. To resolve the error, draw a line from the entity to any event type or structure box using

the Connect function.

ERROR Structure box labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated structure box to an entity or any

events on an entity life history diagram. To resolve the error, draw a line connecting the structure box to an

entity or an event using the Connect function.

ERROR Sequence event labeled ‘x’ is dangling.

The Visible Rules

241

The above error message is the result of not connecting the indicated sequence event to an

entity or any events on an entity life history diagram. To resolve the error, draw a line

connecting the structure box to an entity or event using the Connect function.

ERROR Selection event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated selection event box to an

entity or a structure box on an entity life history diagram. To resolve the error, draw a line

connecting the event to an entity or structure box using the Connect function.

ERROR Iteration event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated iteration event to an

entity or a structure box on an entity life history diagram. To resolve the error, draw a line

connecting the event to an entity or structure box using the Connect function.

ERROR Operation labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated operation to an event on

an entity life history diagram. To resolve the error, draw a line connecting the operation to an

event using the connect function.

ERROR Operation labeled ‘x’ cannot be connected to an entity.

The above error message is the result of connecting the indicated operation to an entity.

Operations can only be connected to events. To resolve the error, connect the operation to an

event using the Connect function, or remove the connection to the entity.

ERROR There must be at least two event blocks defined on this diagram.

Event entity must have a creation event and a destruction event. In addition, there may be

other events that take place in between. This error indicates there are not at least two

connections from the defining entity to event symbols. To resolve the error, connect the

entity to at least two events using the Connect function.

ERROR Event labeled ‘x’ must be of the same type as the other events at this level.

All symbols hanging from a single node must be of the same type, or be a structure box that is

used as a placeholder. To resolve the error, change the symbol type of the indicated event

using the Change Item function.

ERROR Event labeled ‘x’ has more than one input connection.

The Visible Rules

242

The above error message is the result of connecting the indicated event to more than one

superior event/structure boxes. To resolve the error, move or delete all but one of the lines to

connect the event to one and only one superior event/structure box.

ERROR Operation labeled ‘x’ has more than one input connection.

The above error message is the result of connecting the indicated operation to more than one

event. To resolve the error, move or delete all but one of the lines to connect the operation to

one and only one event.

ERROR Entity labeled ‘x’ should have no input connections.

The entity on an entity life history diagram must be at the top of the hierarchy. To resolve the

error, remove all input connections to the entity.

WARNING Entity life history diagram ‘x’ is not associated with an entity.

This warning is the result of not exploding an entity on an entity relationship diagram to the

indicated entity life history diagram. To resolve the warning, open an entity relationship

diagram on which the entity appears, select the entity, and use the Explode function to attach

to the indicated ELH diagram.

USE CASE DIAGRAMS

Use Case Modeling Overview
The use case diagram is a component of the Unified Modeling Language (UML) and is used

to show the interaction between users and a system. A use case diagram is a graph of actors

and use cases, together with their relationships.

Use Case Graphics
Use case diagrams use a set of three symbols: use case, actor and system boundary. In

addition, lines can be used to indicate relationships among the symbols: communicates,

extend, include, and generalization.

Use Case

The use case is represented by an ellipse where the name appears at the top.

Actor

An actor is represented by a ‘stick man’ figure. The name of the actor appears below the

object.

The Visible Rules

243

Communicates

Communicates is a relationship line between actors and use cases. This relationship is drawn

as a solid line with no arrowhead. Cardinality can be shown.

Extends

Extends is a relationship line between two use cases. It is drawn as a dashed line with a stick

arrowhead at one end. The name of the relationship is <<extends>>.

Includes

Includes is a relationship line between two use cases. It is drawn as a dashed line with a stick

arrowhead at one end. The name of the relationship is <<includes>>.

Generalization

Generalization is a relationship line between two use cases or between two actors. It is drawn

as a solid line with an open arrowhead at one end. It is similar to a generalization relationship

on a class diagram.

System Boundary

System boundary is a box with a tab (folder) drawn around use case symbols to indicate a

complete system. The name of the system appears on the tab along with a stereotype name,

unless it does not contain any objects, in which case the name is drawn inside the main part of

the box. System boundary symbols can be related using both generalization and non-

generalization relationships.

Analysis for Use Case Diagrams
Visible rules check for two classes of errors:

 Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed actors(s).

The Visible Rules

244

This error is the result of not labeling actors on your use case diagram. To resolve the error,

find and label them using the Change Item function.

ERROR There are ‘x’ unnamed use case(s).

This error is the result of not labeling use cases on your use case diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed system boundary(s).

This error is the result of not labeling system boundaries on your use case diagram. To

resolve the error, find and label them using the Change Item function.

WARNING There are ‘x’ unnamed relationship(s).

This warning is the result of not labeling relationships on your use case diagram. To resolve

the warning, find and label them using the Change Item function.

ERROR Actor labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated actor to another actor or use

case on the use case diagram. To resolve the error, draw a line from the actor to any use case

or actor using the Connect function.

WARNING Use case labeled ‘x’ is dangling.

This warning message is the result of not connecting the indicated use case to another use

case on the use case diagram. To resolve the warning, draw a line from the use case to any

use case using the Connect function.

ERROR System boundary labeled ‘x’ has no components.

This error message indicates the named system boundary does not have any use case object

defined in its composition. A system boundary is used to group objects. To resolve the error,

either delete the system boundary or add components using Define.

ERROR Stereotype not defined for relationship between use cases ‘x’ and ‘y’.

For relationships between a pair of use case symbols, a stereotype must be specified,

indicating the type of relationship. A name is optional. To resolve the error, find the

relationship and set the stereotype using the Change Item function.

The Visible Rules

245

SEQUENCE DIAGRAMS

Sequence Modeling Overview
A sequence diagram is a component of the Unified Modeling Language (UML). It is a type

of iteration diagram that describes how objects collaborate in some behavior. It is drawn in a

grid-like fashion where the vertical axis represents time, while the horizontal axis represents

the participating objects.

Sequence Graphics
Sequence diagrams have one basic symbol, an object, represented by a box where the name is

in the form ObjectName:ClassName. A dashed line, known as a lifeline, extends from the

bottom of the object to the bottom of the sequence diagram. Adornments can appear along

the lifeline:

Activation, represented as a thin rectangle, indicates when an object is active.

Deletion, represented by a large X at the end of an object lifeline, is used to indicate when an

object is destroyed.

Each object must be based on a class. The object name is optional.

In addition, lines are used to connect object lifelines to indicate message passing. There are

several types of messages that can be used:

 Procedure call, a solid line with filled arrowhead.

 Flat flow of control, a solid line with stick arrowhead.

 Asynchronous stimulus, a solid line with half-stick arrowhead.

 Return, a dashed line with stick arrowhead.

 Self-delegation, an arc line.

Each message must be based on a method in the target class.

Analysis for Sequence Diagrams
Visible rules check for two classes of errors:

 Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

The Visible Rules

246

This error is the result of not labeling note symbols on one of several types of UML diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your sequence diagram. To resolve the error,

find and label them using the Change Item function.

ERROR There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your sequence diagram. To resolve the

error, find and label them using the Change Item function.

ERROR Object ‘x’ is not used. There are no messages attached.

This error is the result of not having messages attached to an object lifeline on a sequence

diagram. To correct the error, connect two object lifelines with a message line.

WARNING Object ‘x’ is based on an abstract class.

An object used on a sequence diagram is based on an abstract class. Since abstract classes

cannot be directly instantiated, a derived class should probably be used instead.

WARNING Message ‘x’ uses a virtual method.

A message used on a sequence diagram is based on a virtual method. Since virtual methods

are meant to be overridden, a method in a derived class should probably be used instead.

ERROR Message ‘x’ uses a pure virtual method.

A message used on a sequence diagram is based on a pure virtual method. Since pure virtual

methods cannot be executed, a method in a derived class should be used instead.

ERROR Message ‘x’ refers to a method that does not exist in the derivation tree of

class Y.

The indicated message is based on a method that does not exist in the indicated class or one of

its base classes. To correct the problem, select the item and use the Change Item function.

The Visible Rules

247

COLLABORATION DIAGRAMS

Collaboration Modeling Overview
The collaboration diagram is a component of the Unified Modeling Language (UML). It is a

second form of iteration diagram that shows an interaction organized around the objects in the

interaction and their links to each other. Unlike a sequence diagram, a collaboration diagram

shows the relationships among the object roles. On the other hand, a collaboration diagram

does not show time as a separate dimension; so the sequence of messages is specified using

sequence numbers.

Collaboration Graphics
Collaboration diagrams have one basic symbol, an object, represented by a box where the

name is in the form ObjectName:ClassName. Each object must be based on a class. The

object name is optional.

In addition, lines are used to connect objects to indicate message passing. Each message is

represented by a shore line along side the object link line. There are several types of

messages that can be used:

 Procedure call, a solid line with filled arrowhead.

 Flat flow of control, a solid line with stick arrowhead.

 Asynchronous stimulus, a solid line with half-stick arrowhead.

 Return, a dashed line with stick arrowhead.

 Self-delegation, an arc line.

Each message must be based on a method in the target class.

Analysis for Collaboration Diagrams
Visible rules check for two classes of errors:

 Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.

To resolve the error, find and label them using the Change Item function.

The Visible Rules

248

ERROR There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your collaboration diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your collaboration diagram. To resolve the

error, find and label them using the Change Item function.

ERROR Object ‘x’ is not used. There are no messages attached.

This error is the result of not having messages attached to an object link on a collaboration

diagram. To correct the error, add a message to an object link line.

WARNING An object used on a collaboration diagram is based on an abstract class.

Since abstract classes cannot be directly instantiated, a derived class should probably be used

instead.

WARNING Message ‘x’ uses a virtual method.

A message used on a collaboration diagram is based on a virtual method. Since virtual

methods are meant to be overridden, a method in a derived class should probably be used

instead.

ERROR Message ‘x’ uses a pure virtual method.

A message used on a collaboration diagram is based on a pure virtual method. Since pure

virtual methods cannot be executed, a method in a derived class should be used instead.

ERROR Message ‘x’ refers to a method that does not exist in the derivation tree of

class Y.

The indicated message is based on a method that does not exist in the indicated class or one of

its base classes. To correct the problem, select the item and use the Change Item function.

ACTIVITY DIAGRAMS

Activity Modeling Overview
An activity diagram is a component of the Unified Modeling Language (UML). It is a special

form of a state diagram in which the states represent the performance of actions or

The Visible Rules

249

subactivities. Transitions are triggered by the completion of the actions or subactivities. It

represents a state machine of a procedure itself.

Activity Graphics
Activity diagrams use a set of six symbols.

Action State

An action state is represented by a rectangle with round corners.

Decision/Merge

A decision is represented by a diamond with one incoming transition and two or more

outgoing transitions.

Synchronization Bar

A synchronization bar is represented by a black bar with one or more input transitions and one

or more output transitions. A synchronization bar is used to signal parallel activities.

Start

The start is represented by a filled circle. It is used to indicate the starting point of the

activity.

End

The end is represented by a filled circle inside a hollow circle. It is used to indicate the end

point of the activity.

Swimlane

A swimlane is represented by a box containing action states. Swimlanes are used to organize

responsibilities for actions. The name appears at the top of the box.

In addition, lines are used to connect action states to indicate a transition, represented by a

solid line with a stick arrowhead. It is labeled by a transition string of the form ‘event

signature [guard condition]/action expression’.All components of the transition string are

optional.

Analysis for Activity Diagrams
Visible rules check for two classes of errors:

 Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

The Visible Rules

250

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed swimlane(s).

This error is the result of not labeling swimlanes on your activity diagram. To resolve the

error, find and label them using the Change Item function.

WARNING Activity diagram ‘x’ is not associated with a class, use case, or activity.

This warning is the result of not exploding a class, use case or activity to the indicated activity

diagram. To resolve the warning, open a class, use case, or activity diagram, select an

appropriate object, and use the explode feature to attach to the indicated activity diagram.

BUSINESS PROCESS MODELING DIAGRAMMING
(BPMN)

Business Process Modeling Overview
Visible Analyst provides support for Business Process Modeling Notation (BPMN) diagrams

based on the Business Process Modeling Initiative developed by the Object Management

Group (OMG).
2

The primary goal of BPMN is to provide a modeling notation is an effective communication

medium across all the constituencies in computing technology supported organizations.

BPMN is specifically designed to communicate process behavior information in a manner

easily understood by business end users while providing supporting technology organizations

with sufficient information about process execution, flow and dependencies to understand the

workings of the business processes being modeled. BPMN notation is designed therefore to

support the needs of not only business end users, but business analysts who develop models

and technical analysts who implement the model processes.

2
 The complete specification is available for download from the OMG website,

www.omg.org.

http://www.omg.org/

The Visible Rules

251

Future releases of the Visible Analyst Workbench are planned that will use defined

BPMN models to generate execution languages such as BPEL4WS (Business

Process Execution Language for Web Services).

BPMN models describe business process behavior and as a result use an event based

paradigm. Both parallel and conditional behavior is supported in the modeling

notation and also in the Visible Analyst’s implementation of BPMN. A number of

symbols are used to describe process flows, events and decisions and allow the

viewer to easily differentiate between sections of the BPMN diagram.

BPMN Model types
There are three types of sub-models that may be used within an end-to-end BPMN

model:

Functional Private (internal) business processes - Private business processes

internal to an organization, such as the Sales Department. If swimlanes (described

below) are used, then a private business process will be contained within a single

pool, with all Sequence Flows contained within the Pool and no Message Flows

crossing the boundaries of the Pool.

Abstract (public) processes - These processes represent the interactions between a

private business process and another process or participant. Only those activities that

are used to communicate outside the private business process, plus the appropriate

flow control mechanisms are included in the abstract process. The “internal”

activities of the private business process are not shown in the abstract process. Thus,

the abstract process shows to the outside world the sequence of messages that are

required to interact with that business process. An example of this would be the

interaction between the Customer and the company’s Sales Department.

Collaboration (global) processes - A collaboration process depicts the interactions

between two or more business entities, and is defined as a sequence of activities that

represent the message exchange patterns between the entities involved. A

collaboration process can be shown as two or more abstract processes

communicating with each other. The interaction of the company’s Accounting

Department and Sales Department and the processes performed by both to complete

the sales cycle is an example of a collaboration process.

 Flow Objects
Flow Objects are the main graphical elements of the diagram and consist of Event,

Activity (process) and Gateway symbols.

The Visible Rules

252

Event
An event is something that “happens” during the course of a business process. These events

affect the flow of the process and usually have a cause (trigger) or an impact (result). There are

three types of Events based on the way they affect the flow: Start, Intermediate and End. Each

event trigger has a unique appearance to indicate the trigger type.

A Start Event indicates when a particular Process will start. In terms of Sequence Flow, the

Start Event starts the flow of the Process and will not have any incoming Sequence Flow. A

Start Event can have a Trigger that indicates how the Process Starts: Message, Timer, Rule,

Link and Multiple.

An Intermediate Event is an event that occurs after a process has been started and can affect

the flow of the activity, but not Start or (directly) terminate the activity. An Intermediate Event

will show where messages or delays are expected within the process, disrupt the flow through

exception handling, or show the extra flow required compensating a transaction. Intermediate

events can be added to the boundary of the activity symbol to indicate an error. Intermediate

events can be defined as the following types: Cancel, Compensation, Error, Link, Message,

Multiple, None, Rule or Timer. An Intermediate Event symbol is a circle drawn with a thin

double line.

The End Event indicates when a process will end, and no Sequence Flows would emanate

from an End event. End Events may have certain Results as specified on the Change Event

dialog. The End Event Results types available are: Cancel, Compensation, Error, Link,

Message, Multiple, None and Terminate. An End Event symbol is a circle drawn with a single

bolded line.

The Visible Rules

253

Figure 4-43 Event Symbols

Message Event

A Message Start Event indicates that a message arrives from a participant and triggers

the start of the Process.

The Visible Rules

254

A Message Intermediate Event indicates that a message arrives from a participant and triggers

theEvent. This causes the Process to continue if it was waiting for the message, or changes the flow

for exception handling. In Normal Flow, Message Intermediate Events can be used for sending a

message to a participant. If used for exception handling it will change the Normal Flow into an

Exception Flow.

A Message End Event indicates that a message is sent to a participant at the conclusion of the

Process.

Timer Event

A Timer Start Event indicates a specific time-date or a specific cycle (e.g. every Monday at 9 AM)

that can be set to trigger the start of a Process.

A Timer Intermediate Event indicates a specific time-date or a specific cycle (e.g. every Monday at 9

AM) that can be set to trigger the Event. If used within the main flow it acts as a delay mechanism. If

used for exception handling it will change the Normal Flow into an Exception Flow.

Error Event

An Error End Event indicates that a named error should be generated. This Error will be caught by an

Intermediate event within the Event Context. The Error text is entered into the Error Code field on the

End Event’s Trigger tab in the repository.

An Error Intermediate Event is used for error handling both to set (throw) and react to (catch) errors.

It sets (throws) an error if the Event is part of a Normal flow. It reacts to (catches) a named error, or to

any error if a name is not specified, when attached to the boundary of an activity. The Error text is

entered into the Error Code field on the Intermediate Event’s Trigger tab in the repository.

Cancel Event

A Cancel Intermediate Event symbol must be attached to the boundary of the sub- process. It SHALL

be triggered if a Cancel End Event is reached within the Transaction sub-process. It also SHALL be

triggered if a Transaction Protocol “Cancel” message has been received while the Transaction is

being performed.

A Cancel End Event designation indicates that a transaction should be cancelled, and it will trigger a

Cancel Intermediate Event attached to a sub-process boundary. Additionally, a Transaction Protocol

Message will be sent to any entities (participants) involved in the Transaction.

Compensation Event

A Compensation Intermediate Event is used for compensation handling - - both setting and

performing compensation. It calls for compensation if the Event is part of a Normal Flow. It reacts to

a named compensation call when attached to the boundary of an activity.

The Visible Rules

255

A Compensation End Event indicates that a Compensation is necessary. The

Compensation identifier will trigger an Intermediate Event when the Process is rolling

back.

Rule Event

A Rule Start Event is triggered when the rule condition becomes true, such as “S&P

changes by more than 10%”. Enter the rule expression in the Rule field on the Event’s

Trigger tab.

A Rule Intermediate Event is only used for exception handling and is triggered when a

Rule becomes True. Enter the rule expression in the Rule field on the Event’s Trigger

tab.

Link Event

A Link Start Event is a mechanism for connecting the end (Result) of one Process to the

start (Trigger) of another. Typically, these are two sub-processes within the same parent

process.

A Link End Event is a mechanism for connecting the end (Result) of one Process to the

start (Trigger) of another. Typically, these are two sub-processes within the same parent

process. A Token arriving at the Link End Event will immediately jump to its

corresponding target Start or Intermediate Event.

A Link Intermediate Event is a mechanism for connecting an End Event (Result) of one

process to an Intermediate Event (Trigger) in another process. Paired Intermediate

Events can also be used as “Go To” objects within a process.

Multiple Event

A Multiple Start Event means that there are multiple ways of triggering the Process.

Only one of them will be required to start the Process. The attributes of the Start Event

will define which of the other types of Triggers apply.

A Multiple Intermediate Event means that there are multiple ways of triggering the

Event, but only one of them will be required. The attributes of the Intermediate Event

will define which of the other types of Triggers apply.

A Multiple End Event means that there are multiple consequences of ending the Process.

All of them will occur (e.g. there might be multiple messages sent). The attributes of the

End Event will define which of the other types of Results apply.

The Visible Rules

256

Terminate Event

A Terminate End Event indicates that all activities in the Process should be immediately ended. This

includes all instances of Multi-Instances. The Process is ended without compensation or event

handling.

Activity
An activity (process) is a generic term that represents the work that a company or organization

performs. Activities can be atomic or non-atomic (compound) and are represented as a rounded

rectangle. Activity types include Process, Sub-Process (which can be defined as a Transaction), and

Task.

A Process is an activity performed within a company or organization. In BPMN, a Process is depicted

as a network of Flow Objects (Events, Activities, Gateways), which are a set of other activities and

the controls that sequence them.

A Sub-Process is a compound activity that is included within another process. It is compound in that

it can be broken down into a finer level of detail (a Process) through a set of sub-activities.

There are 5 standard markers to indicate a sub-process in the Visible Analyst, i.e. a process that shows

additional detail on the child diagram. More than one of these markers can be associated with a

process.

The plus sign + within an activity symbol indicates a collapsed sub-process(s) with additional detail

on the child diagram.

The Loop marker is a small line with an arrowhead that curls back upon itself.

A pair of parallel vertical lines indicates a Multiple Instance sub-process.

An Ad Hoc sub-process marker is indicated by the tilde symbol, ~.

The Compensation sub-process marker is a pair of left facing triangles, similar to the symbol for a

tape rewind button.

A Task is an atomic activity that is included within a process. A task is used when the work in a

process is not broken down to a finer level of Process Model detail. Generally an end-user or an

application is used to perform the Task when it is executed. There are 3 BPMN Task types, with each

type indicated by a specific marker with the Task activity symbol:

Loop: The marker is a small line with an arrowhead that curls back upon itself.

Multiple Instance: The marker is a pair of vertical lines in parallel.

Compensation: The marker is a pair of left facing triangles.

The Visible Rules

257

Gateway
A Gateway is used to control the divergence and convergence of multiple Sequence

Flows. It will determine branching, forking, merging, and joining of paths.

The Gateway, sometimes called a “fork in the road”, is used to indicate decisions, where

the Sequence Flow can take two or more alternative paths. For a given performance (or

instance) only one of the paths can be taken. A Decision is not an activity from the

business perspective, but is a type of Gateway that controls the Sequence Flow between

activities. It can be thought of as a question that is asked at that point in the process, and

the question has a defined set of alternative answers (Gates). Each Decision Gate is

associated with a condition expression found within an outgoing Sequence Flow. The

conditions are evaluated in a specific order and first condition that evaluates to “True”

determines the Sequence Flow that will be taken. One of the Gates may be marked as

“default”, and is the last Gate considered. Choosing a particular Gate chooses the

corresponding Sequence Flow.

Exclusive Gateway (XOR)

An Exclusive Decision (Gateway XOR) has two or more outgoing sequences, but only

one of them may be taken. The conditions are evaluated in a specific order and first

condition that evaluates to “True” determines the Sequence Flow that will be taken. One

of the Gates may be marked as “default”, and is the last Gate considered. Exclusive

Gateways can be used as a merge, for alternative Sequence Flow, though rarely used in

this way. There are two types of Exclusive Decisions: Data-Based and Event-Based.

Inclusive Gateway (OR)

The Inclusive Gateway OR can be used to model Inclusive Decisions or it can be used

as a Merge. An Inclusive Decision Gateway symbol has a Bolded circle within the

diamond Gateway symbol.

When used to model Inclusive Decisions, each of the Sequence Flows (at least two)

would be attached to the Gates of the Gateway. The Condition Type of the Sequence

Flow is set to Expression, and the modeler would add the expression to be evaluated in

the Condition Expression field of the flow. A default Sequence Flow may be used.

When the Inclusive Gateway is used as a Merge, it will wait for (synchronize) all

Tokens that have been produced upstream. It does not require that all incoming

Sequence flow produce a Token, (as the Parallel Gateway does). It requires that all

Sequence Flow that were actually produced by an upstream (by an Inclusive OR

situation, for example). If an upstream Inclusive OR produces two out of a possible

three Tokens, then the downstream Inclusive OR will synchronize those two Tokens and

not wait for another Token, even though there are three incoming Sequence flows.

The Visible Rules

258

NOTES:

If there is only one Gate, the Gateway is acting as a Merge, then the outgoing Sequence Flow MUST

have its Condition set to “None”.

If there is a Default Gate, it MUST have an associated Sequence Flow, and the Sequence Flow Must

have its Condition set to “Default”.

Complex Gateway

Complex Gateways are included to handle situations that are not easily handled through the other

types of Gateways. Complex Gateways can also be used to combine a set of linked simple Gateways

into a single, more compact situation. Modelers can provide complex expressions that determine the

merging/splitting behavior of the Gateway. The symbol for a Complex Gateway contains the asterisk

symbol within the Gateway diamond symbol

When the Gateway is used as a Decision, then the expression determines which of the outgoing

Sequence Flow will be chosen for the Process to continue. The expression may refer to process data

and the status of the incoming Sequence Flow. For example, the expression may evaluate the Process

data and then select different sets of outgoing Sequence Flow, based on the results of the evaluation.

The expression should be designed so that at least one of the outgoing Sequence Flows will be

chosen.

When the Gateway is used as a Merge, then there will be an expression that will determine which of

the incoming Sequence Flow will be chosen for the Process to continue. The expression may refer to

process data and the status of the incoming Sequence Flow. For example, the expression may specify

that any 3 out of 5 incoming Tokens will continue the Process. Another example would be an

expression that specifies that a Token is required from Sequence Flow “a”, and that a Token from

either Sequence Flow “b” or “c” is acceptable. The expression should be designed so that the Process

is not stalled at that location.

Parallel Gateways

Parallel Gateways provide a mechanism to synchronize parallel flow and to create Parallel. Flow

These Gateways are not required to create parallel flow, but they can be used to clarify the behavior

of complex situations where a string of Gateways are used and parallel flow is required.

There MAY be zero or more Gates. Gates are allowed if the Gateway is the last object in a Process

flow, and there are no Start or End Events for the Process. If there are zero or only one incoming

Sequence Flow (i.e. the Gateway is acting as a fork), then there MUST be at least two Gates. Each

Gate must have an associated Sequence Flow. The Sequence Flow MUST have its Condition attribute

set to “None”. The Parallel Gateway symbol contains a plus sign within the Gateway diamond

symbol to indicate a Parallel Gateway.

The Visible Rules

259

Figure 4-44 Gateway Symbols

Fork, Split and Join

A Fork (also known as a Split) is a point in a process where a single flow is divided into

2 separate flows, and allows activities to be performed concurrently instead of

sequentially.

A Join is a point in the process where two or more parallel Sequence Flows are

combined into one Sequence Flow. A Parallel (AND) Gateway is used to show the

joining of the multiple Flows. Also known as an AND-Join or synchronization.

The Visible Rules

260

Figure 4-45 Fork, Split and Join Examples

The Visible Rules

261

Business Process
A Business Process is defined in the Visible Analyst repository and describes the interactions

between the business units. A Business Process contains one or more Processes (Activities) as

displayed on a Business Process Model Diagram.

Process Type field

This field provides information about which lower-level language the Pool will be mapped.

By default, Type is “None” (or undefined).

A Private process type MAY be mapped to an executable BPEL4WS process.

An Abstract process type is also called the public interface of a process (or other web

services) and MAY be mapped to an abstract BPEL4WS process.

A Collaboration process type is also considered a “global” process and MAY be mapped to

languages such as ebXML or WS Choreography.

Status

The Status of a Process is determined when the Process is being executed by a process engine.

The Status of a Process can be used within Assignment Expressions.

Ad Hoc

Specifies whether the Process is Ad Hoc or not. The activities within an Ad Hoc Process are

not controlled or sequenced in a particular order, their performance is determined by the

performers of the activities.

Ordering

Defines if the activities within the process can be performed in Parallel or must be performed

sequentially. The default setting is Parallel and the setting of Sequential is a restriction on the

performance that may be required due to shared resources.

Completion Condition

Defines the conditions when the process will end. If the process is Ad Hoc, this attribute

MUST be included.

Suppress Join Failure

Specifies whether or not BPEL4WS joinFailure fault will be suppressed for all activities in

the BPEL4WS process. This option is located on a Business Process’s Type / Status tab in the

repository

Enable Instance Compensation

This check is included on a Business Process repository entry, and specifies whether or not

compensation can be performed after a process has completed normally.

When an activity is defined as “Independent” or “Reference”, users can link the activity to a

Business Process on the Type / Status tab of the activity’s repository entry. If the Business

Process does not exist, it will be added to the repository once the activity’s entry is saved.

Connecting Objects
Flow Objects are connected on the diagram using Sequence Flows, Message Flows and

Associations.

The Visible Rules

262

Sequence Flow A Sequence Flow is a solid graphical line that is used to show the order that

the activities will be performed in a Process. Each flow has only one source

and one target.

Conditional Flow A Sequence Flow can have condition expressions that are evaluated at

runtime to determine whether or not the flow will be used. If the conditional

flow is outgoing from an activity, then the sequence flow will have a mini-

diamond at the beginning of the line.

Default Flow For Data-Based Exclusive Decisions or Inclusive Decisions, one type of

flow is the Default condition flow. This flow will be used only if all of the

other outgoing condition flows are not true at runtime. The Default

Sequence Flow will have a diagonal slash at the beginning of the line.

Exception Flow An Exception Flow occurs outside the Normal Flow of the Process and it is

based upon an Intermediate Event that occurs during the performance of the

Process. The Exception Flow begins at the Error Intermediate or End Event

attached to the boundary of the activity, signifying an interruption in the

activity.

Compensation Flow A Compensation Flow defines the set of activities that are performed during

the rollback of a transaction to compensate for the activities that were

performed during the normal flow of the process. Compensation can also be

called from a Compensate End or Intermediate Event

Message Flow A Message Flow is drawn using a dashed line with a small circle at the

beginning of the line. This line type is used to show the flow of messages

between two entities that are prepared to send and receive them. In BPMN,

two separate Pools on the diagram will represent the two entities

Association An Association Flow is used to connect one or more Data Objects

(Artifacts) to an activity, and to show that the Data Object is either an input

or output to the Activity.

Pools and Lanes

BPMN models utilize two important conceptual modeling devices to distinguish process flow

characteristics, pools and lanes.

The Visible Rules

263

Pool A Pool (defined as a System Boundary entry type in the repository)

represents a participant in a process, and it also acts as a "swimlane" and

graphical container for portioning a set of activities from other pools.

When a Pool is added to a diagram, only the name of the Pool is displayed.

The swimlane labels will be displayed once a BPMN item is moved within

the pool boundary. If the orientation of the Pool symbol is vertical, the

name of the Pool and lanes are displayed at the top of the Pool, otherwise

the labels are drawn on the left-hand side of the pool. Pools whose width is

greater than their height are vertical. To change the orientation of the Pool,

highlight the pool symbol, select one of the “handles” (the green boxes

surrounding the Pool symbol) a drag the handle to a new location on the

diagram, expanding the Pool symbol. You can also right mouse click on the

Pool symbol and choose the Stylize option to modify the size and

orientation of the Pool.

The Attributes field on the Define Item tab in the repository will display the

items contained within the Pool and its lanes.

Lane A Lane is a sub-partition within a Pool and will extend the entire length of

the Pool, either horizontally or vertically. Lanes are used to categorize the

activities in the Pool. If there is only one lane, then the lane shares the name

of the Pool. While BPMN does not specify the usage of the Lanes, they are

often used to identify internal roles (Manager, Associate), systems

(enterprise application) and internal departments (shipping, finance sales).

Up to 10 Lane names can be assigned for each Pool.

Figure 4-46 Pool with Lanes Defined

The Visible Rules

264

Note

The lanes are only displayed in the pool when a BPMN symbol is added within the boundary

of the pool. Drag the symbol to position it within the appropriate lane.

Changing Lane Sizes

To change the size of a lane, click on the pool and hover the cursor over the lane divider. The

cursor will change to or depending on the pool orientation. Depress the left

mouse button and drag the lane boundary to its new position.

Artifacts
Artifacts are used to provide additional information about the Process, and are represented by

a Data Object, a Group, and an Annotation.

Data Object

A Data Object is represented by a square symbol with the top right corner of the

symbol turned down. Artifacts are used to provide information about the process or

elements defined or produced within the process, but do not affect the process. An

Association Flow connects data Objects to other BPMN symbols.

Group

A Group is a visual representation around a number of activities. Groups are

represented in the Visible Analyst through the use of symbol coloring, or the user

can draw a flow around the diagram objects to represent a group.

Annotation

An Annotation (referred to and implemented as a Note symbol in the Visible

Analyst) is a Text Annotation, used as a mechanism for the modeler to provide

additional information for the reader of a BPMN diagram. A Note object (and a Note

Link) in the Visible Analyst does not maintain a repository entry; all information is

written on the diagram as the Note label. Notes are connected to a specific object on

the diagram with a Note Link line, but neither the Note nor the Note Link line affect

the flow of the Process.

Business Process Diagram Attributes
A number of attributes are associated with BPMN Diagrams. Some of these attributes include, Diagram Id,

Name, Version, Author, Language (for code generation), Creation Date, Modification Date, etc. Use the

The Visible Rules

265

Boilerplate and Boilerplate Keywords feature in the Visible Analyst to display these attributes on a BPMN

diagram. See Boilerplates and Boilerplate Keywords.

Note

Boilerplates and Boilerplate keywords are not available in the Educational versions of Visible

Analyst.

Analysis for BPMN Diagrams
Visible rules check for two classes of errors:

 Syntax errors. These are errors that would make your BPM diagram impossible for

Visible Analyst to understand.

 Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis for BPMN Diagrams

ERROR There are ‘X’ unnamed Activities.

This error is the result of not labeling activities on your BPM diagram(s). To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘X’ unnamed Data Object(s).

This error is the result of not labeling data objects on your BPM diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘X’ unnamed Event(s).

This warning message is the result of not labeling events on your BPM diagram(s). In order

for events to have an entry in the repository, they must be named. If you don't want the names

to appear on a diagram use the «unnamed» keyword.

To resolve the error, find and label them.

ERROR There are ‘X’ unnamed Gateway(s).

This error message is the result of not labeling gateways on your BPM diagram(s). In order

for gateways to have an entry in the repository, they must be named. If you don't want the

names to appear on a diagram use the «unnamed» keyword.

The Visible Rules

266

To resolve the error, find and label them.

ERROR There are ‘X’ unnamed Message Flow(s).

This error is the result of not labeling message flows on your BPM diagram. To resolve the

error, find and label them using the Change Item function.

ERROR There are ‘X’ unnamed Pool(s).

This error is the result of not labeling pools on your BPM diagram. To resolve the error, find

and label them using the Change Item function.

ERROR There are ‘X’ unnamed Message Flow(s).

This error message is the result of not labeling sequence flows on your BPM diagram(s). In order for

sequence flows to have an entry in the repository, they must be named. If you don't want the names to

appear on a diagram use the «unnamed» keyword.

To resolve the error, find and label them.

ERROR Sequence Flow labeled 'X' is dangling.

This error is the result of not connecting at least one end of the indicated sequence flow to appropriate flow

objects on a BPM diagram. To resolve the error, connect the sequence flow to an activity, event or gateway

using the Connect function.

WARNING Sequence Flow labeled ‘X' is only connected to one flow object.

This error is the result of not connecting both ends of the indicated sequence flow to appropriate flow

objects on a BPM diagram. This warning can be ignored if the flow is an input flow to an activity and it is a

starting "event" or it is an output flow from an activity and it is and ending "event". To resolve the warning,

connect both ends of the sequence flow to an activity, event or gateway using the Connect function.

ERROR Activity labeled 'X' is dangling.

This error is the result of not connecting the indicated activity to another activity, event, or gateway on a

BPM diagram using a sequence flow. To resolve the error, draw a sequence flow between the activity and

another activity, event, or gateway using the Connect function.

ERROR Gateway labeled 'X' is dangling.

The Visible Rules

267

This error is the result of not connecting the indicated gateway to another flow object on the BPM diagram.

To resolve the error, draw a sequence flow from the gateway to an activity or event using the Connect

function.

ERROR Object labeled 'X' is dangling.

This error is the result of not connecting the indicated object to another flow object on the BPM diagram.

To resolve the error, draw a sequence flow from the object to another diagram object using the Connect

function.

ERROR Event labeled 'X' is dangling.

This error is the result of not connecting the indicated event to an activity or gateway on a

BPM diagram using a sequence flow. To resolve the error, draw a sequence flow from the

event to an appropriate flow object using the Connect function.

ERROR Data Object labeled 'X' is dangling.

This error is the result of not connecting the indicated data object to an activity on a BPM

diagram using an association line. To resolve the error, draw a line from the data object to any

activity using the Connect function.

ERROR Flow Object labeled 'X' does not have both an input and output sequence

flow.

Activities, gateways, and intermediate events must have both an input sequence flow and an

output sequence flow. To resolve the error, connect the end point of one sequence flow and

the start point of another sequence flow to the indicated flow object using the Connect

function.

ERROR Timer event labeled 'X' does not have a time date or time cycle set.

An event with a trigger type of 'Timer' must specify either a date and time when the event

will fire or a time cycle such as 'Every Monday morning at 5:00 AM. To resolve the error,

double-click on the indicated event to view its repository entry, then click on the Trigger tab

and enter the correct information in the Trigger Time box.

ERROR Rule event labeled 'X' does not have a rule set.

An event with a trigger type of 'Rule' must specify a rule expression to be used for triggering

the event. An example of a rule is "“S&P 500 changes by more than 10% since opening”. To

resolve the error, double-click on the indicated event to view its repository entry, then click on

the Trigger tab and enter the correct information in the Rule box.

The Visible Rules

268

ERROR Message event labeled 'X' does not have a related message set.

An event with a trigger type of 'Message' must specify a message that arrives from a

participant and triggers the start of the process. To resolve the error, double-click on the

indicated event to view its repository entry, then click on the Trigger tab and enter the correct

information in the Message box. You can either enter a new message or use the browse button

to the right of the control to search for an existing message object.

ERROR Error result event labeled 'X' does not have an error code set.

An 'End Event' with a result type of 'Error' must specify an error code that will be generated when the event

completes. To resolve the error, double-click on the indicated event to view its repository entry, then click

on the Trigger tab and enter the correct information in the Error Code box.

ERROR Independent Sub-Process labeled 'X' does not reference a business process.

An independent sub-process must reference a business process to complete its definition. To resolve the

error, double-click on the indicated sub-process to view its repository entry, then click on the Type / Status

tab and enter the name of a business process in the Bus. Proc. box. You can also use the browse button to

the right of the box to search for an existing business process.

ERROR Reference task labeled 'X' does not specify a related task.

A reference task must reference another task to complete its definition. To resolve the error, double-click

on the indicated task to view its repository entry, then click on the Type / Status tab and enter the name of

a task in the Task box. You can also use the browse button to the right of the box to search for an existing

task.

ERROR Reference Sub-Process labeled '%s' does not specify a sub-process.

A reference sub-process must reference another sub-process to complete its definition. To resolve the error,

double-click on the indicated process to view its repository entry, then click on the Type / Status tab and

enter the name of a task in the Task box. You can also use the browse button to the right of the box to

search for an existing task.

ERROR Task labeled 'X' does not specify an input message.

When an activity type is set to Task and the task type is Service, Receive, Send, or User, an input message

is required to indicate that a Message will be sent at the start of the Task. To resolve the error, double-click

on the indicated task to view its repository entry, then click on the Type / Status tab and enter the name of

a message object in the In Message box. You can also use the browse button to the right of the box to

search for an existing message.

The Visible Rules

269

ERROR Task labeled 'X' does not specify an output message.

When an activity type is set to Task and the task type is Service or User, an output message is required the

arrival of which indicates the completion of the task. To resolve the error, double-click on the indicated

task to view its repository entry, then click on the Type / Status tab and enter the name of a message object

in the Out Message box. You can also use the browse button to the right of the box to search for an

existing message.

ERROR Activity labeled 'X' has components defined but no data objects are connected.

In order for an activity to have components (properties), these components must be feed from

a data object. This error indicates that there are no data objects connected to the activity by a

reference line. To resolve the error, draw a reference line from one or more data objects that

contain the properties of the activity in its Attributes field to the indicated activity using the

Connect function.

ERROR Activity labeled 'X' has components defined that are not contained in any source data

objects.

In order for an activity to have components (attributes), these components must be feed from

a data object. This error indicates that while there are data objects connected, none of the

attributes of the activity are contained in any of the connected data objects. To resolve the

error, double-click on one of the connected data objects to view its repository entry, then click

on the Description tab and enter the attributes in the Attributes box.

The Visible Repository

271

Chapter 5

The Visible Repository

AN ORGANIZED PRESENTATION OF PROJECT DATA
The Visible repository adds database management and data definition capabilities to Visible

Analyst. The Repository functions interactively with diagramming and rules to automatically

create an organized database of project information for each project as it is developed. A

project repository is automatically updated and maintained during all of your work sessions,

and it can be accessed at any time to manually add, delete, edit or review entries. Reports

showing repository entry information can also be printed in a variety of formats.

The repository is accessible by selecting Define from the Repository menu. The following

highlight some of the functions of the repository:

 All objects drawn on diagrams of methodology projects, or added to the planning

hierarchy, are automatically entered into the repository and are addressable using the

label field at the top of the dialog box.

 You can manually make additional entries into the repository by assigning a label and

entering information into a blank repository dialog box.

 You can page through the repository dialog boxes to display all database entries for the

selected project.

 You can edit most fields in the repository dialog boxes.

 You can define new object types and fields for objects.

 You can define a view specification for an entity.

 You can set up search criteria and search through a selected portion of the repository.

 You can enter part of a label and perform a “wildcard select” to locate the first matching

label in the repository, or a “wildcard find” to display all repository entries that have

labels that begin with the characters you entered.

 You can write some repository fields to a specified DOS file, or read data from a DOS

file into those fields.

 You can read and write repository information to and from the Windows Clipboard.

 You can set up report criteria and print only the selected group of repository records.

 You can create hyperlinks to external items such as Word documents, World Wide Web

pages, etc.

The Visible Repository

272

REPOSITORY BASICS

Accessing the Repository
The repository can be accessed in four ways:

 You can access the Repository menu by selecting the Define function. If no diagram

object is active, Visible Analyst presents a blank repository dialog box, as shown in

Figure 5-1. You have several options at the blank dialog box; these are explained in the

pages that follow. If a diagram object is selected, you are presented with the repository

entry for that object.

 You can double-click on a named diagram object to display its repository entry.

 You can right-click on a diagram object and select Define from the pop-up menu to

display the repository entry for the object.

 You can double-click on an object in the object browser to display the repository entry

for the object.

The Visible Repository

273

 Figure 5-1 Blank Repository Dialog Box

Hyperlinks
In all the descriptive-type fields in the repository, such as Values & Meanings, Process

Description, Notes, Scenario, etc. you can add a link to a document or other item outside the

Visible Repository using a hyperlink. To insert a hyperlink, simply enter a URL or file name

with its full path specification (both UNC paths and drive letters can be used). Examples are

www.visible.com and \\VS\Develop\planning.doc. If the hyperlink is recognized as having a

program association in the registry, it is displayed in blue and underlined. When the cursor is

moved over the link, it will change to a pointer; clinking on the link loads the appropriate

document.

http://www.visible.com/
file://VS/Develop/planning.doc

The Visible Repository

274

Understanding the Repository Dialog Box
The repository dialog box for each entry provides you with information and functional

selections, as shown in Figure 5-1. Detailed descriptions of these repository dialog box items

are provided in the following pages. All entries contain multiple pages of information, as

described below.

The Repository Dialog Box Buttons
The repository dialog box buttons (see Figure 5-2) are always displayed at the bottom of the

box, although not all buttons are enabled at all times. You can use them to control activities

within the Visible Analyst repository for your project. As always in Windows, you can use the

keyboard shortcut by holding down the ALT key and pressing the underlined letter to execute

the button function. The button functions are shown below.

 Figure 5-2 Repository Dialog Box Control Buttons

SQL For view objects, this activates the Generated SQL for View window.

This window displays the SQL that will be generated for the current view

when you click the SQL button on the Repository Define dialog box. The

button is only active when the entry type is a view.

Dialect This activates the RDBMS SQL Dialect dialog box. From there, you can

 change the current SQL dialect.

Delete This deletes the currently displayed entry from the database. Whenever

you delete a repository entry, all associated entries are automatically

updated. For example, if you delete a data flow, Visible Analyst deletes any

references made by other entries to the deleted flow. Note: Any entry may

be deleted from the repository provided that it has no diagram locations.

(An entry has locations when it appears on diagrams or when it is

referenced in the composition field of another entry; only diagram locations

are relevant here.) If an entry has diagram locations, these must be

eliminated before the entry can be deleted.

Clear This clears the display of an entry and displays a blank dialog box or

eliminates all edits you performed that have not yet been saved. If you

edited the entry prior to clicking Clear, you are prompted to confirm

The Visible Repository

275

clearing your changes without saving them. Clearing the dialog box allows

you to Search for an existing entry or to add a new entry.

Next This displays the next sequential repository entry that meets the

repository search criteria you set. The ordering of repository entries is

alphanumeric by label.

Prior This displays the previous sequential repository entry that meets the

repository search criteria you set.

Save This saves all changes to an entry; the dialog box entry remains displayed.

The date created and date last altered information is updated as applicable.

Exit This or the ESC key exits the repository and clears the dialog box from the

screen. If edits were made, you are prompted to save the changes or ignore

them.

Search This initiates a search of the repository for another item. It is explained

 in detail below.

Expand This allows you to expand the displayed size of certain fields. Fields

Contract normally displaying four lines are expanded to display 15 lines so that you

can work with a larger section of the field at one time. When the field is

expanded, the button reads Contract. You can move around within the edit

box in the usual Windows manner. The Alias, Composition, Notes, Values

& Meanings, Process Description, Module Description, Related to, and

Location fields may be expanded and contracted like this.

Jump This allows you to immediately jump to another repository entry that is

referred to in the current one. When the cursor is positioned on the line

containing the name of another repository entry, clicking Jump allows you

to quickly jump to the repository entry for the first item listed on that line.

You can also execute the jump by double-clicking on that line. On lines that

contain the names of more than one repository item, moving to an item

beyond the first requires that you highlight that item before clicking Jump.

If edits were made, you are prompted to save the changes or ignore them

before the jump is executed. From the destination entry, you may continue

to jump wherever you wish; you are not obligated to return to your original

location in the repository. To load a diagram referenced in the location field,

highlight the diagram and click Jump.

Back This button provides a means of moving to the previous repository entry.

The Visible Repository

276

You can then continue to move backward displaying previous repository

entries.

File This allows you to insert text from a DOS file at the cursor position or to

copy highlighted text to a DOS file. It is explained in detail below.

Copy This button provides a means of copying the current object.

History This provides a means of moving back to a previously displayed repository

object. A list is kept of every object definition that has been displayed. If

you click this button, the history dialog box appears and you can move

between entries by double-clicking an entry or by highlighting the entry and

pressing the ENTER key. The maximum is 500 objects.

Help (?) This displays context-sensitive help about the repository. You can also

press F1 to activate the help system.

Search Criteria This allows you to specify how the repository is to be searched. It is

 explained in detail below.

Other buttons that may be displayed on the Define dialog box are:

Primary Key If the current object being examined is an entity type, the primary key

button is displayed to the left of the Composition/Attributes field. The

procedure for adding keys is explained in Defining a Primary Key later in

this chapter.

Attributes This button, displayed to the left of the Composition/Attributes field,

Details provides a means of populating the composition of a repository

entry with components and physical information. If the current object is a

class, it also provides a means of adding attributes and methods.

Add When the Entry Type is a Class, or when the Classic User Interface is

turned off, an Add button is displayed beneath the Attributes Details button.

You can use this button to quickly add details. When you begin typing in

the field next to the Add button, the button is enabled and the repository is

checked for an object that matches the name you typed. If a match is found,

the type, length, and null field are set. Click the Add button to add the

attributes to the Attributes field. If the current entry is a class, the object is

added as a local element if it does not already exist. Otherwise, it is added

as a global object. A local object is a blue icon; a global object is yellow.

The Visible Repository

277

Repository Searches
You can search a project repository in several ways. The easiest way is to click the Search

button when the repository dialog box is displayed. You can then enter the name (or part of

the name) of the desired item into the Search box (see Figure 5-3). Visible Analyst

incrementally searches as you type. When Visible Analyst finds your item, click Select to

display the repository entry for that item.

 Figure 5-3 Repository Search Dialog Box

 Note

 If your search key (the full or partial name) is very broad, it can take a long time

to fill the search list box with all of the matching repository entry names. In this

case, Visible Analyst does as much as it can in ten seconds and then returns

control to you. Periodically, Visible Analyst continues to add matching items to

the list box when it senses idle time; you see the hourglass cursor when this

takes place. If you want to select an item near the end of the alphabet in such a

full list box, there might be a delay before the item displays.

The Visible Repository

278

Another way to search is to enter a full or partial entry name in the dialog box label field and

click the Search button or press ENTER. The search box displays with an incremental search

already completed on the full or partial name you entered.

Yet another way to search is to enter a full or partial item name and affix an “*” to the end of

the name. Click the Search button or press ENTER to search for the entered text and accept

and display the first item found that matches the name. This is called a “wildcard select.”

If the search list box contains objects that belong to classes (either modules or local data

elements), the class of the item is displayed in parenthesis following the item. If you want to

change the sort order so that all members of a class are grouped together, click the Class

button. The list is resorted in class order. To revert to member order, click the Member button.

Although less obvious, both the Next and Prior buttons execute searches. They don’t search

on an entered name, but on a name alphanumerically greater or lesser, respectively, than the

currently displayed item.

There are three more specialized uses of the Search function. These are mentioned in the

sections entitled Composition, Creating Clusters, and Domains, below.

All of the above searches are subject to the search criteria you enter.

Repository Search Criteria

You can set up criteria to be applied when searching for repository entries. Upon entering the

repository, you can click Search Criteria and the window shown in Figure 5-4 is displayed.

Three sets of criteria may be selected, all of which operate concurrently to determine the

subset of the repository to be accessed. The criteria currently in effect are displayed on the

title line of the dialog box. Note that until you exit Visible Analyst and return to Windows, the

search criteria are maintained and are present the next time the repository is accessed.

The Visible Repository

279

Figure 5-4 Search Criteria Dialog Box

The Searches Affected category determines which searches are to be implemented. If you

select All, then all searches are limited by the criteria, including wildcard selects, manually

entered complete labels, and next and prior searches. If you select Next/Prior Only, then the

search criteria applies only to next and prior searches.

The Entry Characteristics category of search criteria allows the repository to present All

entries (effectively disabling this set of criteria), Undefined entries (those for which you have

not yet entered any descriptive information), or entries that have No Location references.

The Scope category allows you to limit searches by diagram type. Searches can be conducted

on the repository entries specific for data flow, functional decomposition, structure chart,

entity relationship, class, or state transition entries, or on all entries in the repository

regardless of diagram type. The list of entry types changes when this is done, displaying the

entry types that correspond to the selected diagram type.

The Entry Types category defines the type of the entries that are presented during searches.

You can specify All entries, a compound type like All Entity Types, or you can specify a

specific entry type to be searched for.

Repository Search Criteria Default
When working in the Repository, the search criteria defaults to the current diagram type.

Copying Data To and From DOS Files
This function allows you to copy information to or from the Values & Meanings,

Composition, Notes, Process Description, Macro Description, Modules Contained or Module

Description fields. You can copy the fields to a DOS ASCII file; you can then read the

information from the DOS file into another field. This is an easy way to copy information into

The Visible Repository

280

multiple entries without retyping it. To copy data in a repository field to a file, highlight the

information you want to copy and click the File button. The dialog box asks you the name of

the file and where you want it stored.

To copy data from a file to a repository field, place the cursor where you want the data

inserted and click the File button. The dialog box asks you the filename and where it is stored.

If you perform the insert from a file immediately after copying a repository field to DOS file,

Visible Analyst defaults to that DOS file name.

Copying Data To and From the Windows Clipboard
Visible Analyst allows you to copy repository information to or from the Windows Clipboard.

To copy to the Clipboard, highlight text in any edit control in the repository dialog boxes and

press the keyboard shortcut for Copy displayed in the Visible Analyst Edit menu.

To enter data from the Clipboard, position the cursor where you want the text to go and press

the keyboard shortcut for Paste displayed in the Visible Analyst Edit menu.

Repository Object Menu
In addition to the buttons defined on the Repository dialog box, you can use the right mouse

button to activate the repository object menu for each of the repository fields. When you click

the right mouse button over a field, the menu gives you a list of options that can be performed

on the current field. The SHIFT+F10 keyboard shortcut can be used to activate the repository

object menu.

Enterprise Links
If the current object being examined has enterprise links to other projects, a marker is

displayed to the right of the object name. If you double-click on the marker, a list of enterprise

links is displayed. In addition, if the current project is a satellite project, the name of the

enterprise project is displayed to the right of the Entry Type field. Refer to the Enterprise

Modeling chapter for more information.

Read-Only Indicator
If you do not have rights to make changes to the current object, RO (Read Only) is displayed

to the right of the Entry Type field. Read-only access is established by adding an object to a

division and revoking the Modify Items right. Refer to Enterprise Modeling for more

information.

Understanding Repository Fields
The names of fields that identify and describe each repository entry are listed on the pages of

the Define dialog box. The fields include a combination of data that is entered automatically

when a diagram is saved and data that is entered manually during repository editing sessions.

The Visible Repository

281

 Figure 5-5 Repository Dialog Box, Page 1, Description Tab

The Visible Repository

282

The Visible Repository

283

Figure 5-6 Repository Dialog Box, Page 2, Physical Characteristics Tab

Figure 5-7 Repository Dialog Box, Page 3, Links Tab

The Visible Repository

284

Figure 5-8 Repository Dialog Box, Page 4, Extended Attributes Tab

Different repository entry types have different combinations of dialog box tabs and fields in

which data and descriptive information can be entered and stored. For example, pages 2 and

4 of the basic repository form provide location and relationship information and specifications

The Visible Repository

285

for PowerBuilder/VISION extended attributes. These two pages are similar for most entry

types. For some entry types, additional pages can be displayed:

 When the entry type is an entity, the next five pages contain keys, foreign keys, triggers,

check constraints, and physical information.

 For views, the next five pages provide table, column, join, clauses, and option

information.

 When the entry type is a relationship, there are additional pages that contain foreign key

and cardinality information.

 When the entry type is a tablespace, an additional page contains property information.

 When the entry type is a BPM activity or business process, additional pages contain type

/ status and assignment information.

 When the entry type is a data object, an additional page contains state information.

 When the entry type is an event, the additional page contains trigger information.

 When the entry type is a gateway, the additional page contains condition information.

 When the entry type is a message or a system boundary (BPM), the additional page

contains participant information.

Table 5-1 lists the repository information fields for all entry types except view objects. View

objects are discussed in detail later in this chapter. The main Business Process Modeling

fields are listed in table 5-1, while the sub-fields within the field are explained in the main

field explanation.

The Visible Repository

286

Table 5-1
Possible Repository Information Fields

Ad Hoc From (Role) Produced At Completion

Ad Hoc Properties Function Description Referential Integrity*

Alias Implementation Required For Start

Assignments Incoming Related To

Associator Element In Message Relations

Attached Entities/Classes Instantiate Relationship

Attributes Label Rule

Cardinality* Links To Scenario

Check Constraints* Locations Start Quantity

Class Characteristics Long Name State

Column in Key Looping Statement Type

Composition Macro Description Status

Concurrency Methods Suppress Join Failyre

Data Mod(s) Message Tablespace

Description Module Description To (Property)

Discriminator Values & Meanings Modules Contained To (Role)

Entry Type Notes Trigger

Enable Instance Compensation Outgoing Trigger Time

Extended Attributes Particiapant (Role) Type

Error Code Physical Characteristics* Values & Meanings

Foreign Keys* Priority Web Service Properties

Friends Process #

From (Expression) Process Description

The following paragraphs provide a detailed description of these fields, except for those

marked by an asterisk (*). Asterisked fields are described later in this chapter.

Label

This is the key field by which every repository entry is accessed. It can be up to 128

characters long, and the first character must be a letter. An entry that refers to an object on a

diagram maintains the identical label that appears on the diagram. Entries that are manually

entered into the repository can be assigned any label that does not already appear in the

repository. The label for any repository item (including entities and relationships) can be

changed so long as the item does not appear on any diagram and does not appear in the

composition field of another item.

If you want an entry to begin with a numeric value, edit the VAW.INI file and add this line to

the file: Allow Numeric Prefix=Yes and then restart the Visible Analyst to enable the

change.

The Visible Repository

287

You can access any repository item using its label as described under Repository Searches

and from a diagram. If the entry searched for is not in the repository, Visible Analyst assumes

that you wish to add a new entry and your cursor is moved into the Entry Type field.

Entry Type

The content of this field indicates the type of repository entry. Normally, this field cannot be

changed if the entry being displayed was added to the repository automatically by Visible

Analyst (in order to guarantee consistency between the project diagrams and the database).

Entry types that are automatically added to the repository include all data flow types except

miscellaneous and all other rules-recognized entry types. All entry types except alias,

relationship and information cluster can also be manually keyed into the repository.

Also, if the entry type is defined as a data element, data structure, generic couple, control

couple, or data couple, it can be changed until you enter additional descriptive information in

the Composition or Values & Meanings fields or until you enter physical information for a

data element. This lets you change either a data element to a data structure and vice versa, or

any type of couple to any other type of couple or to an interface table row before the entry is

saved.

Table 5-2
Repository Entry Types by Diagram Type

Data Flow Types Use Case Types

 Data Structure Actor
 Data Flow System Boundary

 Process Use Case

 Source/Sink Structure Chart Types

 External Entity Module

 Miscellaneous Library Module

 Data Element Macro

 Domain Library Macro

 Data Store Data-only Module

 File Control Couple

Entity Relationship Types Data Couple

 Relationship Generic Couple

 Data Element Information Cluster

 Cluster Data ITR

 Domain Control ITR

 Entity Generic ITR

 Associative Entity Program

 Attributive Entity Activity Types

The Visible Repository

288

Table 5-2
Repository Entry Types by Diagram Type

 Tablespace State
 View Event
Business Process Model Functional Decomposition Types

Activity Function

Business Process Process

Gateway Class

Data Object (Artifact) Class

Start, Intermediate, End Events Data Element

System Boundary (Pool / Swimlane) Relationship

Note Entity Life History Types

Message Flow All entity types

Sequence Flow Event

State Transition Types Module

 State Collaboration Types

 Event Object

 Sequence Types

 Object

Note
 Each variety of module can have a subtype classification. These module

subtypes are used to store SQL procedural code to be generated with SQL

schemas.

 Each class can also have a subtype classification that is used to provide

additional information about how a class is to be used. A standard class (the

default) indicates a normal class. Elemental indicates the class contains no

attributes and physical characteristics should be defined. (A data element and a

class with an element subtype are equivalent except that methods cannot be

specified for a Data Element.) Structure indicates a C style structure should be

used instead of a class. Members (or attributes) of a structure are public by

default while members of a class are private. Union indicates a C style union

should be used instead of a class. Entity, associative, and attributive indicate the

class is persistent and can be used on an entity relationship diagram. You can

also specify a stereotype for a class, with the following stereotype values:

<<implemtationClass>>, <<interface>>, <<metaclass>>, <<powertype>>,

<<process>>, <<structure>>, <<thread>>, <<type>>, <<union>>, <<utility>>.

The Visible Repository

289

 Each planning statement must have a statement type that is displayed to the right

of the Entry Type field. See manual section Defining Planning Statement Types

for how to modify the list of available types.

Description

This field provides a convenient place for you to enter a brief, high-level description of the

entry being displayed. You can enter a maximum of two lines of text. When you generate

comments on columns or tables in SQL Schema Generation, this field is used. Comments are

also imported from and exported to PowerBuilder using this field.

Alias

This field is displayed for all data flow diagram-based repository entries except processes and

a number of entry types for other diagram types. It allows you to enter labels that refer to the

same entry/object, but that are different than the label at the top of the dialog box. For each

alias that you enter, Visible Analyst automatically creates a new repository entry of type alias.

That new entry provides a reference to the same repository entry from its label as well as its

alias. Note that any alias entry automatically refers to the original entry using its own alias

field.

Only one alias is visible in the dialog box at any one time, but you can scroll through all alias

names in the usual Windows manner. There can be up to 10 aliases for each repository entry

that has an alias field. Each line may contain one alias of up to 128 characters. The first alias

in the list is used during SQL schema generation if the Use Alias Name option is selected.

Note

 The alias capability is not enabled for Planning Statements.

Associator Element

Appearing for relationship entries only, this field gives you the opportunity to name a foreign

key element. When the entry is saved, the repository creates an entry for this special variety of

data element. Analyze can then use this name for key analysis and synchronization.

Related To

This field is displayed for most structure chart diagram entry types. Different entry types are

allowed to relate to different data flow diagram entry types. The following list shows you the

structure chart entry types and the corresponding data flow entry types to which they may be

related.

Module Up to ten processes

Library Module Up to ten processes

Macro Up to ten processes

Library Macro Up to ten processes

The Visible Repository

290

Data Only Module One data flow, data structure, file, or data element

Data Couple One data flow, data element

Control Couple Any one data element

Generic Couple Same as data couple

Event A module

Only one Related To entry is presented in the dialog box at any one time unless you expand the field. There

are up to 10 Related To lines available for every repository entry that has a Related To field. Each line may

contain one entry of up to 128 characters.

Process #

Whenever a process entry is displayed by the repository, this field appears. It cannot be edited from within

the repository; all changes must be made on a diagram. The process number is displayed as it appears on

the project diagram.

Data Mod(s)

The Data Mod field is a specialized field that appears only for describing data only modules included in

information clusters. It cannot be edited from within the repository; all changes must be made on a

diagram. An entry for this field is automatically generated from a structure chart diagram, and its content is

the name of a data only module that has its own repository entry.

Values & Meanings

This field lists the possible values and meanings of data elements, miscellaneous entries and couples.

Information entered into this field may be in any form that is relevant to the application being analyzed or

designed. The field may contain up to 64K characters, and you can scroll through the lines in the usual

Windows manner.

Discriminator Values & Meanings

If the current object is a data element that is used as a discriminator, this field contains a list of values to

identify the subtype entities. For each subtype, a value can be entered that will uniquely identify it. By

default, these values are numbers starting with 0 for the supertype. To change the value, click on the value

until an edit control appears, make your changes, then press Enter.

Process Description

This field can be used to enter a description for a process. The description should ideally be in some form

of structured English or the equivalent, so that data element references can be found within the field. The

references provide a means for checking process incoming and outgoing data flows. Good structured

analysis techniques dictate that a process description should exist only for the lowest level processes in a

project. The field may contain up to 64K characters. Note that in the current release of Visible Analyst, data

element references are not searched for in this field.

The Visible Repository

291

Module Description

This field can be used to enter a description for a module or a library module or one of the

subtypes used for SQL schema generation: triggers, check conditions and stored procedures.

The description should either be source code for code generation or some form of structured

English or equivalent, so that procedures are documented for beginning processing, for calling

other modules, and for the control and data parameters being passed to and from the module.

The field may contain up to 64K characters. Refer to the Shell Code Generation section,

below, for more uses for this field.

Macro Description

This field can be used to enter a description for a macro or library or one of the subtypes used

for SQL schema generation: triggers, check conditions and stored procedures. The description

should either be source code for code generation or some form of structured English or

equivalent, so that procedures are documented for beginning processing, for calling other

modules, and for the control and data parameters being passed to and from the module. The

field may contain up to 64K characters. Refer to the Shell Code Generation section, below,

for more uses for this field.

Modules Contained

The Modules Contained field is a specialized field that appears only for information clusters.

It is automatically generated from structure chart diagrams and may contain up to seven

module names. It is not editable from within the repository; all changes must be made on a

diagram. Any module name contained in this field also has its own entry in the repository.

Composition/Attributes

The Composition field replaces the Values & Meanings field whenever the repository dialog

box displays a file, data store, data flow, data structure, data only, interface table row, entity,

class or BPM activity, data object or system boundary (pool). The field can be used to identify

all of the components of the repository entry, such as: data elements, data flows, data

structures, files, data stores, and couples (all types). For some uses, the composition field does

not allow all of the above entry types. It is automatically populated by the Split Data Flow

function for DFDs, and the key synchronization function for ERDs. Entry types with a

specialized composition field are:

 Data Only Modules. This entry type only allows the composition field to contain data

elements and couples (data, control, and generic).

 Interface Table Row. This entry type allows the composition field to contain a group of

couples, but only couples of one type; for example, it may contain control couples but not

generic or data couples, or it may contain data couples but not the other types.

For every item entered into the composition field, Visible Analyst creates a repository entry

(if one with the same name does not already exist) and updates that entry’s location field. If

an item is removed from this field, that entry’s location field is updated to reflect this. These

repository entries are generally created as data elements and may be changed to data

The Visible Repository

292

structures. However, some entry composition fields deal only with specific component entry

types (see the previous paragraph).

If you click the Composition field or click the Attributes Details button, a dialog box opens,

allowing you to define up to 12 components and some of their properties. In addition to the

component name, you can specify its physical storage type, length and whether nulls are

allowed. As you enter items, the dialog box automatically scrolls as necessary to allow you to

enter more items until you reach 12. When you complete the entries, click OK to add them to

the Composition field. If you need to add more than 12 components, click the Attributes

Details button again and a new dialog box opens so that you can add more. This speeds up the

process of generating a table from an entity if you want to generate it without adding full

descriptive information for all of the data elements involved.

Item names entered into the composition field may contain up to 128 characters each and may

consist of upper or lower case letters, numbers, spaces, periods, underscore characters and

hyphens; but the first character must always be a letter. See the Label explanation previously

explained in this chapter if you want an item to begin with a number. Asterisks may be used

to denote comments; all characters following the asterisk on a line are ignored. All other

characters in the field are considered delimiters and are used to separate items and

components entered into this field. A maximum of 10 items may appear in one line; any

additional items are ignored. Item names may not wrap from one line to the next.

For entities, (and classes defined as an entity sub-type) the composition field may carry

descriptors of items indicating that they are keys or parts of keys. If the Classic User Interface

is selected from the Options menu, you can manually enter the descriptors as explained

below. If the Classic User Interface is not selected, use the Keys tab or Key button on the

Define dialog to indicate a composition item is part of the primary key, an alternate key, or a

performance index. To indicate that a composition item is a primary key, prefix it with [PK].

To indicate a foreign key, prefix with [FK]. An alternate key is indicated by [AK#], and a

performance index is indicated by [PI#], where # is a number that annotates the alternate

key/performance index this element is a part of. Alternate key and performance index

indication is strictly for your own reference; it is not used in any way by Analyze (they are

used, however, to generate indexes in some SQL dialects). Up to 64K characters are available

in this field. Keys can also be specified by clicking the Keys or the Foreign Keys tab on the

Define dialog box when the Classic User Interface is on or off.

The Add button, displayed below the Attributes field when the Classic User Interface is not

selected, allows you to add individual components to the entry. If the component already the

repository is checked for objects that match the name you typed. Click the Add button to add

the entry to Attributes field. Placing the cursor in the Name field enables the Search button,

allowing you to search for an existing repository entry as described previously in this chapter.

The Visible Repository

293

Populating a Composition

The repository Search function can be used to populate the Composition field of a repository

item. To do this, place the cursor in the item’s Composition field and click the Search button

to display the repository search dialog box. In the Search list box, locate each repository item

you want to place in the Composition field and click the Search button; the item is added to

the Select list box at the bottom. When you have found all of the entries you want, click the

Select button to enter them into the Composition field.

Defining a Primary Key

In addition to the method described above, you can define a primary key for an entity by

clicking the primary key button at the repository dialog box. Select the desired columns from

the Columns in Table list to add them to the Column in Key list. The order the columns are

selected determines the key order. To remove an item from the key, simply deselect the

column. Click OK when you are finished. Depending on the type of object being modified,

the composition field or attributes field (described below) is updated with a [PK] prefix to

indicate the primary key components. (Keys can also be defined by clicking the Keys or

Foreign Keys tab on the Define dialog box.)

Attributes

The Attributes field replaces the Values & Meanings field whenever the repository dialog box

displays a. It also replaces the Composition field if the Classic User Interface option is turned

off. The field contains a list of the data members for the class showing the local data element

and type. To add, change, or remove members, click Attributes Details button, select

Add/Change from the Repository Object menu, double-click in the Composition field while

holding down the CTRL key, or click the Add button (the Add button becomes active when

you begin typing in the Add field). For each attribute, the following information can be

defined:

 Name. The name of the attribute. Each attribute of a class has a separate entry in the

repository with a type of local data element. This is an optional field. The Search button

can be used to find other local data elements in the repository.

 Type. The attribute type can be class, data element, or data structure. If the type does not

exist in the repository, a new class is created. The location field of the attribute type

contains a reference to the current class. This is a mandatory field. The Search button can

be used to display a list of valid types. If the attribute type is data element or elemental

class, its physical characteristics are displayed.

 Limit. The number of occurrences of the attribute. If this field is blank, the attribute

occurs once.

 Reference. A qualifier to indicate the access method for an attribute. Value indicates the

object defined in the Type field is used; address indicates a pointer to the object is to be

used; and reference indicates a reference to the object is to be used. The default is value.

 Visibility. Public members have global visibility. Private members are only accessible to

member functions and friends. Protected members are accessible to derived classes and

The Visible Repository

294

friends. Implementation members are only accessible to the class itself. The default is

private.

 Qualification. Constant indicates the member value cannot be changed. Volatile indicates the member

can be modified by something other than the program, the operating system or hardware. Static

indicates there is only one instance of the member regardless of the number of times a class is

instantiated. The default is none.

 Physical Characteristics. If the attribute type is elemental, the physical characteristics can be set. See

the section Data Element Physical Information later in this chapter for details.

 Figure 5-9 Class Attributes

The Visible Repository

295

For every item entered into the Type field, Visible Analyst creates a repository entry (if one

with the same name does not already exist) and updates that entry’s location field. If an item

is removed from this field, that entry’s location field is updated to reflect this. These

repository entries are generally created as classes unless a data element already exists with the

same name, or the physical characteristics are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter

more items until you have finished. Insert is used to insert a new attribute into the list at the

current position, while Delete removes the current attribute (the current position is indicated

by ). To reorder the list, click the left mouse button on the current position indicator and

drag the row to its new position. When you have completed the entries, click OK to add them

to the Attributes field.

Item names entered into this field may contain up to 128 characters each and may consist of

upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; but

the first character must always be a letter. If you want an entry to begin with a numeric value,

edit the VAW.INI file and add this line to the file: Allow Numeric Prefix=Yes and then

restart the Visible Analyst to enable the change.

Attached Entities/Classes

The attached entities/classes for the currently displayed relationship are listed in this field.

When an inheritance relationship is displayed, the characteristics of that relationship can be

changed (see Changing Inheritance Characteristics later in this chapter), otherwise, it cannot

be edited from within the repository; all changes must be made on a diagram. The field lists

the two entities or classes attached to this relationship. Below the second entity name is listed

the reverse of the current relationship. If either direction of the relationship has not been

named, the name of the relationship in the reverse direction is displayed as “reverse of

(opposite relationship name).” This field allows you to jump to the repository entries for any

of these entities or relationships.

Relations

For an entity or class, the Relations field displays, for each relationship attached to this entry,

the relationship name followed by the name of the entity or class on the other end of this

relationship. These sets are ordered alphabetically by the opposite entry name. When an

inheritance relationship is displayed, the characteristics of that relationship can be changed

(see Changing Inheritance Characteristics later in this chapter), otherwise the information

cannot be edited from within the repository; all changes must be made on a diagram.

This field allows you to jump to the repository entries for any of these entities, classes, or

relationships by positioning the cursor on the line containing an entity, class, or relationship

name and clicking the Jump button.

The Visible Repository

296

Notes

This field allows you to enter information in free form fashion for any repository entry. Up to 64K

characters are available in this field.

Locations

This field displays an entry’s locations; it cannot be edited. Three types of locations may be present in this

field for any entry. The first type shows the label of the diagram on which the entry is located, followed by

its diagram number in parentheses (DFDs only). The second type shows any other entries that reference the

currently displayed entry in their composition fields. The third type of location displays the name of the

satellite project if this entry was used in an Enterprise Copy. See the chapter on Enterprise Modeling for

additional information. The Repository Report function lists all locations.

Long Name

When a repository entry, either a local data element or a module, belongs to a class, the full name of the

entry includes the class name. The Long Name field displays this name, and in the case of modules,

includes the argument list (the argument list is required to differentiate overloaded member functions). If

you want to change the argument list for a class method, click the right mouse button on the Long Name

field and select Change (see the Methods section later in this chapter for details). If you want to change the

class to which the method belongs, select Class from the Repository Object menu. To display the class

definition, click the Jump button.

Class Characteristics

Concurrency is a class property that distinguishes an active object from inactive object. An active object

may represent a separate thread of control. A sequential object is a passive object whose semantics are

guaranteed only in the presence of a single thread of control. A guarded object is a passive object whose

semantics are guaranteed in the presence of multiple threads of control.

A persistent class exists beyond the lifetime of an executable program. This means it must be stored on a

non-transitory storage device. If the subtype of a class is set to associative or attributive entity and the class

is used on an entity relationship diagram, this field cannot be changed.

An abstract (or virtual) class cannot be instantiated because it contains pure virtual methods. If pure virtual

methods exist for a class, Abstract is checked. If you attempt to uncheck this field, all pure virtual methods

are reset to virtual. If you attempt to check it and virtual methods exist, they are converted to pure virtual

methods.

Methods

Methods (or Member Functions) are the operations that are defined for accessing a class. The Methods field

contains a list of the functions for a class showing the name, return value, argument list, and flags to

indicate its visibility. To add, change, or remove methods, click on the Methods field and click the

Attributes Details button, select Add/Change from the Repository Object menu, or double-click the

Methods field while pressing the CTRL key.

The Visible Repository

297

To add a new method for a class, click the New button and type the name of the method you

wish to add. To search for methods that have already been defined in the repository, navigate

from the Name field and click the Search button. The list contains all modules that have

previously been defined in the repository. If the module already belongs to a class, the class

name is displayed. Note that when you select a module that already exists, the complete

definition for that module is used including return value and argument list. Click OK to add

the method name to the list of methods for the current class. For each method, the following

information can be defined:

 Returns. The return type can be a class or data element. If the type does not exist in the

repository, a new class is created. The location field of the attribute type contains a

reference to the method. This is an optional field. The Search button can be used to

display a list of valid types.

 Limit. The number or size of the parameter. If this field is blank, it occurs once.

 By. A qualifier to indicate how the return value is passed. Value indicates a copy of the

parameter is passed; address indicates a pointer to the object is to be used; and reference

indicates a reference to an object is to be used.

 Visibility. Public methods have global visibility. Private methods are only accessible to

other member functions within the same class and friends. Protected methods are

accessible to derived classes and friends. Implementation methods are only accessible to

the class itself. The default is public.

 Qualification. Static indicates a method can be used without a specific instance of an

object (it can only be used with static attributes (data members)). A virtual method is one

that you expect to be redefined in a derived class. A pure virtual method has no definition

and must be defined in a derived class. A class with pure virtual functions is an abstract

(or virtual) class. The default is none.

 Arguments. A list of parameters to be used by the method. This is an optional field. If a

method appears more than once with the same name within a class, it must have a

different argument list for each definition. This is known as function overloading. See the

next section for defining arguments.

The Visible Repository

298

 Figure 5-10 Class Methods

When a method is added to a class definition, a module entry is created in the repository. The

long name includes the class name and the argument list. The argument list is needed to

differentiate between overloaded functions.

Note

 Because the same name can be used for more than one method, there may be

duplicate module entries in the repository, each belonging to a different class.

Arguments

When defining methods (member functions) for a class, the parameters to the function must

be specified. To add, change, or remove arguments, click on the Arguments button on the

Method Definition dialog box. For each argument, the following information can be defined:

 Name. The name of the parameter. This is an optional field.

 Type. The parameter type can be a class or data element. If the type does not exist in the

repository, a new class is created. This is a mandatory field. The Search button can be

used to display a list of valid types. If the parameter type is a data element or elemental

class, its physical characteristics are displayed.

 Limit. The number or size of the parameter. If this field is blank, it occurs once.

 Pass By. A qualifier to indicate how the parameter is passed. Value indicates a copy of

the parameter is passed; address indicates a pointer to the object is to be used; and

reference indicates a reference to an object is to be used. The default is value.

The Visible Repository

299

 Qualification. Constant indicates a parameter value cannot be changed. Volatile

indicates the parameter can be modified by something other than the program, either the

operating system or hardware. The default is none.

 Physical Characteristics. If the parameter type is elemental, the physical characteristics

can be set. See the section Data Element Physical Information later in this chapter for

details.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one

with the same name does not already exist). These repository entries are generally created as

classes unless a data element already exists with the same name or the physical characteristics

are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter

more items until you have finished. Insert is used to insert a new parameter into the list at the

current position, while Delete removes the current parameter (the current position is indicated

by ). To reorder the list, click the left mouse button on the current position indicator and

drag the row to its new position. When you have completed the entries, click OK to update

the method name field.

Item names entered into this field may contain up to 128 characters each and may consist of

upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; but

the first character must always be a letter.

Friends

The Friends field displays a list of both friend classes and methods (or functions). A friend is

allowed access to the private data members of a class. To add friends, click on the Friends

field and click the Search button, select Add from the Repository Object menu, or double-

click on the Friends field while pressing the CTRL key. A list of classes and member

functions is displayed in the Search list box. Locate each repository item you want to place in

the Friends field and click the Search button; the item is added to the Select list box at the

bottom. When you have found all of the entries you want, click the Select button to enter them

in the Friends field.

To remove a friend, highlight the desired item and press the DELETE key, or select Cut or

Delete from the Repository Object menu.

Scenario

When the entry type is use case, this field provides a place for you to enter a description of the

scenario.

The Visible Repository

300

Types of Activity

Specifies the type of activity on the Type/Status tab.

None: Indicates a normal Task. See None.

Service: The Task provides some type of service. See Service

Receive: The Task is designed to wait for a message to arrive from an external participant (relative to

the Business Process). See Receive

Send: A Task that is designed to send a message to an external Participant (relative to the Business

Process). A Send Task is a simple Task that is designed to send a message to an external Participant

(relative to the Business Process). Once the message has been sent, the task is completed. The task

Type is specified on the activity’s Type / Status tab in the repository with the following fields enabled:

A Message MUST be entered into the In Message field to indicate the message to be sent by the Task.

The Message in this context is equivalent to an out-only message pattern. The Message Flow may be

shown on the diagram, but is not required.

Implementation: This field specifies the technology that will be used to send the message, and a Web

service is the default.

User: A typical “workflow” task where a human performer performs the Task with the assistance of a

software application and is scheduled through a task manager of some sort.

Script: The script written in the Script field of the Task is executed by a business process engine. The

modeler or implementer defines a script in a language that the engine can interpret. When the Task is

ready to start the engine will execute the script. When the script is completed, the Task will also be

completed. The task Type is specified on the activity’s Type / Status tab in the repository with the

Script field enabled:

Abstract: This Task represents the interactions between private business processes and another

process or participant.

Manual: A Task that is expected to be performed without the aid of any business process execution

engine or any application

Reference: If the two (or more) activities share the exact same behavior, then by one referencing the

other, the attributes that define the behavior only have to be created once and maintained in only one

location. When Reference is specified as the type for a Transaction activity, the activity will reference

the Business Process. Enter the Business Process name in the Process field on the activity’s

Type/Status tab.

Independent: An Independent sub-process activity is an activity within a process that calls to another

process within a Business Process Diagram that may have Pools and swimlanes. The Independent

activity type can only be specified for a Transaction activity.

Embedded: An Embedded (or Nested) activity is a sub-process of an activity that contains other sub-

processes and is dependant on the parent activity for instigation. The Embedded activity type can only

be specified for a Transaction activity.

Service

A Service Task is a Task that provides some type of service, which could be a Web service or an automated

application. The task Type is specified on the activity’s Type / Status tab in the repository, with the

following fields enabled:

The Visible Repository

301

In Message: An In Message MUST be entered, and the message indicates that the message

will be sent at the start of the Task, after the availability of any defined InputSets.

Out Message: An Out Message MUST be entered and the arrival of the message indicates the

completion of the Task, which may cause the production of an OutputSet.

Implementation: This field specifies the technology that will be used by the Performers to

perform the Task. A Web Service is the default technology.

Receive

A Receive Task is a simple Task that is designed to wait for a message to arrive from an

external participant (relative to the Business Process). Once the message has been received,

the task is completed. A Receive task is often used to start a Process. In order for the Task to

Instantiate the Process, it must meet one of the following criteria:

o The Process does not have a Start Event and the Receive Task has no incoming Sequence

Flow

o The Incoming Sequence flow for the Receive Task has a source of a Start event. Note

that no other incoming Sequence Flow are allowed for the Receive Task (in particular, a

loop connection from a downstream object)

The task Type Receive is specified on the activity’s Type / Status tab in the repository with

the following fields enabled:

A Message MUST be entered into the In Message field to indicate the message to be received

by the Task. The Message in this context is equivalent to an in-only message pattern (Web

service).

Instantiate: Receive tasks can be defined as the instantiation mechanism for the Process with

the Instantiate checkbox. The attribute may be selected (checked to indicate true) if the Task

is the first activity after the Start Event or a starting Task if there is no Start event (i.e. there

are no incoming Sequence Flow). Multiple Tasks MAY have this attribute set to “True”.

Implementation: This field specifies the technology that will be used to send the message; a

Web service is the default.

Send

A Send Task is a simple Task that is designed to send a message to an external Participant

(relative to the Business Process). Once the message has been sent, the task is completed. The

task Type is specified on the activity’s Type / Status tab in the repository with the following

fields enabled:

A Message MUST be entered into the In Message field to indicate the message to be sent by

the Task. The Message in this context is equivalent to an out-only message pattern. The

Message Flow may be shown on the diagram, but is not required.

Implementation: This field specifies the technology that will be used to send the message, and

a Web service is the default.

The Visible Repository

302

User

The User Task Type is a typical “workflow” task where a human performer performs the Task with the

assistance of a software application and is scheduled through a task manager of some sort.

The task Type is specified on the activity’s Type / Status tab in the repository. This type of Task maps to an

invoke activity in BPEL4WS.

An activity of type “User” has the following attributes enabled:

Performers: The human resource that will perform the task, i.e. an individual, a group, or an organization.

In Message: An In Message MUST be entered, and the message indicates that the message will be sent at

the start of the Task, after the availability of any defined InputSets.

Out Message: An Out Message MUST be entered and the arrival of the message indicates the completion

of the Task, which may cause the production of an OutputSet.

Implementation: This field specifies the technology that will be used by the Performers to perform the

Task. A Web Service is the default technology.

Script

A Script Task is a Task executed by a business process engine. The modeler or implementer defines a script

in a language that the engine can interpret. When the Task is ready to start the engine will execute the

script. When the script is completed, the Task will also be completed. The task Type is specified on the

activity’s Type / Status tab in the repository with the following field enabled:

Script: The script to be run when the Task is performed. If a script is not included, then the task will act

equivalent to a task type of “None”.

Abstract

An abstract process represents the interactions between private business processes and another process or

participant. Use the Type field on the Type / Status tab on the activity’s repository entry to select this entry

type.

Manual

A Manual Task is a Task that is expected to be performed without the aid of any business process execution

engine or any application. An example would be a technician installing a telephone at a customer location.

The task Type is specified on the activity’s Type / Status tab in the repository with the following field

enabled:

Performers: The human resource that will perform the task, i.e. an individual, a group, or an organization.

Reference

There may be times where a modeler may want to the reference another activity that has been defined. If

the two (or more) activities share the exact same behavior, then by one referencing the other, the attributes

that define the behavior only have to be created once and maintained in only one location. The task Type is

specified on the activity’s Type / Status tab in the repository with the following field enabled:

The Visible Repository

303

Task: The field where the Task name is entered. Once the entry is saved, a new Activity will

be created in the repository with the Task name, if the activity does not exist. Use the search

button (…) to the right of the Task field to search for existing activities.

Independent

An Independent sub-process activity is an activity within a process that calls to another

process within a Business Process Diagram that may have Pools and swimlanes. The process

that is called is not dependent on the parent process for data or instantiation, and can be

instantiated by other sub-processes or by a message from an external source. The Independent

sub-process may pass data to or from the called process. The Independent activity type is

selected from the Type field on the Type / Status tab for an activity’s repository entry.

Embedded

An Embedded (or Nested) activity is a sub-process of an activity that contains other sub-

processes and is dependant on the parent activity for instigation. An embedded activity

diagram since, it is dependant on the parent activity, does not make use of the Pools and

Swimlanes, and would only contain Flow Objects, Connecting Objects and Artifacts. The sub-

processes share the same data as the parent activity. The + sign symbol is added to an

embedded activity symbol to signify it has sub-processes.

Business Process Type

Provides information about which lower-level language the Pool will be mapped. By default,

Type is None (or undefined).

A Private process type MAY be mapped to an executable BPEL4WS process.

An Abstract process type is also called the public interface of a process (or other web

services) and MAY be mapped to an abstract BPEL4WS process.

A Collaboration process type is also considered a “global” process and MAY be mapped to

languages such as ebXML or WS Choreography.

Suppress Join Failure

This field for a Business Process specifies whether or not BPEL4WS joinFailure fault will be

suppressed for all activities in the BPEL4WS process.

Enable Instance Compensation

This check is included on a Business Process repository entry, and specifies whether or not

compensation can be performed after a process has completed normally.

The Visible Repository

304

Activity Process Type

Sub-Process:

Defines whether the Sub-Process details are embedded within the higher level Process or refers to another,

re-usable Process.

Task:

The “Task Type” will be impacted by the Message Flow to and/or from the Task, if Message Flow are

used. A task type of “Receive” MUST NOT have an outgoing Message Flow. A task type of “Send” MUST

NOT have an incoming Message Flow. A task type of “Script”, “Manual”, or “None” MUST NOT have an

incoming or an outgoing Message Flow.

Compensation (activity)

A Compensation Activity compensates for work done in the source activity. It is special in that it does not

follow the normal Sequence Flow rules; it is outside the Normal Flow of the Process. There can be only

one target activity for compensation. If compensation requires more than one activity, these activities are

added as sub-processes of the target activity, and shown on the attached child diagram. The Compensation

marker is two backward pointing triangles, similar to the rewind button for a tape player.

Only activities that have been completed can have compensation, and the compensation can be triggered in

two ways:

o The activity inside a Transaction Sub-Process is cancelled. In this situation the whole Sub-Process

would be “rewound” or rolled back - - the Process flow will go backwards and any activity that

requires compensation will be compensated. This is why the Compensation marker for events

looks like a “rewind” symbol for a tape player. After the compensation has been completed, the

Process will continue its rollback.

o A downstream Intermediate Event of type Compensation “throws’ a compensation identifier that

is “caught” by the Intermediate Event attached to the boundary of the activity.

InputSets

The attributes that make up an InputSet that allows the activity to be performed, and one or more inputs

must be defined for each InputSet. An Input is an artifact, usually a Data Object that may be displayed on

the BPMN diagram. An Association Flow is used to link the Data Object Symbol to the activity. These

attributes are added to the activity on the activity’s Description tab.

Note: Global data elements defined in the Visible Analyst repository as part of the entity, class, and data

flow diagram object definitions are available for use in these activities and data objects. See the on-line

Help topic Search for an explanation how to use these previously defined attributes as part of the activity’s

definition.

The Visible Repository

305

OutputSets

OutputSets are the data requirements for output from the activity. Zero or more OutputSets

may be defined, but at the completion of the activity only one OutputSet would be produced.

An Output is an Artifact, usually a Document Object.

Participant

A Participant is a business entity, (i.e. company, company division, customer, etc.) or a

business Role (a buyer or seller for example), which controls or is responsible for a business

process. If Pools are used, then a Participant would be associated with one Pool. The modeler

MUST define the participant for the Pool, either a Role or Entity.

The Participant field is included on an activity’s Type/Status tab and on event’s Trigger tab

when the Web Service Property fields are enabled for these items. The two options available

for the Participant field type are Role or Entity, while the text field to the right of this option

contains the name of the Role or Entity participant.

Role

The person involved in the BPMN model (buyer, seller, etc.), as opposed to an Entity, the

company department (sales, Accounting, IT, etc.) involved in the process. The Role / Entity

attribute can be assigned for the following BPMN items: Pool, Events, and Activities.

Entity

An Entity identifies the Participants involved in the BPMN activities. The Entity Participant

field value can be specified on the following BPMN objects as part of the Web Service

Properties: an Activity, End Event, Intermediate Event, Start Event, and on the Participant

Tab of a Pool (System Boundary).

Interface

This is a Web Service field property for an activity or an event. This field allows you to

specify an interface (also known as a port type) for a web service. This is a required field.

From (Expression)

An activity Assignment property, the user would enter an expression that is made up of a

combination of values, properties, and attributes, which are separated by operators such as

add or multiply.

From (Message)

Specifies the role type for a target participant with the name of the sending participant, either

a Role or an Entity.

The Visible Repository

306

Message

A Message is the object that is transmitted through a Message Flow. The Message will have an identity that

can be used for alternative branching of a Process through the Event-Based Exclusive Gateway.

In Message

This activity field specifies the In Message, which indicates that the defined message will be sent at the

start of the task. Enter the name of the message or use the browse button to the right.

Out Message

This activity field specifies the Out Message, which indicates that the arrival of the defined message marks

the completion of the task. Enter the name of the message or use the browse button to the right.

Performers

A task attribute of a Manual Task, the Performers attribute defines the human resources that will be

performing the Manual Task. The Performers entry could be in the form of a specific individual, a group,

an organization role or position, or an organization.

Implementation

Specifies the technology that will be used to send and receive the messages for a service task. A Web

Service is the default, but the values of “Other” and “Unspecified” can be selected.

Bus. Proc.

This field is displayed on the Type/Status tab for a process with the Type set to Independent (an

independent sub-process) since the process must have a related business process. Enter the name of the

business process into this Bus. Proc. field or use the browse button indicated by “…” to the right of the

field to Search for an existing business process.

Start Quantity

This attribute defines the number of Tokens that must arrive from a single Sequence Flow before the

activity can begin. The default value is 1, and the value MUST NOT be less than 1.

Status

The Status of a Process is determined when the Process is being executed by a Process Engine, and the

Status of a Process can be used within Assignment Expressions. The status values include: None, Ready,

Active, Cancelled, Aborting, Aborted, Completing, Completed.

The Status field is located on the Type / Status tab of the activity’s repository entry.

The Visible Repository

307

Task (Reference)

The Task field for an activity specifies a referenced task. Users can enter the name of the task

into this field or use the browse button (…) to the right of the field to Search for an existing

activity.

Assignments

Assignments are defined on the Assignments tab of the activity’s repository entry, and use the

Attributes (data elements) listed in the Attributes field on the Description tab. The assignment

information is used when generating the BPEL code (Business Process Execution Language)

based on the BPMN diagram information. Each assignment consists of the name of the data

element in the “To” field, an expression operation such as add or multiply in the “From” field,

and a determination when the expression is implemented, either at the “Start” or the “End” of

the activity. To add a new assignment, use the controls on the activity’s Assignments tab. To

change an existing assignment, use the same controls. To remove an assignment, click on the

desired attribute and then press the Delete key on the keyboard

Ad Hoc

Specifies whether the Process is Ad Hoc or not. The activities within an Ad Hoc Process are

not controlled or sequenced in a particular order, their performance is determined by the

performers of the activities.

Ad Hoc Process Properties

Ordering: Defines if the activities within the process can be performed in Parallel or must be

performed sequentially. The default setting is Parallel and the setting of Sequential is a

restriction on the performance that may be required due to shared resources.

Completion Condition: Defines the conditions when the process will end. If the process is Ad

Hoc, this attribute MUST be included.

Operation

This is a Web Service field property for an activity or an event, and is used to specify one or

more operations for a web service, receive, reply, or invoke, as detailed in the BPEL4WS

documentation. This is a required field.

Looping

BPMN provides two mechanisms for looping, i.e. continuing a process until some threshold is

reached.

Standard: A Standard loop activity will have a Boolean expression that is evaluated after

each cycle of the loop. If the expression is still “True”, then the loop will continue.

Multi-Instance: The loop expression for a Multi-Instance loop is a numeric expression

evaluated only once before the activity is performed. The result of the expression evaluation

will be an integer that will specify the number of times the activity will be repeated.

The Visible Repository

308

The Condition field

 For a Standard loop activity, this is a Boolean expression that is evaluated after each cycle of the

loop. If the expression is still True, then the loop will continue. For a Multi-Instance loop, this is a

numeric expression evaluated only once before the activity is performed. The result of the

expression evaluation will be an integer that will specify the number of times that the activity will

be repeated.

The Counter field

Used at runtime to count the number of loops and is automatically updated by the process engine.

This attribute MUST be incremented at the start of a loop.

The Maximum field

Defines the maximum number of times the loop will execute.

The Test Time field

Determines when the loop condition is to be evaluated. Expressions that are evaluated before the

activity begins are equivalent to a programming while function, while expressions that are

evaluated after the activity finishes are equivalent to a programming until function.

The Ordering field

Defines whether the loop instances will be performed sequentially or in parallel. Sequential is the

more traditional looping order, as opposed to parallel.

The Flow Condition field

This attribute is equivalent to using a Gateway to control the flow past a set of parallel paths:

None - The same as uncontrolled flow (no Gateway) and means that all activity instances SHALL

generate a token that will continue when that instance is completed.

One - The same as an Exclusive Gateway and means that the token SHALL continue past the

activity after only one of the activity instances has completed. The activity will continue its other

instances, but additional Tokens MUST NOT be passed from the activity.

All - The same as a Parallel Gateway and means that the token SHALL continue past the activity

after all of the activity instances have completed.

Complex - The same as a Complex Gateway. The Complex Flow Condition attribute will

determine the token flow.

Activity looping is shown on the Activity symbol with a small line with an arrowhead curling back on

itself. The attributes of the Tasks and Sub-Processes determine if they are repeated or performed once.

Sequence Flow looping is created by connecting a Sequence Flow to an “upstream” object causing the

process to be repeated.

The Visible Repository

309

None

Many different BPMN objects have a field(s) that can be set to “None”.

None, when selected as an Event type means that the modeler does not display the type of

event.

Additional uses of None are:

As a Start Event, it is also used for a sub-process that starts when the flow is triggered by its

parent process.

As an Intermediate Event, this None value is only valid for events that are in the main flow of

the Process. It is also used for modeling methodologies that use Events to indicate some

change in the state of the Process.

As an End Event it is also used to show the end of the sub-process that ends, which causes the

flow to go back to its Parent Process

As a Condition Type for a Sequence Flow, “None” indicates that no runtime evaluation is

performed and the flow is used as the normal uncontrolled flow between activities.

For a Business Process, the value of “None” in the Type field indicates that no lower-level

language will be mapped to the Pool.

For a Task (activity) of type “None”, None indicates a normal task.

For the Looping field of an activity, “None” indicates no looping.

None also identifies the Status of a process when being executed by a process engine

Trigger Time

The specific time-date or a specific cycle an event will occur to trigger a process. Either a

Date and /or Time can be specified, or a Cycle such as daily, weekly, monthly, etc. If a Cycle

is not specified, a Date and time must be specified.

Rule

A Rule is an expression that evaluates some Process data. The type “Rule” can be specified

for a Start or Intermediate Event that is evaluated and triggered when the Rule evaluates to

“True”.

For a Start Event of type Rule, the event is triggered when the rule condition becomes true,

such as “S&P changes by more than 10%”.

An Intermediate Event of type Rule is only used for exception handling and is triggered

when a Rule becomes True. Enter the rule expression in the Rule field on the Event’s Trigger

tab.

Error Code

Enter an error code for an Intermediate or End Event Error result.

For an Intermediate Event within Normal Flow:

• If the Trigger is an Error, then the error code MUST be entered. This “throws” the error.

For an Intermediate Event attached to the boundary of an Activity:

• If the Trigger is an Error, then the error code MAY be entered. This “catches” the error.

The Visible Repository

310

• If there is no error code, then any Error SHALL trigger the Event.

• If there is an error code, then only an Error that matches the error code SHALL trigger the Event.

Incoming

This field is located on the Conditions tab for a Gateway object. If there are multiple incoming sequence

flows, an incoming condition expression MUST be set. This will consist of an expression that can reference

sequence flow names and or process properties.

Outgoing

This field is located on the Conditions tab for a Gateway object. If there are multiple outgoing sequence

flows, an outgoing condition expression MUST be set.

State

Located on a Data Object’s State tab as a text field in the repository, this field indicates the impact the

process has had on the data object. Multiple data objects with the same name MAY share the same state

within one process.

Required For Start

If this checkbox on a Data Object’s State tab is checked, this means that the input is required for the

activity to start. If not checked, then the activity MAY start without the input, but MAY accept the input

(more than once) after the activity has started.

Produced At Completion

If this checkbox on a Data Object’s State tab is checked, this means that the output will be produced when

the activity has been completed. If not checked, then the activity MAY produce the output (more than once)

before it has completed.

The following fields are located on the various Label item dialogs. These field values are included in the

reports but are not editable directly in the repository.

Note and Note Link

The Note symbol is used on A BPMN diagram in the Visible Analyst to represent an Annotation (or Text

Annotation). The Note is used as a mechanism for the modeler to provide additional information for the

reader of a BPMN diagram. A Note object (and a Note Link) in the Visible Analyst does not maintain a

repository entry; all information is written on the diagram as the Note label. Notes are connected to a

specific object on the diagram with a Note Link line, but neither the Note nor the Note Link line affect the

flow of the Process.

The Note Link line type is used in the Visible Analyst to connect a Note (also known as an Annotation or

Text Annotation) to another BPMN diagram object. The Note Link does not maintain a repository entry.

The Visible Repository

311

Quantity

This attribute, specified on the Label Sequence Flow dialog, defines the number of Tokens that

must arrive from a single Sequence Flow before the activity can begin. The value MUST NOT

be less than one.

Conditional Expression

A valid expression evaluated at runtime. If the result of the evaluation is True, then a Token

will be generated and traverse the Sequence—Subject to any constraints imposed by a Source

that is a Gateway. This expression field can be populated when the Condition Type of the

Sequence Flow is set to Expression. NOTE: This field is displayed on the “Label Sequence

Flow” dialog. Use Change Item to edit the flow and enter the expression.

Condition Type

A Sequence Flow attribute, as determined on the Label Sequence Flow dialog, this field

indicates the runtime evaluation whether or not the Sequence Flow will be used.

The default value is “None”, indicating no runtime evaluation and is used as the normal

uncontrolled flow between activities.

A value of “Expression” enables the Conditional Expression that will be evaluated at runtime.

A diamond symbol is added to the beginning of the line to graphically indicate that the flow is

a flow of type “Expression”.

A value of “Default” indicates a default value will be evaluated at runtime. A slash is added to

the beginning of the line to graphically indicate that the flow is a flow of type “Default”.

NOTE: The Condition Type of the Sequence Flow may be automatically determined in the

Visible Analyst based on symbol type in which the flow originates. A “None” Condition Type

MUST NOT be used if the source of the flow is an Exclusive Data-Based or Inclusive

Gateway, so the NONE selection is unavailable when a Sequence line originates from this

symbol type.

Planning Statement Links
In order to track the software development process from the planning stages through analysis,

design, and implementation, it is important to be able to link planning statements to model

objects to help you determine the significance of each object and to ensure that each object is

essential in supporting the organization’s business plan. The Links To field on the Links tab

of the Define dialog box allows you to maintain these relationships.

There are three methods for creating a link between a planning statement and any other

object. Either right-click the Links To field and choose Add from the Properties menu, or

drag a planning statement from the Planning Hierarchy window using the mouse. You can

also set the focus in the Links To field and press the Insert key. If you use the Add method, a

The Visible Repository

312

list of repository entries is presented; and you can select the desired object. If the current

object is not a planning statement, only planning statements are listed.

Once the link has been added, its name and type are displayed in the field. The link is visible from both

directions. If you are looking at a planning statement, you see the linked object. If you are defining any

other type of object, the planning statement is displayed. The linkage rules for a statement type dictate how

statements of that type can be linked to other object. See manual section Defining Planning Statement

Types for details.

To remove a link, highlight the item and then press the Delete key.

External Links
Because the software development process does not end when your models have been completed, it is

important to be able to link your model elements to the source code that actually implements them. Using

the external links feature of Visible Analyst, you can link any model element to a file under source code

control by a Microsoft SCC-compliant provider, such as Razor.

To add an external link, right-click on the Links To field and choose Add External Link. (You can also

press the Insert key while holding down the Ctrl key.) If you have access to an SCC-compliant provider,

you are prompted to log in and provided a list of source files under version control to choose from. An

example of a list of source files is shown below.

The Visible Repository

313

Figure 5-11 Add Link to Files Under Source Code Control Dialog Box

Select the files to link, and then click OK. If you want to change the current process, click the

Change button. Note that the information in the Current Project field is unique to the

provider, and may not have meaning to you.

Once an external link has been added, you can view the properties and revisions history of the

file by right-clicking on the link and selecting the appropriate option if the provider supports

these features. If you do not have access to a provider, selecting Properties displays a dialog

box similar to the one shown below.

Figure 5-12 External Link Properties, Source Code Control Window

To remove an external link, highlight the link and press the Delete key.

The Visible Repository

314

Polaris Integration

Polaris is a customizable issue tracking and defect management tool that you can use to

improve your software development process. By using Polaris in combination with Visible

Analyst, you can associate issues with objects in the VA repository to provide a rich

environment to monitor the development of your models. To lean more about Polaris, visit

our web site at www.visible.com.

Linking a Project to an Issue Set

Before issues can be associated with model objects, the project manager must establish a link

between the Visible Analyst project and a Polaris issue set. The first time a project manager

attempts to add an issue to an object, the Connect To Polaris dialog is displayed.

Figure 5-13 Connect To Polaris Dialog

Select Polaris Location: 1 Enter the name of the folder where Polaris is installed or

click on the browse button (...). This should only have to

be done the first time a project is connected to Polaris. On

any subsequent attempt, Visible Analyst remembers the

location.

Select Issue Set: 2 Choose whether issues for this project should be stored in

a new or existing issue set. Only experienced Polaris users

http://www.visible.com/

The Visible Repository

315

should choose to create an issue set. Contact your Polaris

administrator for help.

 Press OK after selecting or creating a new issue set. An

attempt is made to connect to Polaris, and if successful,

the New Issue Set or New Issue dialog is displayed.

Figure 5-14 New Polaris Issue Set Dialog

The Visible Repository

316

Figure 5-15 New Issue Dialog

Link to A New Polaris Issue

To create an issue and associate it with an object in your model:

The Visible Repository

317

Select the Project: 1 Open a model and then double-click on an object to open

the Define dialog.

Select Links Tab: 2 Click on the Links tab of the selected object.

Select Links To Field: 3 Right-click on the Links To field and select Add Issue to

open the New Issue Details dialog in Polaris. An attempt

will be made to logon to Polaris using your Visible

Analyst user name. If this fails, you will be prompted to

enter valid Polaris credentials.

Enter the Issue Details: 4 Enter the appropriate issue information. See the Polaris

documentation for details. Once you are finished, press

OK. The new issue will be created and a link will be

added to the Links To field. Click Save to save the

changes made in the object’s repository entry.

Planning Statements
See the manual chapter Strategic Planning for a description of the planning window.

SQL View Support (IntelliViews)
Visible Analyst supports the concept of an SQL view, which can be thought of as a derived or

virtual table. A view is similar to an entity in that it has a composition but the items that

appear in the composition of a view must belong to other entities or be expressed based on

data elements used by another entity.

An SQL view is made up of two major components: a list of column names and a Select

statement that is used to filter information from the tables in the view. For each view, there is

one primary select clause that can refer to any number of sub-select clauses and an optional

union select clause. Each of these clauses can refer to other subselects or to unions. When

building a select clause, choose the tables, columns, and joins appropriate for only that clause.

Joins can be defined using a combination of key-driven joins using relationship keys and

expression-based joins using pseudo SQL. All expressions and clauses are entered and

displayed in a standard pseudo SQL syntax that is a functional superset of all supported SQL

syntax. An expression builder is available to help in this process. When pseudo SQL is

translated into a specific dialect’s syntax, complex operators that are not directly supported

are expanded into layers of simpler syntax to accomplish the same task. As needed,

translation generates slave views to overcome dialect limitations, such as one outer join per

view.

Note

 You can also generate the view as a Create Table statement to facilitate data

warehouse/data mart modeling efforts.

The Visible Repository

318

To add a view specification to an entity, select Define from the Repository menu. At the

Define dialog box, select View from the Entity Type drop-down list to display the five

additional tabs unique to view objects:

 On the Tables tab, select the tables that are to be used by the view.

 On the Columns tab, select the columns to be used by the view.

 On the Joins tab, define the join relationships to be used by the view.

 On the Clauses tab, define where, group by, having, start with, and connect by clauses.

 On the Options tab, set flags such as restrict and with check.

Each of these tabs is described in detail below. (The Description, Locations, and Links tabs

for view objects are similar to those for other entry types.)

The Visible Repository

319

View Tables

 Figure 5-16 Define Dialog Box, View Tables Tab

 Selection. Specifies the name of the select clause that uses the tables. Each view must

have one primary selection. All other selections are referred to by the Where clause of

the primary select, by a union select, or by other non-primary selects (sub-select).

 Tables/Relationships. A graphical representation of the tables and join relationships

used by the current select clause. This window is updated each time a new entity or

relationship is added to the view. Once a table has been added, its position in the window

can be changed by clicking the object with the mouse and dragging it to a new position.

The Visible Repository

320

Move (or undock) the window itself by clicking on the title bar and moving it. Once

moved, the rest of the controls on the page are resized to use the available space. To

dock the window, move it back to its original position on the page. To prevent docking,

press the CTRL key while moving.

 Available Tables. A list of tables and their associated relationships that exist in the

current project. Highlight a table and click the  button to add the table to the list of

tables used by the view. A table can be added more than once, but each instance must

have a unique alias. If a relationship is selected, and neither table exists in the view list,

both tables and a join relationship are added. If either table exists, a specific instance of

the table must be specified. You can also drag-and-drop with the mouse to add tables.

 Selected Tables. A list of tables and their correlation names (alias) that are used by the

view. To remove a table from the selected list, highlight it and click the  button. You

can also use drag-and-drop with the mouse to remove tables.

 Alias. Correlation name for a table. To change the alias, select a table and type the new

alias in the Alias field.

The Visible Repository

321

View Columns

Figure 5-17 Define Dialog Box, View Columns Tab

 Available Columns. A list of tables and columns that belong to the current selection.

To add a column to the list of columns used by the view, highlight it and click the 

button. To add all the columns in a table, highlight the table name and click . A table

may be added more than once, but each instance must have a unique alias. To add an

expression, click the f(x) button. If the current selection is a sub-select, only one column

is allowed; if it is a union, the number of columns must match the primary selection. You

can also drag-and-drop with the mouse in two ways to add columns. Select either a table

The Visible Repository

322

name or column name from the Available Columns list and drag it to the Selected

Columns list, or select a column or group of columns from an entity in the

Tables/Relationships window and drag to the selected columns list.

 Selected Columns. A list of columns and their names that are used in the view. To

remove a column, highlight it and click the  button. The change the name used by the

view, highlight a column and type the changes in the Name field. To change the order of

the columns, click the up and down arrows or highlight and drag to the new position.

You can also drag-and-drop with the mouse to remove columns.

 Tables/Relationships. A graphical representation of the tables and join relationships

used by the current column. When the Columns tab is displayed, you can select a column

or group of columns from an entity in this window and drag it to the Selected Columns

list.

 Select Distinct. Click this check box to indicate that duplicate rows are not to be

returned by the select clause.

 Expression Builder. Click this button to display the Expression Builder to help you

create expressions to be used in the Filter, Group By Having, Start With, Connect by, or

Join Expression controls.

The Visible Repository

323

View Joins

 Figure 5-18 Define Dialog Box, View Joins Tab

Two types of join relationships can be defined. Key-driven joins are based on relationship

keys created on an entity-relationship diagram. Pseudo SQL relationships are created simply

by selecting join columns in a pair of tables.

 Relationship. This field lists all the join relationships for the current selection. To

change the join type or expression, choose a relationship from the list or highlight it in

the Table/Relationships box.

The Visible Repository

324

 … Button. Click this button to display the Join Relationships dialog box. Use the Join

Relationships dialog box (described later in this chapter) to add or delete relationship-

based and non-relationship-based joins.

 Join Type. Join types available are inner, left outer, right outer, or full outer.

 Join Expression. If the join relationship is not key-based, use this field to specify the

join expression. If the join is based on a relationship, the Join Expression edit control is

replaced by Additional Join Restrictions used to specify filtering clauses beyond the basic

expression used to define the join. Click the Expression Builder button to help you

define any additional restrictions. Note: This field should not be used to define a basic

join expression for relationship-based joins. This information can be determined from

the repository. In most cases, this field should be blank for relationship-based joins.

 Tables/Relationships. A graphical representation of the tables and join relationships

used by the current relationship. When a join relationship is added to the view, its

position can be changed by clicking the object and dragging it to a new position.

 Expression Builder. Click to display the Expression Builder to create expressions to be

used in the Join Expression control.

The Visible Repository

325

View Clauses

 Figure 5-19 Define Dialog Box, View Clauses Tab

 Filter. Type a filtering condition to restrict the number of rows returned by the select. If

the where clause is a sub-select, specify the name of a new selection item in the Selection

field. Use the Expression Builder to create a filter.

 Group By. Specify grouping criteria.

 Having. Specify a having clause.

 Start With. Specify a starting column in a hierarchical search.

 Connect By. Specify the connect by column in a hierarchical search.

The Visible Repository

326

 Union. Use this field to indicate that the current selection has a union relationship with

another selection clause. This field is valid only for top-level select clauses (primary

select or other union selects). When a union is specified, it is added to the Selection list

control

 Union All. If a union select is specified, click this check box to indicate if it should be a

normal union or a union all relationship.

 Expression Builder. Click this button to display the Expression Builder to help you

create expressions to be used in the Filter, Group By Having, Start With, Connect by, or

Join Expression controls. In addition to the Expression Builder, each of the clauses

control supports an “Attribute Completion” facility. If you type a table name followed by

a period (.), a list of columns is displayed. To select a column, use the arrow keys to

highlight an entry and then press the Tab key. If you type a period preceded by a space, a

list of tables is displayed, followed by a list of columns.

The Visible Repository

327

View Options

 Figure 5-20 Define Dialog Box, View Options Tab

 Check Option. Use the Check Options to ensure that data modification statements

adhere to the criteria set within the select statement defining the view. When a row is

modified through a view, the With Check Option guarantees that the data remains visible

through the view after the modification.

 Drop Behavior. This option determines where a Drop View statement is created during

SQL generation. None means do not generate the drop, Cascade means delete the view

and all dependent views, and Restrict means do not drop if there are dependent views.

The Visible Repository

328

 With Encryption. Click this check box to store the view select statement in an

encrypted format in the target RDBMS.

 Create View Even If Base Tables Do Not Exist. Base tables that a view references

usually must exist before the view can be created. Click this check box to allow the view

to be created regardless of whether the base tables exist or not. However, the view

cannot be used until the base tables are created.

 Expression Builder. Click this button to display the Expression Builder to help you

create expressions to be used in the Filter, Group By Having, Start With, Connect by, or

Join Expression controls. In addition to the Expression Builder, each of the clauses

control supports an “Attribute Completion” facility. If you type a table name followed by

a period (.), a list of columns is displayed. To select a column, use the arrow keys to

highlight an entry and then press the Tab key. If you type a period preceded by a space, a

list of tables is displayed, followed by a list of columns.

Expression Builder

When creating expressions to be used in the Filter, Group By, Having, Start With, Connect

By, or Join Expression controls, you can either enter the information manually or use the

Expression Builder to help you.

To start the Expression Builder, click the Expression Builder button when it is enabled.

An expression is made up of a set of criteria used to filter information. To build the

expressions, use the following controls:

 Prefix Op. A prefix operator used to join the criteria being defined with the rest of the

expression. The options available are And, Or, or no operator. (Optional)

 Function. The name of a function to be used. If Exists or Not Exists is specified, a

subquery name must be specified in the Subquery field. (Optional)

 Field/Subquery. The name of a column or subquery to be used in the expression. The

drop down list contains a list of the valid column names that can be used. (Mandatory)

 Operator. The relational operator used to compare the Field against a Value. If a

Function is not specified, this item is mandatory; otherwise, it depends on the function

selected. If you want to perform a comparison with any or all members in a list or

subquery, choose All or Any from the second operator control.

 Value. The value to compare Field against or the name of a subquery if All or Any were

specified in the second operator field.

 Add - Once the criteria for the subexpression has been defined, click Add to update the

entire expression. The Expression control contains all the criteria that have been defined

so far.

 Clear. Clear the current criteria controls.

The Visible Repository

329

 Expression. Displays the expression-in-progress. The caret () indicates where the new

criteria will be added.

When the expression is complete, click OK to save it and return to the Define dialog box.

Join Relationships Dialog Box

The Join Relationships dialog box allows you to add and delete joins. To display the Join

Relationships dialog box, click the button next to the Relationships drop-down button on the

Define dialog box.

The Join Relationships dialog box has two tabs:

Columnar Tab

The Columnar tab allows you to add non-relationship-based joins by joining columns

together. You can also delete joins from this tab.

 Figure 5-21 Join Relationships Dialog Box, Columnar Tab

 Left Table. Select a table from the drop-down list to display the columns in the selected

table. Select a column from the list. You can drag-and-drop a column from one list to

the other to add a Joined Columns pair.

The Visible Repository

330

 Right Table. Select a table from the drop-down list to display the columns in the

selected table. Select a column from the list. You can drag-and-drop a column from one

list to the other to add a Joined Columns pair.

 Add. Click this button when you have selected a column from the left and right table list

boxes to add it to the view. You can drag-and-drop a relationship from the available list

to the Joins in View list.

 Joined Columns. The joined columns are displayed in this list box. Select a joined

column pair. Click Remove to delete the joined column pair, or click Apply to display it

in the Joins in View list box.

 Joins in View. The list of joins in the view are displayed here. Select a join and click

Remove to remove the join from the view.

 Note

 Double-clicking on either column list adds a pair of joined columns if the same

name exists in the other column list.

Relationship-based Tab

The Relationship-based tab allows you to add relationship-based joins. You can also delete

joins from this tab.

The Visible Repository

331

Figure 5-22 Join Relationships Dialog Box, Relationship-based Tab

 Left Table. Select a table from the drop-down list.

 Right Table. Select a table from the drop-down list.

 Add. Relationships between the selected tables are displayed in the list box. Select a

relationship and click Add to add it to the view. You may also double-click on a

relationship or drag it to the Joins in View control.

 Joins in View. The list of joins in the view are displayed here. Select a join and click

Remove to remove the join from the view.

Join Tables Dialog Box

The Join Tables dialog box is displayed when you add the same relationship to a view twice.

When adding a join relationship to a view, if either one of the entities involved in the join

already belongs to the view, you must decide if the join is to use an existing instance of the

entity or create a new instance. The Join Tables dialog box is used to supply the appropriate

information.

The dialog box is divided into two parts: the upper part deals with the parent entity in the

relationship, while the lower part deals with the child entity. In each case, you must decide

whether an existing instance of the entity is to be used, or a new instance should be created. If

the entity is not already used, you must create a new instance. If the entity already exists but

you want to create a new instance, the name given must be unique.

Once you have selected the appropriate information, click OK to add the new join

relationship.

Data Element Physical Information
For a data element (see description, below), physical information like data storage type and

field length may be added. The repository supports the following data types for data elements

and domains.

Table 5-3

Valid Storage Types
Storage Type Name Internal

Storage Type Name Internal

Binary 8 Serial 29

Bit 1 SmallDateTime 27

Char 3 SmallFloat 23

Date 24 SmallInteger 16

DateTime 26 SmallMoney 19

The Visible Repository

332

Table 5-3

Valid Storage Types
Decimal 20 Sysname 32

Float 22 Time 25

Integer 15 TinyInteger 17

Interval 28 Unicode Char 11

LargeInteger 14 Unicode Long VarChar 13

Long VarBinary 10 Unicode VarChar 12

Long VarChar 7 UpdateStamp 30

Money 18 VarBinary 9

National Char 4 VarBit 2

National VarChar 6 VarChar 5

Rowid 31 Zoned Decimial 21

Notes:

The column headed by Internal# indicates the Visible Analyst internal code that

corresponds to a storage type name. If you are accessing the repository data files from a

third-party tool such as Microsoft Access, this number is offset by 53.

A number following a data element type is the number of bytes used. For example:

 Integer 4 uses 4 bytes

 LargeInteger 8 uses 8 bytes

 TinyInteger 1 uses 1 bytes

Physical Characteristics Repository Fields

Storage Type

Physical data storage types for elements can be selected from a list of valid logical types that

cover all the data types used by the supported SQL dialects. During SQL generation, the

logical type is translated to the native data type supported by the targeted RDBMS. If an item

in the list is marked with a ¹, this means the logical-to-physical mapping for the current SQL

dialect is wasteful. For example, if a dialect does not support a tiny integer type, it is mapped

to a small integer. If an item in the list is marked with a ², this means there is not a good match

between the logical type and the physical type. If you do not like the logical-to-physical

mappings created, you may change them by customizing the SQL dialect. See Appendix B

for details.

To display both the logical and physical data types in the Define dialog or printed on reports,

edit the VAW.INI file and add this line: ShowPhysicalDataTypes=Yes

The display will be changed after the Visible Analyst is restarted.

The Visible Repository

333

Length

The length field accepts the format digits, decimal digits. If the SQL dialect type is Informix

and storage type is Interval or DateTime, you can specify the range in the format largest to

smallest.

Display

This field allows you to customize the display format for the data element you are defining.

This field accepts either the actual mask representation of the display format or a previously

defined display format object. You can define a display format as a separate object in the

repository and then reference that display format in the Display field. If you do not know the

name of a display format you have already defined, you can use the Search button by placing

your cursor in the Display field and then clicking Search on the bottom of the repository

screen. This searches the repository for all display formats defined matching the text you

entered.

Picture, Default and Owner

The Picture, Default and Owner fields accept whatever text you enter into them.

Allow Null

The Allow Null field is used to indicate if an attribute is required. If yes, the attribute is

optional. If Default is selected, the system-defined default value is supplied. If Identity is

selected, this indicates the column has an identity constraint. You can also specify the seed

and increment value in the seed control.

The Visible Repository

334

 Figure 5-23 Data Element Entry with a Domain

Domains

A data element can maintain physical characteristics by specifying them on page two of the

element’s repository entry. (See Figure 5-23.) An alternative method of specifying physical

information for an element is to list the name of a domain in its storage type field. A domain

indicates the physical characteristics of a class of items. If the domain named does not yet

exist, an entry in the repository is created. (If you like, you can now Jump to the new domain

and enter information about it.) The details of the physical information can be specified on

The Visible Repository

335

page two of the domain entry. (See Figure 5-24.) Multiple data elements can reference a

domain. If a domain is used, the storage type in the domain’s repository entry can be selected

from a list of items that are already defined in the repository. If a data element references a

domain, the Length field is not accessible; it should be set in the domain entry.

 Figure 5-24 Repository Domain Entry

Selecting a Domain

The repository Search function can be used to select a domain for a data element. To do this,

display page two of the element’s repository entry. In the Type box, select Domain. Place the

cursor in the domain name edit box to the right of the Type box and click the Search button to

The Visible Repository

336

display the repository search dialog box. In the Search list box, locate the domain you wish to

use and click the Search button; the item is added to the Select list box at the bottom. Then

click the Select button and the domain label is added to the element’s repository entry.

Local Physical Characteristics

If a data element is derived from a domain, you can override certain characteristics, excluding

type and length. If the value is changed, the text appears blue to indicate this value is

different from the base domain. When SQL is generated, the local value is used instead of the

value defined in the domain.

Other Physical Characteristics Information
If physical information for a data element is defined, its Entry Type field cannot be changed.

Extended Attributes
A data element can maintain extended physical characteristics by specifying them on page

three of the element’s repository entry. You can then transfer these extended attributes and all

data model information you have defined in the repository to Powersoft’s PowerBuilder

application development system or Unify’s VISION or Visual Basic. Conversely, data model

information can be extracted from a PowerBuilder database thus populating the Visible

Analyst repository with all appropriate tables, columns, physical characteristics, extended

attributes, primary and foreign keys and validation rules.

There are several repository fields used to define a column’s extended attribute information.

These extended attributes are PowerBuilder/VISION-specific information that enhance the

definition of a column. The extended attribute screen is located on page three of an element

definition in the repository.

Header and Label

These fields contain the text to describe and identify columns and are used in the

DataWindow object. You can also specify the justification for the header field using the drop

down list box provided.

Edit Style and Type

These fields specify how column data is presented in the DataWindow objects. The Edit Style

field contains the name of the style. The type of edit style for the column is defined in the

Type drop-down list box. Currently nine edit style types are supported. For each style there

are appropriate flag settings that appear at the bottom of the extended attribute screen, as well

as other edit fields depending on the type of edit style you selected. Refer to the appropriate

documentation for more information.

If you have specific display values that the user would see and data values that are stored in

the database, these can be defined in the Values & Meanings field of the data element. The list

of values should always start with BEGIN PBLIST and end with END PBLIST. Following

The Visible Repository

337

BEGIN PBLIST is the actual list of display values in quotes and the data values in quotes,

separated by a comma. For example if you had a list of names defined as a list box and

wanted to add the specific values seen by the user and the values stored by the database, the

entry in the Values & Meanings field for the element would be as follows:

BEGIN PBLIST

‘Paul Newman’,’PN’

‘Bing Crosby’,’BC’

‘Sylvester Stallone’,’SS’

END PBLIST

User-Defined Fields

The Visible Analyst repository is extensible. New fields, called user-defined, can be defined

in a project repository allowing you to extend the information that can be stored with an

object. The field information that can be stored includes name, type and length.

Adding New Repository Fields to a Project

To add fields to a project:

Select Define User 1 Select Define User Attributes on the Options menu.

Attributes: The Define Repository Attributes dialog box appears.

Select New or Existing 2 Click New Project Default or Current Project.

Project:

 New Project Default. An attribute is defined for all

subsequent project creation operations.

 Current Project. An attribute is added only to the

current project. If a project has not been selected, this

option is disabled.

Set Field Name: 3 Type the name given to the field. The name can be up to

128 characters, but must begin with a letter. If you want a

user object to begin with a number, edit the VAW.INI file

and add this line: AllowNumericPrefix=Yes. The change

will be implemented when you restart the Visible Analyst.

Set Field Type: 4 Any valid Visible Analyst-supported field can be used.

Move your mouse to the drop-down arrow button at the

right and click with the left mouse button for a list of

supported types.

Set Field Length: 5 Type the size of the field length and scale, where scale is

The Visible Repository

338

optional indicating the number of digits to the right of the

decimal point.

Save the Field: 6 Click Add to save your changes. If New Project Defaults

was selected, every new project that is created contains

the field. If Current Project was selected, only the current

project is updated.

After the attributes are defined and a new project created, you can access the field(s) from the

repository definition for each object by choosing one of the two paging buttons located on the

repository dialog box at the bottom right of the screen. Each user-defined attribute is

represented in Visible Analyst as an entry in the User-Defined Attributes list on page three.

Note

 Once these new fields are defined, you must create a new project for access to

these fields if you selected New Project Defaults. They ARE NOT accessible

with the currently selected project unless you select Add to Current Project or

you choose the Current Project option in Step 2. Another important note: if

using a network version of Visible Analyst, every user-defined object is

accessible with any subsequently created project. If you create a ‘date created’

attribute field, anyone else with access to Visible Analyst also sees that ‘date

created’ attribute field for objects in any project they create.

Changing or Removing Repository Fields

To change or remove fields:

Select Define User 1 Select Define User Attributes on the Options menu.

Attributes: The Define Repository Attributes dialog box appears.

Select New or Existing 2 Click New Project Default or Current Project.

Project:

 New Project Default. An attribute can be changed or

removed from the list of attributes created when a

new project is created.

 Current Project. An attribute can be removed from

the current project, but the definition cannot be

changed.

Select the Field: 3 Select the attribute to be changed from the list.

Change or Remove Field: 4 If the attribute is to be changed, make the appropriate

The Visible Repository

339

changes and then click Change. If the attribute is to be

deleted, click Remove. If you choose to remove an

attribute, the repository of the current project is modified.

This may take several minutes depending upon the size of

the project.

User-Defined Objects

You can define your own object types, making the Visible Analyst repository fully extensible.

This feature allows user-defined objects to be linked to any repository object and reference

other objects within the composition field of the user-defined object. You can then produce an

association matrix report depicting the link between objects. An applicable example would be

a requirement entry type. The requirement objects you define could then be linked to a

process(es) that satisfies the requirement. Other examples would be critical success factors,

business rules, goals or test plans.

To create a user-defined object:

Select Define User 1 Select Define User Objects from the Options menu.

Objects: The Define Repository Objects dialog box appears.

Select New or Existing 2 Click either New Project Defaults or Current Project.

Project:

 New Project Defaults. Choose this option to modify

the list of objects added to all new projects.

 Current Project. Choose this option to modify the list

of objects defined for the current project. If this

option is selected, objects can either be added or

removed, but the definition of existing objects cannot

be changed.

Set Object Name: 3 This is the name of the new entry type being created.

Whenever you define an object, this name appears in the

list of entry types on the initial repository definition

dialog box.

Set Field Name: 4 This name is associated with the description field of

the new entry type in the repository. Visible Analyst

automatically enters the name of the new entry type as

defined above, followed by the word Description, in this

dialog box field. For example, if you defined a new object

type called Requirement, as you enter the new object type

in the Name field, you notice the name Requirement

Description is automatically entered in the Field Name.

The Visible Repository

340

Now when you open the repository and define an object

of type requirement, you see the content of Field Name

listed as an actual dialog box field within the repository.

You can override this naming convention and type your

own name if you choose.

Set Composite Type: 5 If you choose this option by clicking your left mouse

button on the check box labeled Composite Type, you

allow any newly defined objects of this entry type to

reference other repository entry types in the Field Name

field of the repository, as described above. For every item

entered into this field a new repository entry is created, if

one does not already exist, and the location reference for

this entry is updated. See the Composition section earlier

in this chapter for more details. If Composite Type is not

checked, the defined Field Name field is considered a free

form text field with a 64K character limit.

Select the Composition 6 If you defined an object as a composite type, you are

Types Contained: given the choice of the entry types you want to include.

You may choose a single type, group type, or all types.

Click the drop-down arrow button for a list of types. If

you choose all, the default creation type for an item

entered into the composition field is a data element.

For example, if you define a user-defined object called

database, and you would like to reference any entity

objects the various database objects include in the

composition, choose Composite Type by clicking the

check box provided and choose All entity types in

Contains. You can now reference all the entities that

comprise a particular database object in the Field Name

field of the object repository definition. This new field is

located on the initial definition screen for the user-defined

object you are defining.

 Select the Link 7 This option allows you to establish a link or series of

Option: links between repository objects and user-defined

objects. To choose this option, click the left mouse button

on the check box.

Choose the Link 8 This field is used to enter a descriptive name for the

Field Name: link field in the repository. This descriptive name

The Visible Repository

341

appears as a field in the repository for any object type you

define in the Link To: box below. In this field you choose

the user-defined object(s) that the object you are defining

is linked to.

Set the Link 9 This list box describes the cardinality between any linked

Cardinality: objects. The default setting is 1:1. This means that only

one user-defined object can be linked to one repository

object. There are four cardinalities allowed. The entry to

the left of the colon always refers to the user-defined

object. The entry to the right always refers to the linked

repository object.

Set the Link To: 10 This field describes the repository types that can be linked

to the user-defined object. The default is All. You can

click the drop-down arrow for a list of options.

Save the Object: 11 Click Add to save the object.

Note

 If you modify the New Project Defaults list, you must create a new project in

order to implement newly defined User-Defined Objects. They ARE NOT valid

with the currently selected project unless you select Add to Current Project or

you choose the Current Project option in Step 2. Another important note: if

using a network version of Visible Analyst, every user-defined object is

accessible with any subsequently created project. If you create a requirement

object, anyone with access to Visible Analyst also has that requirement object

type in any project they may create.

Other Repository Information

On-page and Off-page Connectors

Structure chart on-page and off-page connectors are in the repository, although they are

invisible to you.

Creation and Modification Dates

Creation and modification dates are maintained for all items in the repository. As items are

modified, the latest-change date reflects these modifications. Note that all of these dates are

reset to the current date whenever a project is rebuilt.

The Visible Repository

342

Inheritance Relationship Characteristics

When an inheritance relationship exists between two classes, you can identify the

characteristics of the relationship by highlighting the desired relationship in either the

Attached Classes or Relations field and selecting Change from the repository object menu

(activated by clicking the right mouse button over the appropriate relationship). For each

relationship, the following information can be defined (see Figure 5-25).

 An inherited class with a public derivation means that the public members of the base

class are public members of the derived class, and protected members of the base class

are protected members of the derived class. Private derivation means both the public and

protected members of the base class are private members of the derived class. Protected

derivation means both the public and protected members of the base class are protected

members of the derived class. The default is public.

 Virtual. A virtual base class can act as an indirect base class more than once without

duplication of data members. This is useful for classes that are derived from multiple

base classes.

 Figure 5-25 Inheritance Characteristics

CLUSTERS
A cluster is an object composed of entities. Its sole purpose is to be displayed on a data model

view instead of a group of entities in order to eliminate detail and bring clarity to an otherwise

The Visible Repository

343

complex view. This section explains the techniques for working with clusters within the

repository. The Drawing Diagrams chapter explains the diagramming aspects of working with

clusters.

Creating Clusters
A cluster can be composed of entities already existing within the current project repository.

To create a new cluster, display a blank repository screen and enter the name of the cluster in

the Label field and set the Type field to Cluster.

In the Composition field, you can manually enter the names of entities you know are not

members of any other clusters, or you can use the repository search function to help you

populate the cluster. To do this, place the cursor in the Composition field and click the Search

button. The repository is scanned and the search box opens displaying all entities that are in

the free entity pool (not currently a member of a cluster). Move through the list and select an

entity to be a member of the cluster. You can select multiple entities by double-clicking on

them; they appear in the selection list at the bottom of the dialog box. You can eliminate an

entity from the select list by highlighting it and clicking the Delete button. When you are

finished, click the Select button to add them to the cluster Composition field.

After adding any other description information for the cluster, click Save and the cluster is

created.

Modifying Clusters
Entities may be added to or deleted from a cluster. To delete them, highlight them in the

cluster Composition field and press the DELETE key. Entities deleted from the cluster are

returned to the free entity pool and are available to become members of other clusters. To add

entities to a cluster, follow the procedure outlined in Creating Clusters above. You may

modify the name of a cluster at any time by changing the Label field of the repository entry

for the cluster. Clicking Save makes your changes permanent.

Deleting Clusters
A cluster is deleted like any other repository item, by clicking the Delete button in the

repository dialog box when the cluster entry is displayed. When you delete a cluster, all of its

entities are returned to the free entity pool and are available to become members of other

clusters.

REPOSITORY REPORTS
A variety of reports on repository data can be generated. The output may be sent to a printer

or to a file, whichever you have configured in your Windows Control Panel. If you are

running Visible Analyst over a relational database engine, such a Centura SQLBase, third-

party report writers can be used.

The Visible Repository

344

Report Functions
When you select Reports from the Repository menu the repository report dialog box is

displayed, allowing you to perform either or both of the following:

 Figure 5-26 Repository Report Dialog Box

Print or Define a New Report

You can define a report’s content and format. The report definition (or format) is created by

selecting the various criteria in the reports dialog box. The content may be defined as a

detailed listing, summary listing, cross reference, single entry listing, related to listing, split

flows listing, or one of several matrix reports. The different report types are more fully

described in the sections below.

Reports can be defined to include information for the entire project, a project branch (a

diagram and all of its child and grandchild, etc., data flow diagrams), or for a single diagram.

The report may also be defined to print from only one diagram type. Reports may be printed

in alphanumeric order, in entry type order, or in process number order. You can specify that

all entries, only entries with no descriptive information, or only entries with no location

references be included in the report. In addition, reports can be made on specific entry types

or entry types with certain characteristics (undefined, for example).

The Visible Repository

345

A report may also include all standard entries (all those other than miscellaneous), all

miscellaneous entries, or be limited to the specific entry types defined for the given diagram

type.

Repository Report Preview

The content of a repository report can be previewed before the report is actually printed. In

the Repository Reports dialog box, check the Preview box. After you click Print, a box

appears containing the report, and you can view the report on screen. You can also print it,

save it to a file, or abandon it. If you want the printed report to be formatted, you must return

to the Reports dialog and turn off Preview.

You can generate the report in HTML format so that it can be viewed in a browser. If you

have a browser installed, when you click Preview, the Use Browser For Preview option is

available. If you select this option, the report is displayed in your browser when it is

generated. You can do this for both standard reports and matrix reports. In the generated

HTML report, multiple entry type listings include hot links that allow you to “jump” around

the report from entity to element, back to entity, etc. When you select the Locations-

Diagrams field from the Field in the Reports dialog box, the HTML report generated includes

diagrams in JPEG format. You can click the diagram listing hot links in the HTML report to

display the JPEG diagram file in your browser.

Selecting Fields to Include in Reports

You can select the repository fields that are included in a detailed or single-entry report. Click

the Fields button to display a list of fields to include. By default, all fields are included so the

entire list is highlighted. To remove a field from the list, click the right mouse button on it.

The Invert button selects all fields that are not highlighted and deselects all those that are

highlighted.

Printer Setup for Reports

You can select the printer to use by clicking the down arrow by the Printer Name field and

selecting a printer from the list. You can also change settings for the printer driver, such as

page orientation (portrait or landscape), print to file, etc., by clicking the Properties button on

the Reports dialog box.

Predefined Reports

Saving a Predefined Report

After you define a report format, you can save the report definition by clicking the Save

Report button. If you choose to save it, you must name it. The name allows you to

subsequently print repository data according to your predefined report content. For this and

the other predefined report functions, you can scan your predefined reports and display the

report details that are defined for each in the predefined reports dialog box.

The Visible Repository

346

Selecting a Predefined Report to Print

Clicking Defined Report allows you to print any repository report according to your

predefined format. After you make this selection, you can select the name of the predefined

report from the list. After you choose the report, you must indicate the specific branch (data

flow diagrams only), or single diagram that is to be used as the scope of the report, unless the

predefined report has a scope of the entire repository. The branch or diagram name is not

saved with the other report criteria. It is done this way to give you the flexibility to save one

format usable for numerous specific diagrams or branches.

Deleting a Predefined Report

You can also delete predefined reports by clicking Delete Reports, choosing the name of the

predefined report that you wish to delete, and clicking OK.

Repository Report Formats

Detailed Listing

Detailed Listings prints repository data from all information fields in the repository, as well as

certain information captured by Visible Analyst but not displayed in the repository dialog

box. In addition to the information from the dialog box, Detailed Listings provides the

following information:

For Data Flows Source and destination information for each occurrence of the data

 flow (entry type and label).

For Processes Both input and output data flows to and from the process listed

by name.

For Structure Called-by and calls information, including passed and returned

Chart Symbols couples.

For Structure Returned-from and Returned-to information.

Chart Couples

For Gateways The Gateway type.

For Events The Event type.

For Sequence Flows The Condition Type, Condition Expression and Quantity.

For All Items Date created and date last altered.

The Visible Repository

347

Summary Listing

This report type prints only the repository data in the label, entry type, and description fields.

A summary listing may include all the same report contents that a detailed listing report has,

including process, file, module, data element, etc.

Cross Reference

For each data element, couple, data structure or entity, this report lists all entries that

reference it in a composition field and the referencing item locations.

Single Entry Listing

This selection allows printing a detailed report for a single repository entry. After making this

selection, you must choose the name of the desired repository entry for which the detailed

report will be printed. The Search button displays a Search Repository dialog box and works

in the same way described earlier for displaying and editing repository items.

Related To Listing

This listing reports on all structure chart items in a project repository that have been related

back to data flow diagram items and the items to which they have been related.

Entity/Attributes Detailed Listing

This report is similar to a detailed listing, except the composition field includes physical

characteristics of the component items. Each component appears on a separate line and

includes type, length, allow null, and key information.

Entity/Attributes Summary Listing

This report is similar to a summary listing except that entity types include the composition

field with physical characteristics of the component items. Each component appears on a

separate line and includes type, length, allow null, and key information. If only entity types

are included in the report, the description of each component follows the physical

information.

Business Rules Report

This report lists instances of an entity, the relationship name, and cardinality when the Project

Scope is set to Entity Relationship and you select Business Rules as the Report Type.

Split Flow Listing Generation

This report lists all parent and subflows for a data flow diagram, a branch (a diagram and its

children/grandchildren), or a complete DFD portion of a project.

Statement Hierarchy

This report lists all the planning statements in the repository in hierarchical order.

The Visible Repository

348

Statement Outline

This report lists all the planning statements in the repository in an outline format listing the

hierarchical order of the statements and the statement type..

Matrix Reports

Matrix reports generates information about one class of items with respect to those in another

class, laid out as a matrix. For example, you can produce a report of what data stores occur on

which diagrams or what data elements are listed in the composition fields of which entities.

There are three types of matrix reports.

 Diagram location matrices show on which diagram or view certain objects appear.

 Composition matrices reveal what items are listed in the composition fields of which

other items. The item content is similar to what appears in a cross reference report, but

the layout is directed more specifically toward item correspondences, without additional

information about each item.

 Association matrices are more general and display the class of objects that has a certain

type of association with objects of another class. For example, you can produce a report

showing which entities in the data model of your project are accessed by which processes

in the process model.

The content selection for each report type is dependent upon the diagram type currently in

effect (set in the report Project Scope box). For certain association matrices, inverted matrices

with identical contents can be generated by producing the same report under a different

diagram type. When entire repository reports are in effect, some subclasses of items of objects

(e.g., library modules) cannot be selected, only the general type of object (e.g., all modules).

There are two matrix report formats that can be chosen from the reports dialog box:

 A wall chart matrix is physically as large as necessary to accommodate the data in the

report. Visible Analyst automatically segments it horizontally and vertically. You must

cut and paste the pages to produce the final displayable report chart.

 A one-page wide matrix is more suitable for binding. All rows of the report are printed

over as many pages as necessary, but each page displays only as many columns as fit on

one page. After all rows are printed, the report starts over, printing all rows and the next

group of unprinted columns. This process repeats until all columns are printed.

You can preview a matrix report by clicking the Preview check box. You can also generate

the report in HTML format so that it can be viewed in a browser. If you have a browser

installed, when you click Preview, the Use Browser For Preview option is available. If you

select this option, the report is displayed in your browser when it is generated. You can do

this for matrix reports and standard reports.

The Visible Repository

349

REPORT QUERIES — CUSTOM REPORTS
The custom report facility allows you greater flexibility in defining reports. On the Repository

menu, select Report Query. You enter the name of a report, select a report from the list of the

available custom reports in the custom report file “REPORTS.TBL,” or manually enter the

specification for the custom report in the Report Query Definition dialog box. When you

finish defining the new report, click the Add button to enter it into the custom reports file.

You can change an existing report query by selecting it from the list, editing it and clicking

the Save button to put the changed version into the custom reports file. If you select an

existing report query from the list and click the Delete button, it is removed from the custom

reports file. When you complete editing, click OK to generate the selected report.

The Visible Repository

350

 Figure 5-27 Repository Custom Report Dialog Box

Custom Report File Format
The custom report file is an ASCII file that contains custom report definitions. The file is in a

free format. The text is made up of “tokens;” that is, keywords separated by spaces and tabs.

Carriage returns count as spaces. The keywords are not case sensitive. Comments are

introduced by two dashes. The format somewhat resembles SQL.

After adding a new report or changing one, there is a check function, described below, that

checks the syntax of the custom report file. Examples are given later in this section.

Additional examples are in the “REPORTS.TBL” file included with Visible Analyst.

Custom Report Definition Syntax
The notations used in the report definition syntax are:

 Items marked in bold face are required.

 Items within square brackets (“[]”) are optional.

 Curly braces (“{ }”) enclose a list of items separated by the “|” character (logical OR);

you must choose one.

 Parameters are delimited by “%” characters.

 Italicized items are explained later.

 Extra spaces and tabs may be added as you wish to improve legibility.

Each report definition in the custom report file has the following syntax:

Syntax Comments

report "report name"

params %parameter name% [...] clause is optional

select { * | detail | summary | column name list } [

from repository]
 is the same as detail

(default)

where restriction clause is optional

order by { name | type [(entry type list)] } clause is optional, default is order

by name

format { multiple | single } clause is optional, default is multiple

;

The report definition ends with a semicolon or with the end of file. The report name you enter

appears in the custom report Name box as a selection. For each parameter name, the report

program prompts you for the parameter value before the report executes. The parameter name

can be used in the where clause text as a string, integer or date constant.

The Visible Repository

351

The select clause is used to specify the report type – detail or summary; the default is detail.

The optional from repository clause is for decoration purposes only.

The optional order by clause allows you to select the sort order; sorting by name is the

default. When sorting by type is selected, an entry type list can be specified in parentheses.

The entry type list allows you to define a custom sorting sequence of entry types. It also

serves as an additional restriction – only entries of types on the list go into the report. The list

of acceptable types is the same as the valid entry types listed later in this chapter.

The optional format clause gives you the choice of printing multiple entries per page or a

single entry on each page; the default is multiple.

The default restriction is no restrictions – the entire repository is used. The restriction, if

entered, is a set of logical conditions concatenated using the logical operators NOT, AND,

OR, and parentheses. Each logical condition applies to one repository “column.” The

available columns are shown in Table 5-4.

Table 5-4
Repository Column Information

Col. # Column Name Column

Type

Comments

1 name String

2 type Set

3 description String

4 notes String

5 composition String not for data elements, domains, couples, etc.

6 location Location

7 creation date Date

8 modification date Date

9 process number String for processes only

10 data store number String for G&S data stores only

11 storage type Set for data elements and domains

12 domain String for data elements only

13 length Integer for data elements and domains

14 picture String for data elements and domains

15 default String for data elements and domains

16 allow null String for data elements only

17 owner String for data elements only

18 from entity String for relationships only

19 to entity String for relationships only

20 reverse relationship String for relationships only

The Visible Repository

352

Table 5-4
Repository Column Information

21 parent flow String for data flows only

22 alias String for non-structure chart items

23 associator element String for relationships only

24 values & meanings String for data elements, domains, couples

25 related to String for structure chart items

26 IC data module String for info clusters only

27 IC modules String for info clusters only

28 module description String for modules only

29 process description String for processes only

30 function description String for functions only

31 scenario String for use cases only

32 guard condition String for messages and events only

33 message details String for messages only

34 action expression String for events only

The logical conditions allowed for a column depend on the column type. For columns of type

string, the allowed conditions are:

column is null

column is not null

column = “constant”

column begins with “constant”

column contains “constant”

where the constant is a string and null means an empty string.

For columns of type date, the allowed conditions are:

column = constant | current

column > constant | current

column < constant | current

column <= constant | current

column >= constant | current

column != constant | current

The date constant must be in the Windows date format as defined in Control Panel/Regional

Settings/Date.

For columns of type integer the allowed conditions are:

The Visible Repository

353

column is null

column is not null

column = constant

column > constant

column < constant

column <= constant

column >= constant

column != constant

where the constant is a number. Null means that the value was not entered in Visible Analyst.

For columns of type set, the allowed conditions are:

column is null

column is not null

column = set_element

column in (set_element [, …])

For column type Set, set_element is anything valid for that column name. So for column name

“type,” set_element is any valid Visible Analyst entry type; a null value for set type columns

never occurs. Valid entry types are the entry types listed or any of the following composite

types:

 any entity type

 any module type

 any couple type

 any dfd type

 any sc type

 any erd type

 any fdd type

 any cld type

 any sttd type

 any use type

 any seq type

 any col type

 any act type

For the column name “storage type,” set_element is one of the Visible Analyst storage types,

listed in Table 5-4.

For the location column type, the allowed conditions are:

exists location

The Visible Repository

354

exists location of entry_type [“name_constant”]

exists location on diagram [“diagram_name”]

exists location on branch of “diagram_name”

exists location with source of “name_constant”

exists location with destination of “name_constant”

Entry_type is one of Analyst’s repository types (see above). Name_constant is a name of a

valid object with a storage type of entry_type in the repository. If name_constant is not

specified, the condition becomes true if a location of any object with entry_type exists in the

repository.

Examples of Custom Report Specifications

Several examples of custom report specifications are shown in Figure 5-28.

Syntax Error Checking

The Check button in the Report Query dialog box performs a syntax check of the current

report. If it is stored in the report definition file “REPORTS.TBL,” it checks the syntax there.

Check reads the report, parses it and displays various error messages (see Figure 5-29). In

those error message lines, n is the line number in REPORTS.TBL.

The Visible Repository

355

Entire repository

 report “Entire Repository”

 select * from repository;

All entries with no diagram locations

 report “No Diagram Locations”

 select  from repository where not

 exists location on diagram;

All fundamental data elements with an

integer storage type

 report “Integer Fundamental Elements”

 select * from repository

 where type = data element and

 exists location of all entity

 types and storage type in

 (integer, smallint, tinyint);

All unidirectional relationships

 report “Unidirectional Relationships

 select * from repository

 where type = relationship and

 reverse relationship is null;

Entities with description or notes but

without composition

 report “Defied Entities Without

 Composition”

 select * from repository

 where type = all entity types and

 (description is not null or notes is not

 null) and

 composition is null

Dictionary-only undefined relationships

 report “Repository-only Relationships”

 select * from repository

 where type = relationship and

 not exists location on

 diagram and composition is

 null and description is null

 and notes is null;

All objects on a diagram

 report “Diagram Contents”

 params %Diagram Label%

 select * from repository

 where exists location on diagram

 %Diagram Label%

 order by type;

Dictionary-only entities and relationships

 report “Repository-only Entities and

 Relationships”

select * from repository

 where type in (all entity types,

 relationship) and not exists

 location on diagram

 order by type;

All processes created after a given date

 report “New Processes”

 params %Starting Date%

 select * from repository

 where type = process and

 creation date >=%Starting Date%;

 Figure 5-28 Examples of Custom Report Specifications

The Visible Repository

356

Errors decoding the report clause

 REPORTS.TBL(n)

 ‘report’ expected.

 Report name missing.

 Invalid report name.

 Restriction too long.

 Unbalanced parentheses.

 Invalid where expression.

Errors decoding the order by clause:

 REPORTS.TBL(n)

Errors decoding the params clause

 REPORTS.TBL(n)

 Duplicate parameter ‘xxx’.

 Too many parameters.

 Parameters missing.

 Missing order by value.

 Invalid order by value ‘xxx’.

Errors decoding the format clause:

 REPORTS.TBL(n)

 Missing format value.

Errors decoding the select clause

 REPORTS.TBL(n)

 Missing select value.

 Invalid select value ‘xxx’.

 Invalid format value ‘xxx’.

 Warning: ‘format single’ ignored for

 summary reports

Miscellaneous errors

 REPORTS.TBL(*)

Errors decoding the where clause

 REPORTS.TBL(n)

 Unknown parameter %xxx%.

 Unknown Column ‘xxx’.

 Unexpected ‘xxx’.

 ‘(‘ expected.

 Entry type expected.

 Storage type expected.

 String constant expected.

 Integer constant expected

 Date constant expected.

 Invalid entry types list.

 Invalid storage types list.

 Invalid condition ‘xxx’.

 Missing restriction condition.

 Fatal error: cannot open custom report file

 REPORTS.TBL(n)

 Fatal error: too many errors.

 No reports found.

 Unexpected end of file.

Final Messages from Check

 When done with parsing REPORTS.TBL file,

 Check displays statistics:

 Total nnn lines, nnn reports (nnn correct),

 nnn errors, nnn warnings.

 Figure 5-29 Report Syntax Errors Reported by Check

The Visible Repository

357

Repository Report Preview

The content of a custom report can be previewed before the report is actually printed. In the

Report Query dialog box, check the Preview Text box. After you click Print, a box appears

containing the report. You can view the report on screen. You can also print it, save it to a

file, or abandon it.

You can also generate the report in HTML format so that it can be viewed in a browser. If

you have a browser installed, when you click the Preview HTML box the report is displayed

in your browser when it is generated.

Printer Setup for Custom Reports

You can select the printer to use by clicking the down arrow by the Printer Name field and

selecting a printer from the list. You can also change settings for the printer driver, such as

page orientation (portrait or landscape), print to file, etc., by clicking the Properties button on

the Report Query dialog box.

SHELL CODE GENERATION

Overview
This Visible Analyst function allows you to generate code for the skeletons of programs in the

C and COBOL languages. The shell code generation process is substantially user

configurable.

Although the export of Visible Analyst data to IBM External Source Format™ (ESF), used in

their Cross System Product™, is done using Export on the Tools menu, it is so similar to shell

code generation that the two are covered together here. Note that since ESF was deliberately

designed to be similar to COBOL in many ways, much of what is said here about COBOL

also applies to ESF.

Scope

Shell code generation encompasses the sequence of functions or paragraphs that make up a

program, including global data definitions, descriptive comments, function calls/PERFORM

statements, and passed parameters. Information entered in text fields in the Visible Analyst

repository for a program item and for structure chart modules of various kinds produces

comments that describe these items within the generated code.

Optionally, actual source code may be entered in the module description field of a module or

macro, and this code is placed in-line with the function calls or PERFORM statements that are

generated by invocation lines. Couples or interface table rows (ITRs) used with invocation

lines generate parameters for C code.

The Visible Repository

358

Code Generation Speed and Code Size

The code generation speed is quite rapid. The actual time it takes and the volume of data

descriptions and code produced, of course, depends on the amount of information entered into

the project and upon the configuration and customization options chosen.

Target Languages

COBOL, C and ESF are currently supported. What you have available depends upon the

product configuration you purchased.

Flexibility of Use

There are numerous code generation configuration options available by selecting Code

Generation Options from the Options menu or by clicking the Options button in the Generate

Code dialog box accessed from the Repository menu. Those options are described in detail in

this section.

There are also ways to customize the code you generate for C and COBOL. This is done by

editing the files “VATYPES.H” (for C) or “COBOLTYP.TBL” (for COBOL) that are in your

Visible Analyst program directory.

Error Checking

The code generator notifies you of a number of types of errors that would cause bad or

incomplete code to be generated and notifies you of certain inconsistencies in the way you

specified information within the project repository. You are also told of other items that affect

program code, such as the way item names within the project repository may have been

changed in the generated code to conform to the rules of the target language. No attempt is

made to substitute for the target language compiler. (See Figure 5-30.)

The Visible Repository

359

 Figure 5-30 COBOL Code Generation Errors

Code Generation Requirements
There are things you can do within Visible Analyst that enhance and make code you generate

more complete. The most important of these are listed below.

Full Decomposition

The most fundamental requirement for good generated data descriptions is that all structural

data items be decomposed fully to data elements within the project repository.

Data Element

Data elements should have physical information entered about them on page two of their

repository entries or in domain items to which they refer.

Storage Type

The storage type entered is translated using one of the customization files mentioned above to

a USAGE (for COBOL), a data type (for ESF) or a native data type, typedef (for C).

Length

Length values translate to a display length for COBOL or ESF, or to one of several values for

C. The number of decimal places entered is also used.

Picture

This applies to COBOL only. Any picture you enter for a data element is used verbatim in

generated data definitions. It is your responsibility to ensure its correctness under COBOL

rules.

Default Value

Any value you have entered in the default field is translated into the code of the language you

have chosen. It is made to conform, in so far as is possible, to the data type you specified. If

there is a total conflict, however, the default value is ignored.

Structure Chart

If you do not have a structure chart already prepared in your project, neither procedure shell

code nor function/paragraph calling and parameter passing is generated. Only data definitions

are produced.

Program Item in the Repository

You should have at least one item in the project repository of type program. This gives you a

place to enter text information describing your program. In its composition field, you must

enter the name of the top module in your structure chart hierarchy. Only one module can be so

The Visible Repository

360

indicated for a given program. You may have more than one program in a project, each

indicating a different top structure chart module. If you have no program item, the entire

project is used as if it were one program and modules are ordered alphabetically.

Descriptive Text

Text entered in the various description and notes fields of repository items is used to add

comments to generated code (if you have configured the code generator to do so).

In-Line Code

If you exercise this configuration option, you can enter actual target-language code in a

module and macro description fields. When the procedure code for your program is generated,

this entered code is dropped in-line, verbatim. You are responsible for the accuracy and

“compilability” of this code.

File/Data Store Record Layouts (COBOL Only)

Files/data stores and/or entities, depending upon configuration options, generate SELECT and

FD statements and the accompanying record descriptions. The names used for these items is

taken from the file/data store or entity as entered in the repository (with adjustments made for

target-language naming rules) and appropriate suffixes added to distinguish them.

Processing and Storage Redefinition
The code generator recognizes syntax in the composition fields of data items that specify

arrays and generates COBOL OCCURS and REDEFINES clauses and their equivalent for C.

A number preceding an item or a group of items enclosed in curly braces (‘{‘, ‘}’) constitutes

the OCCURS value. If a vertical bar (‘|’) precedes an item, that item is a redefinition of the

previous item in the composition field. These notations do not allow nested constructs (nested

sets of braces or redefines of groups of items); separate data structures should be used instead.

A REDEFINES item can have an OCCURS value.

For example, if the Composition field of item “str” is:

2 x1 + 3 { x2 + x3 } x4 | x5 | x6 + x7 + x8 | 5 x9

The resulting generated code is shown in Figure 5-31.

The Code Generation Process
To initiate shell code generation, select Generate Code from the Repository menu and then

choose COBOL or C from the dialog box. For ESF, select Export from the Tools menu and

then ESF from the dialog box.

First, the code generator expands all structural data items as far as they have been

decomposed in Visible Analyst. If a structural item is used as a part of more than one higher-

level item, it is expanded in each instance where it is used. Next, it makes a program header

The Visible Repository

361

from comments in the program repository item. Then, for COBOL, Visible Analyst generates

file SELECT statements and FILE SECTION data declarations. After that, it generates global

(for C) WORKING STORAGE (for COBOL) data definitions.

C COBOL
struct str_t

 {

 char x1[2];

 char x2[3];

 char x3[3];

 union

 {

 char x4;

 char x5;

 char x6;

 };

 char x7;

 union

 {

 char x8;

 char x9[5];

 };

 };

01 str.

05 x1

05 x2

05 x3

05 x4

05 x5 redefines x4

05 x6 redefines x4

05 x7

05 x8

05 x9 redefines x8

pic x(1) occurs 2 times.

pic x(1) occurs 3 times.

pic x(1) occurs 3 times.

pic x(1).

pic x(1).

pic x(1).

pic x(1).

pic x(1).

pic x(1) occurs 5 times.

 Figure 5-31 C Array and COBOL OCCURS Examples

The Visible Repository

362

C COBOL
struct name_t

{

 char first-name[,,,]l

 char middle-init[…];

 char last-name[…];

}

struct address_t

{

 char street[…];

 char city[…];

 char state[…];

 char zip-code[…];

}

struct customer_t

{

 struct name_t name;

 struct address_t;

 char phone_number[…];

}

struct customer_t customer;

char report-date[…];

01

01

customer.

05 name.

 10 first-name

 10 middle-init

 10 last-name

05 address.

 10 street

 10 city

 10 state

 10 zip-code

05 phone-number

report-date

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

PIC. . . .

 Figure 5-32 Generated C and COBOL Code Examples

Following that, Visible Analyst (for C code) produces function prototypes and then it

generates code for executable modules (paragraphs for COBOL, functions for C), one for

each module in your structure chart set. PERFORM or function call statements are produced

for each invocation line and, for C, calling parameters and function return types are produced

for couples and ITRs. Finally, if so configured, it drops in-line code entered in module and

macro description fields and creates debug statements.

All along, the code generator produces error and information statements, some in the

generated-code listing file and the rest in a file that you can review on the screen and,

optionally, print.

Code Generation Output
For C and COBOL, the shell code generator leaves you with a compiler-ready ASCII file in

your transient file directory for each program in the project. (This is the TRANS directory

under the Visible Analyst program directory unless you changed it.) The file is named with

the first eight characters of the program name in the project repository plus the extension .c or

The Visible Repository

363

.cbl, respectively. For ESF, there is a file in the same directory with the project root as the file

name plus the extension .esf. It contains project information and code, including an :appl tag

for each program for ESF. You also have the above-mentioned error and information

statements, if you chose to print them or save them to a file. If your copy of Visible Analyst

has prototyping capability, you can choose to export Visible Prototyper panel files in ESF

format. You can either export a panel file in conjunction with project data or export it by

itself.

Configuration Options
There are two kinds of code generation configuration. The first is done in the Code

Generation Options dialog box. The second, really a form of customization, is done outside of

Visible Analyst. You should be careful how you enter the customizations described later. You

should change only the sections of the customization files indicated. Making other,

indiscriminate changes could make these files unreadable to Visible Analyst. If that were to

happen, you must fix them manually or copy their original, unaltered versions from your

installation media.

General Configuration

The general configuration options for shell code generation are set using Code Generation

Options on the Options menu. These selections, listed below with their default settings, give

you alternatives for the Visible Analyst items that appear in generated code and where and

how these items appear in generated output. They are distinct from the language-specific

customizations discussed later. A checked box is equivalent to Yes and an unchecked one to

No.

All Data Elements Yes

All Data Structures Yes

All Data Flows Yes

All Files/Data Stores Yes

All Entities Yes

The first six configuration options give you the opportunity to pick the repository items that

appear in your generated code. You can decide whether all items of each type are used or just

those listed in the composition fields of other items. The choices available are:

 Yes means list all items of the selected type in their places in the composition hierarchies

of superior items and create top-level data description code for any item not part of the

composition of any other item. In Figure 5-32 for example, the data element “zip-code”

that is part of the composition of the data structure “address” is at the bottom level of that

data structure. The independent element “report-date” has its own top-level data

definition. (Note that in generated COBOL, level 77 entries are not used; level 01 entries

are used instead.)

The Visible Repository

364

 No means that items not part of the composition of other items do not have data

description code generated. In the Figure 5-32 example, the data element “report-date”

would not appear.

Note

 If top-level superior items (files/data stores, entities, data structures, data flows)

do not appear because items of that kind are set to No, the next level of

subsidiary items (elements, flows, structures) that are set to Yes appear in data

description code as top-level items.

All Data-Only Modules Yes

The meaning of No is slightly different for data only modules in the project repository. It

means only use data-only modules that are referenced by some module in the structure chart

of the current program.

Data Only Module Usage Structure

Data only modules can be interpreted one of two ways:

 The data only module is interpreted as a structure, with the data only module name itself

being the top level of the structure; and the data elements and data structures named in its

composition field are all subsidiary items at the next lower hierarchical level. To use this

interpretation, select Structure.

 The data-only module is interpreted as a collection of independent, top-level data

elements or data structures. The name of the data only module itself does not appear

anywhere in any data definition. To use this interpretation, select Elements.

Description Field in Module Comment Yes

Notes Field in Module Comment Yes

Module Description in Module Comment Yes: Comment

The text fields of programs and modules of all kinds (modules, macros, library modules, etc.)

can be selectively used or not used at all.

 Description Field – Yes means use this field as a comment to describe modules in

generated code. No means don’t use the field for anything.

 Notes Field – This is identical to the above.

 Module Description Field – If the box is checked, you can choose Comment or Code.

Comment means the same as Yes, above. Code means that you have entered source code

for the target language in this repository field. The code generator puts it verbatim into

the syntactically correct place in the generated code for this module. Function calls or

PERFORM statements generated by structure chart invocation lines appear as comments

in the code of any module where your own code is used. This is to help you keep your

code in sync with your structure chart diagrams.

The Visible Repository

365

Generate Debug Yes

Choosing Yes causes the code generator to produce a source code statement that displays the

name of the module on the system console screen. This allows you to compile and run the

generated code and watch it execute, even if the modules do not yet contain any other code.

COBOL-Specific Configuration Items

These items apply only to COBOL and they can all be selected independently. They specify

whether you want to generate COBOL FD statements for:

Files Yes

Yes means that SELECT and FD statements are generated for all files/data stores in the

project. (This presumes that the All Files/Data Stores is also set to Yes.)

Entities Yes

Yes means that SELECT and FD statements are generated for all entities in the project.

COBOL File Data Structure Location (FD)

This selection is enabled if one of the previous two items is checked. Some people like to

have full record data descriptions in the FILE SECTION. Others prefer an 01-level statement

declaring a maximum record size and placing the full data description in the WORKING

STORAGE SECTION. If Working Storage is chosen, there is a record data structure

declaration under the 01-level in the FILE SECTION, with all names below the 01-level set to

FILLER, so the COBOL compiler can compute the record length.

Language-Specific Customizations

C

There is a file in the Visible Analyst program directory named VATYPES.H that the code

generator uses to translate Visible Analyst values for storage type, length, etc., into C data

types, structures, and so forth. You can customize the way some Visible Analyst storage types

are translated by making changes to this file. If you edit VATYPES.H using an ASCII text

editor, you see that there are five categories of Visible Analyst storage types described in the

file.

 The first and third sections are fixed (not customizable).

 The second and fourth sections contain the C typedef statements that allow you to specify

the native C data types that correspond to some Visible Analyst storage types. You can

alter which native C types are generated for each Visible Analyst type. Note that you can

also replace the native C type with a structure, as described in the section below.

 The fifth section allows you to customize the C structure that is generated for some

Visible Analyst storage types. You can either change what appears between the curly

braces or you can replace the structure itself with a native C data type.

The Visible Repository

366

COBOL

There is a file in the Visible Analyst program directory named COBOLTYP.TBL that the

code generator uses to translate Visible Analyst values for storage types into COBOL USAGE

types, with appropriate picture clauses. This file comes configured with COBOL-85 USAGE

types, but you can change this.

You can customize which COBOL USAGE type corresponds to which Visible Analyst

storage type by making changes to this file. If you edit COBOLTYP.TBL using an ASCII text

editor, you can see and change the correspondences between the COBOL and the Visible

Analyst types in the file. By assigning a picture class identifier to each, generated PICTURE

clauses (produced only when you do not specify a picture yourself) are constructed to your

preference.

There are a number of other customizations that you can make to adjust the appearance of

COBOL code to your own shop standards. You can also set default values for display length

and number of decimal places, to be used when you don’t enter these values into the project

repository. All of these customization options are explained in detail in the COBOLTYP.TBL

file. You should examine the file before generating code to be sure that the values currently

set meet your needs.

ESF

There are no customizable options for ESF. The ESF data types that correspond to Visible

Analyst storage types are listed in the table below. The BYTES value for each data type is

also in the table. Note that the BYTES value for some data types depends on the length value

entered in the physical characteristics of a data element entry in the Visible Analyst

repository. Note also that if a length is not entered, the default BYTES value is used. Further

note that ESF data types marked as n/a are translated to the ESF type HEX.

The conversion from Visible Analyst length to ESF BYTES value for some data types is as

follows:

DECIMAL: BYTES = length / 2 + 1<

FLOAT: BYTES = if length <= 21, 4 else 8

CHARACTER: BYTES = length<

VARCHAR: BYTES = length

GRAPHIC: BYTES = length * 2

VARGRAPHIC: BYTES = length * 2

The Visible Repository

367

Table 5-5
ESF Data Types

Analyst ESF
ANALYST Type ESF Type BYTES Default BYTES

Value

0 Undefined n/a

1 Integer BIN 4 4

2 Decimal PACK *,* 8

3 Float HEX * 8

4 Character CHA * 1

5 Date CHA 10 10

6 Time CHA 8 8

7 Binary n/a

8 Bit n/a

9 DateTime n/a

10 Autoinc n/a

11 Real HEX 4 4

12 Image n/a

13 Bfloat n/a

14 Money n/a

15 Note n/a

16 SmallInt BIN 2 2

17 Sysname n/a

18 Text n/a

19 TimeStamp CHA 26 26

20 TinyInt n/a

21 VarBinary n/a

22 VarChar CHA * 1

23 Zstring n/a

24 Lstring n/a

25 Lvar n/a

26 Logical n/a

27 Graphic DBCS * 2

28 VarGraphic DBCS * 2

29 Number n/a

30 Numeric n/a

31 Double Precision HEX 8 8

32 Raw n/a

33 Long Raw n/a

34 Long VarChar CHA 32767 32767

35 Long VarGraphic DBCS 32766 32766

The Visible Repository

368

Table 5-5
ESF Data Types

36 SmallFloat n/a

37 Serial n/a

* means that length is derived from the Visible Analyst length (if it exists)

n/a (not applicable) types are exported as HEX

Exporting Visible Prototyper Panels

When exporting Visible Analyst project data in ESF format, you can choose to export Visible

Prototyper panel files. You can either export a panel file in conjunction with project data or

export it by itself. If your copy of Visible Analyst has prototyping capability, there is an

active Panel File button in the Export dialog box. Clicking it displays a dialog box in which

you can select a panel file and choose whether you want to export a panel file, repository data,

or both. Note that if you don’t select a panel file for the current export, no panel file is

dumped, regardless of what you may have done in the past.

Parameter
Currently, parameter passing in generated code is only supported for the C language. COBOL

supports parameter passing in multi-program systems, but these are not yet supported by

Visible Analyst.

You should attach couples to the invocation lines on your structure charts when you want to

indicate parameters being passed. The ways they should be used to properly interface with the

code generator are:

 Downward-pointing (along the invocation line) couples represent parameters passed to a

function.

 An upward-pointing (opposite to the invocation line) couple indicates the return value

from a function. Only one of these is allowed by the code generator and its type becomes

the type of the function. If one of these return couples is not present, the function is of

type “void.”

 To represent a parameter that is passed by reference and can be changed in the calling

function by the called function (for example, a passed address), use a bi-directional

couple.

 An ITR can be used to represent a group of couples. Using ITRs is encouraged. It not

only cuts down on the volume of detail that appears on your structure charts, but also

maintains a consistent parameter order and number in all calls to a given function.

The first invocation of a function that has the maximum number of couples of all invocations

of that function is used to produce a C function prototype for the function. If other calls to that

function are incompatible with this prototype, error messages are produced to call this to your

attention.

The Visible Repository

369

SQL SCHEMA GENERATION
SQL DDL (Data Definition Language) syntax can be generated for all entities in the

repository for a project. Dialects supported include:

Access 97, 2000 Oracle 7x, 8x, 9x, 10x

ANSI 92 Paradox 7x, 8x

CA Datacom 8x Progress 7x, 8x, Native 7x, Native 8x

CA Open Ingress II 2x SYBASE SQL Anywhere 5x

Centura SQL Base 5x SYBASE SQL Server 4x, 10x

DB 2/2, 2x, 5x, 6x, 7x, 8x Teradata SQL V2 2.1.0

DBASE IV Unify 2000

Informix 7x User Defined

Ingres 6x Vax RDB 6x

InterBase 4x, 5x Watcom 3x

MS SQL Server 4x, 6x, 7x,

 2000, 2005

xdb 1x

Netware 1x XML DCD, Visible Developer 3x, 4x

Statements supported include:

 CREATE TABLE with options indicating primary, foreign and unique keys, tablespace,

and column characteristics including data type, default value, and nullability.

 CREATE UNIQUE INDEX for primary and unique constraints, when required by the

selected dialect including additional dialect-specific characteristics.

 CREATE INDEX for performance indexes.

 COMMENT ON for tables and columns.

 CREATE TABLESPACE with options indicating SQL dialect-dependent physical

characteristics.

 CREATE STORED PROCEDURE for dialects such as Rdb, Oracle Server, Informix

and SQLServer. Any text stored in the module description field for an entry in the

repository comprises the body of the stored procedure during SQL generation.

 CREATE TRIGGER to generate SQL triggers corresponding to those created in the

project repository and ones generated to enforce referential integrity.

 CREATE SYNONYM to pass on an entity alias to the SQL engine as an alternate name

for a table.

 CREATE SCHEMA or authorization ID to define a name space within a given set of

tables. You are prompted for the name you wish to use.

 ALTER TABLE statement is used if a foreign key references a table that has yet to be

created in the DDL script.

The Visible Repository

370

 CONSTRAINTS statements are generated if this option is selected from the options

dialog box. A constraint name is generated for primary and foreign keys and/or check

constraints with the following syntax:

primary keys PKC_<TableName>hex number

foreign keys FKC_<RelationshipName>hex number

alternate keys AKC_<TableName>hex number

column constraint <ConstraintModuleName>hex number

 CREATE VIEW, with options for a column list, select statement. Under certain

conditions, generation produces multiple CREATE VIEW statements for a single view

object in the repository. Most conditions causing spawned views are related to

deficiencies in the expressiveness of a DBMS select statement. Deficiencies such as

restricting an outer member
3
 from participating as an inner member of an inner join or

prohibiting multiple outer joins within a given select statement cause the generation of

supporting views. Another potential source of supporting views occurs when bridging

differences between the logical data model and its physical implementation. The options

controlling denormalization can cause tables to be folded within other tables. When table

folding occurs, the contents of a logically-specified view must be converted to account

for the redirection and renaming of logical columns from one table to another. Views are

used to ease this transition.

The dialect you wish to use can be selected from the SQL Dialect from Options menu or by

clicking the Dialect button on the Repository Define dialog box.

You can generate an SQL schema with the Generate SQL function list under the Repository

menu. Visible Analyst analyzes the repository and produces the schema, displaying the names

of items it is examining on the status line.

If errors are found, they are displayed on the screen (see Figure 5-33); you can save them to a

file, print them or ignore them. The errors may be entities without keys, entities with

improperly specified keys, an invalid physical data type for a composing data element, or a

number of other errors. If you have previously run the Analyze functions for key analysis and

key synchronization and have resolved all errors found, you are much less likely to get errors

at the schema generation stage.

3
 Outer member refers to the table of an outer join that only contributes values to the resulting

relationship when a row in it matches the criteria of the join expression. The table appearing

on the right-hand side of a left outer join is the outer member.

The Visible Repository

371

 Figure 5-33 SQL Schema Generation Errors

Visible Analyst creates as much of the schema as it can, leaving out items for which it finds

errors. The schema displays on the screen (see Figure 5-34); you can save it to a file, print it

or cancel it. If errors are found, you can cancel it, correct the errors, and generate a corrected

schema at a later time.

 Figure 5-34 Generated SQL Schema

The Visible Repository

372

Other features of SQL schema generation include:

 The ability to generate a schema for only a portion of a data model.

 Generation of key constraint names.

 An option to replace an attribute name with an alias, for those who wish to maintain

alternate (physical) names and use them in schemas.

 An option to generate tablespaces and tablespace references from tables and indexes.

 Storing check constraints, triggers, stored procedures (all three are various ways of

enforcing validation rules) and enhanced referential integrity information in the

repository, and including them in generated schemas.

 Generating UNIQUE constraints for alternate keys.

 Ascending and descending information for primary and unique key column ordering and

created indexes.

 Generation of the IDENTITY clause for SQLServer 6.x, 7.x, 2000, 2005 and System

10/11 when the repository “Allow Null” property specifies the identity constraint.

 An option to place quotes around column and table names (this may be necessary if your

name contains characters that conflict with the target RDBMS, or the name is a

keyword).

 An option to ignore the denormalization settings for the relationships included in the

schema.

 An option to choose the type of referential integrity generated, either Declarative that

uses the Foreign Key clause of the Create Table or Alter Table statements or Trigger

Wizard that generates an appropriate trigger for each dependent table. (If you set the

Referential Operation to No Check for a relationship, no referential integrity is generated

for the relationship.)

When generating XML, a Document Content Description (DCD) is generated that can be read

by eXcelon from Object Design. You can also generate XML for Visible Developer, Visible’s

software component design and code generator.

Users now have the additional option to generate XML Schema based on the W3C standard

for the entities and (optionally) classes developed in their project. Simply use the classes on

an entity relationship diagram and the classes will be included in the XML Schema

generation. This generation XML Schema Generation option is available on the Tools |

Export menu.

When generating a Uniface schema, the following options are available:

 If you want to generate domains, you should use the Template option for version 6.x of

Uniface, and the v5.2 Domains option for all other versions.

 If you generate a schema, you have the option to Overwrite, Replace, or Clean an existing

Uniface Conceptual Schema. Overwrite modifies only the objects that appear in the

generated schema. Replace deletes the entire schema and replaces it with the generated

schema. Clean overwrites existing objects and deletes those items that are not referenced

The Visible Repository

373

in the generated schema. For more information, refer to the publication Uniface CASE

Bridge Cookbook.

 Note

 Uniface schema is generated from the Export option on the Tools menu.

Generating a Schema for Part of a Project
To generate a subset of a project’s complete schema:

Open Dialog Box: 1 Select Generate Database Schema from the Repository

 menu to display the Database Schema Generation dialog

 box (Figure 5-35).

 Figure 5-35 SQL Schema Generation Information

Choose (Scope of 2 On the Schema tab, select “Use one or more existing

The Visible Repository

374

Schema): diagrams” and then select the diagram options that

 is then enabled. Select one or more diagrams to include

 in the schema.

Select Options: 3 Select table, statement and index options on the Table tab;

 then complete the Name tab.

Click OK: 4 Click OK to generate the SQL.

You may want to check the “Suppress external reference warning messages” box. Items

within the view(s) selected might reference entities not included in the schema. The generator

is not able to produce DDL if it encounters a key reference outside the scope of the selected

views and has not been directed to ignore it. If you do want foreign keys within the schema to

be able to reference items not included in the schemas, you should check the “Allow FK

references outside of these diagrams” box. The schema generates properly, but issues

warnings to you when those references occur unless you suppress them.

Adding SQL Schema Generation Information for Entities and
Relationships
This information is attached to the repository entry of an entity (table) or relationship. To add

to it, the Repository Define dialog box for the entity/relationship must be open on your screen.

 To determine the SQL dialect currently in use, click the Dialect button on the Define

dialog box to display the RDBMS SQL Dialect dialog box. To change the dialect, click

on a dialect in the list, select the version if necessary, and click OK.

The Visible Repository

375

 Figure 5-36 RDBMS SQL Dialect Dialog Box

For entities, Repository Define dialog box tabs display key, foreign key, trigger, table and

column check constraint, and physical information for the entity. For relationships,

Repository Define dialog box tabs display referential integrity and cardinality information for

the foreign key. This information is displayed by clicking the appropriate tab at the top of the

Repository Define dialog box (see Figure 5-37 below).

The Visible Repository

376

Figure 5-37 Define Dialog Box SQL Schema Generation Information Tabs

Table and Column Check Constraints

Any table may have an arbitrary number of check constraints attached to it. All of these check

constraints are generated, along with their associated search conditions, with the schema. The

check constraints are stored as separate entries in the repository and can be referenced from

multiple entities.

Attaching a Check Constraint to a Table

 Click the Check Constraint tab.

 To attach a constraint, type the name of the constraint in the Table Check Constraints box

and click Add. If the constraint exists in the project repository, the search condition for it

The Visible Repository

377

displays in the box. If it is not currently in the repository, a new constraint is added to the

repository; you can edit it later and add the search condition to its Module Description

field and any other information you desire.

You can also add, edit, and delete check constraints (as well as triggers and stored procedures)

directly to the repository.

 Bring up a blank repository dialog box using Define from the Repository menu. Name

the check constraint and select Module as the entry type. Click the Save button to add the

module to the repository. At this time, the module subtype box appears to the right of the

Entry Type box, allowing you to define the module as a check condition, trigger or stored

procedure. Add any other descriptive information you wish, such as SQL procedure code

in the Module Description field, and click Save again.

 You can also use the repository search function to attach one or more existing check

constraints to the table. You can view the search condition for each of these by

highlighting them in turn in the Select Check Constraints box.

 To detach a constraint from the entity, highlight it in the Check Constraints box and click

Delete. As in the Composition field in the Define dialog box, if you delete a check

constraint and there is no other descriptive information added for it, it is deleted from the

repository.

 To edit information in the repository entry for the selected check constraint, click the

Jump button.

When you are finished:

 Click Save to save your changes. Changes you made are reflected in the SQL Schema

Generation Information dialog box. (To abandon your changes, click Clear.)

 Check constraints for columns are added identically, except that only one constraint per

column is allowed.

Adding Key Information for a Table

To specify key information for a table:

 Click the Key tab. Information can be entered here to tell the schema generator what it

should do with repository primary and alternate key data and performance indexes.

 Highlight different keys in the Key Number box to display or enter information for the

various alternate keys and performance indexes that exist for the current entity.

If your SQL dialect allows it, you can name the indexes that are generated from primary and

alternate keys and performance indexes.

 Enter the name in the Index Name boxes. The primary key index can have a name, as

well as each alternate key and performance index. If you want Visible Analyst to

generate a name for you, check the Generate Name box. If you leave the Index Name box

empty and the Generate Name box unchecked, no index is included in the schema.

The Visible Repository

378

You can change the columns that are part of the primary or alternate keys or a performance

index.

 To add a component of the key, highlight a column in the Columns in Table list and use

the  button to make it part of the current key.

 To remove a component of the key, highlight a column in the Columns in Key list and

use the  button to move it back to the list of available columns.

 To change the position of a key column, highlight a column in the Columns in Key list

and use the up or down arrows to change its position.

You can add ascending and descending information for primary and unique key column

ordering and created indexes, if your SQL dialect allows it.

 Highlight a column in the key for which you want to add it.

 Click Descending if the column should be sorted in descending order, otherwise it is

sorted in ascending order. If your SQL dialect doesn’t allow such a specification, the

button is disabled.

You can add physical storage and index type information about an index by clicking the

Physical Characteristics tab.

When you are finished:

 Click Save to save the key definition, or click Clear to abandon your changes.

Adding Foreign Key Information for a Table

To specify foreign key information:

 Click the Foreign Key tab if the current entry is an entity or a relationship. Information

can be entered here to tell the schema generator what it should do with repository foreign

key data.

 Highlight different relationships in the Relationship box to display or enter information

for the various relationships that exist for the current entity.

Referential integrity information, telling the SQL engine what to do when database

information is deleted or updated, can be added for each foreign key.

 Click the buttons next to On Delete and On Update to indicate the action you want taken

for each. Any actions your SQL dialect does not allow are disabled. If you select No

Check, a referential integrity constraint is not generated for the relationship. These

options are from the parent perspective (if you delete a row from the parent table, how

are the rows in the child table affected).

 If you use the Trigger Wizard to generate referential integrity constraints, click the

buttons next to On Insert (Or Update) Of Child to indicate the action you want taken

when the child table is modified. The only valid options are Restrict and No Check. If

your SQL dialect does not support triggers, these options are disabled.

The Visible Repository

379

Key Reference information, telling the SQL engine how columns from the child table

correspond to key columns in the parent table, can be added for each foreign key.

 Click Primary Key to indicate that the foreign key columns in the child should

correspond to the primary key in the parent, or click Alternate Key to indicate that they

should be associated with an alternate key. If an alternate key is selected, choose the

appropriate number.

 Highlight a column from the Available Columns list and then click on the corresponding

parent key column. Repeat this procedure for each component of the foreign key.

 Click Migrate to add a key column from the parent to the child.

Cardinality information instructs the SQL engine how to resolve column name conflicts for

supertype relationships that have any form of denormalization specified.

 Syntax displays the numerical cardinality that was specified when the relationship was

added to a diagram.

 Click Suffix Instead of Prefix to indicate column names should be made unique by

appending text to the column name.

 Click Prefix/Suffix Names to modify the list of prefixes/suffixes that should be used

when generating SQL to uniquely identify columns. The number of entries in the list

should match the numerical cardinality. If no cardinality is specified, the number of

columns generated corresponds to the number of entries in the list.

When you are finished:

 Click Save to save your changes. Any changes you made are reflected in the composition

field of the child entity. If you select a different relationship, any pending changes are

automatically saved. Click Clear to abandon your changes without saving.

Adding Trigger Information for a Table

A table can have an arbitrary number of triggers attached to it. The triggers are stored as

separate entries in the repository and can be referenced from multiple entities. Any actions

your SQL dialect does not allow are disabled. Triggers need not be specified in the repository

if their only purpose is to implement referential integrity (RI). The Trigger Wizard will

automatically generate complete trigger definitions to enforce RI. However, if additional

integrity constraints, other than RI, must coexist with RI triggers, refer to Combine Generated

Trigger Code with User Triggers in Appendix C.

To specify trigger information:

 Click the Triggers tab.

 Attach and detach triggers to an entity as with check constraints, above.

 Note

 This only functions if the SQL dialect in effect supports triggers.

The Visible Repository

380

 Highlight an attached trigger in the Trigger box to view the information specified for that

trigger, or to change it. The action text entered in the Module Description field of the

trigger’s repository entry displays in the Trigger Text box.

 Click Update and/or Insert and/or Delete to specify the action that causes the trigger to

fire. Your SQL dialect may allow multiple actions to fire a trigger or it may require a

different trigger for each action.

 Click Before or After to tell the SQL engine when to fire the trigger relative to the

action(s) specified.

 In the Scope box, click Table or Row to indicate whether the trigger is to fire once for an

update (or insert or delete) of the table or once for each row that is updated.

If the Update button is checked, you can specify for which columns in the table an update

fires the trigger. Initially, the names of all columns in the table are listed in the No-Update

Columns box.

 Highlight one or more column names in the No-Update Columns box and click the 

button to move them into the Update Columns box.

 Highlight one or more column names in the Update Columns box and click the 

button to move them into the No-Update Columns box.

If you want to edit information in the repository entry for the selected trigger:

 Click the Jump button. Changes you made are saved, as if you clicked OK.

Note

 When defining the body of a trigger, you are free to use built-in macros supplied

by the Trigger Wizard, or you may create your own. See Appendix C,

Customizing the Trigger Wizard, for details.

When you are finished:

 Click Save to save your changes. Click Clear to abandon your changes.

Adding SQL Schema Generation Tablespace Information
Some SQL dialects support the concept of a tablespace, which is an allocation of space on a

physical media for the storage of tables and indexes (SQLServer 7.x uses the term file group,

while other versions of SQLServer use the term segment).

Adding Physical Storage Information for a Table

To specify the physical storage characteristics of a table, including the tablespace to which a

table belongs, click the Physical tab on the Repository Define dialog box.

For each table or index, the following information can be maintained (not all SQL dialects

support all options):

 Tablespace. The name of the tablespace where the table or index is to be stored. If the

name specified does not exist in the repository, a new tablespace object is created. You

The Visible Repository

381

can use the search button to find tablespace objects that have already been defined.

(SQLServer 7.x uses the term file group, while other versions of SQLServer use the term

segment.)

 PctFree. The percentage of space reserved for future updates.

 PctUsed. The minimum percentage of used space.

 IniTrans. The initial number of transaction entries allocated within each data block.

 NoSort. Indicates that the rows are stored in ascending order and therefore the rows do

not have to be sorted when creating the index.

 Initial. The size in bytes of the tablespace’s first extent.

 MaxTrans. The maximum number of concurrent transactions that can update a data

block allocated to the table.

 Next. The size of the next extent to be allocated to the tablespace.

 MinExtents. The total number of extents allocated when the tablespace is created.

 MaxExtents. The maximum number of extents that can be allocated for the tablespace.

 PctIncrease. The percent by which each extent after the second grows over the previous

one.

 Freelists. The number of free lists for each of the free list groups.

 Freelist Groups. The number of groups of free lists.

DB2 2 Properties

 Primary Tablespace. Identifies the tablespace in which the table will be created. The

tablespace must exist and be a REGULAR tablespace. If no other tablespace is specified,

all table parts will be stored in this tablespace.

 Long Column Tablespace. Identifies the tablespace in which the values of any long

columns (LONG VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types

with any of these as source types) will be stored.

 Index Tablespace. Identifies the tablespace in which any indexes on the table will be

created. This option is allowed only when the primary tablespace specified in the IN

clause is a DMS tablespace. The specified tablespace must exist and be a REGULAR

DMS tablespace.

 Data Capture. Indicates whether extra information for data replication is to be written

to the log. None indicates that no extra information will be logged, while Changes

indicates that extra information regarding SQL changes to this table will be written to the

log. This option is required if this table will be replicated and the Capture program is

used to capture changes for this table from the log.

DB2 2, 5, 6, 7, 8 Properties

 Partitioning Key. Specifies a key used when distributing the rows of a table across

physical media. Visible Analyst lists the performance keys assigned to the table as

possible choices. Only performance keys whose columns represent a subset of the

primary key should be selected as a partitioning key. Please refer to the section “Adding

Key Information for a Table” for directions on building a Performance Key. A column

The Visible Repository

382

must not appear more than once in the key. No LOB, LONG VARCHAR, or LONG

VARGRAPHIC column may be used as part of a partitioning key. If not specified, and

this table resides in a multiple partition nodegroup, then the partitioning key is defined as

follows:

 If a primary key is specified, the first column of the primary key is the partitioning

key.

 Otherwise, the first non-long column (LOB or long column type) is the partitioning

key.

 If none of the columns satisfies the requirement of the default partitioning key, the

table is created without one. Such tables are allowed only in tablespaces defined on

single-partition nodegroups.

 Using Hashing. Specifies the method applied to partitioning keys to yield the insertion

location for a newly added row. Hashing is the only method currently available.

 Not Initially Logged. This option is useful for situations where a large result set needs

to be created with data from an alternate source (another table or a file) and recovery of

the table is not necessary. Using this option will save the overhead of logging the data.

SQLServer Storage Options for Indexes

When the SQL engine generates DDL for SQLServer (either 4.x, 6.x, 7.x, 2000, 2005 or

System 10/11), physical characteristics can be specified for each index that is created. To

specify the physical storage characteristics of an index, click the Physical tab.

For each index, the following information can be maintained:

 Segment. The name of the segment where the index is to be stored. If the name specified

does not exist in the repository, a new tablespace object is created. You can use the

search button to find tablespace objects that have already been defined. (Visible Analyst

uses the generic term tablespace to refer to a physical storage object. SQLServer 7.x uses

the term file group, while other versions of SQLServer use the term segment.)

 Clustered. Create a clustered index where the physical order of the rows is the same as

the indexed order of the rows. Only one clustered index is allowed per table.

 Ignore Duplicate Keys. If an insert or update operation would result in a duplicate key,

do not perform the operation and discard the data. If this option is not set, the operation

fails.

 Sorted Data. Indicates that the rows are stored in sorted order. Not valid for SQLServer

7.x.

 Fill Factor. A percentage that specifies how full each data page is made when creating a

new index on existing data.

 Duplicate Rows Check. Specifies whether duplicate rows should be allowed when

creating the index. This option is only valid for clustered indexes. Not valid for

SQLServer 7.x.

 Pad Index. Specifies the space to leave open on each page (node) in the intermediate

levels of the index. This option is useful only when Fill Factor is specified because it

uses the percentage specified by Fill Factor.

The Visible Repository

383

 No Recompute Statistics. Specifies that out-of-date index statistics are not

automatically recomputed.

Oracle 7 Tablespace Properties

Visible Analyst generates CREATE TABLESPACE statements during SQL generation if the

current dialect is Oracle and any tables or indexes reference a tablespace object in the

repository. For each tablespace, the following pieces of information can be maintained:

 Datafile Name(s). The name(s) of the datafile(s) that comprise the tablespace.

 Datafile Size. The size of the data file. If this option is omitted, the data file must already

exist.

 Reuse. Reuse an existing file. If the file does not exist, it is created. If this option is not

checked, the file must not already exist. This option is only significant when used with

the size option. If you omit the size option, the file must already exist.

 Initial. The size of the tablespace’s first extent.

 Next. The size of the next extent to be allocated to the tablespace.

 Minextents. The total number of extents allocated when the tablespace is created.

 Maxextents. The maximum number of extents that can be allocated for the tablespace.

 Freelists. The number of free lists for each of the free list groups.

 Freelist Groups. The number of groups of free lists.

 Offline. Do not allow access to the tablespace after it is has been created.

Oracle 8

Oracle 8 includes all the Oracle 7 properties plus the following:

 Logging. Specifies whether creation of the index will be recorded (LOGGING) or not

recorded (NOLOGGING) in the redo log file. Table and index objects inherit the value

assigned to the tablespace when it is unspecified. The system default for this property

when unspecified for the tablespace is LOGGING. It affects whether the direct loading

of data using SQL * Loader writes insert operations to the redo log file.

 Cache. (Table/tablespace only) CACHE specifies that the data will be accessed

frequently, therefore the blocks retrieved for this table are placed at the most recently

used end of the LRU list in the buffer cache when a full table scan is performed. This

option is useful for small lookup tables. NOCACHE specifies that data will not be

accessed frequently; therefore, the blocks retrieved for this table are placed at the least

recently used end of the LRU list. The default is NOCACHE.

Although Oracle 8 does not support the CACHE property for tablespaces, it may be specified

on the repository tablespace object. When specified as a property of a tablespace, any table

associated to this tablespace will derive its default cache value from the tablespace.

SQLServer Segment Properties

Visible Analyst generates SP_ADDSEGMENT and SP_EXTENDSEGMENT statements

during SQL generation if any tables or indexes reference a tablespace object in the repository.

The Visible Repository

384

For each segment, the following information can be maintained:

 Logical Device Name. The database devices where the segment is to be located.

DB2 Tablespace Properties

For each tablespace, the following information can be maintained:

 Tablespace Type. Regular indicates the tablespace is to be used for all data except

temporary tables. Long is for storing long or LOB columns. Temporary indicates the

tablespace is used for storing temporary tables.

 Managed By. The tablespace is to be managed either by the System (SMS) or the

Database (DMS).

 Nodegroup. Specifies the nodegroup for the tablespace. The nodegroup must exist. The

only nodegroup that can be specified when creating a TEMPORARY tablespace is

IBMTEMPGROUP. The NODEGROUP keyword is optional. If the nodegroup is not

specified, the default nodegroup (IBMDEFAULTGROUP) is used unless TEMPORARY

is specified and then IBMTEMPGROUP is used.

 Note

 If the Tablespace Type or the Managed By button is disabled, this means that an

entity definition references the tablespace and any changes that you make would

cause a conflict. For example, if an entity uses the tablespace as a Long

tablespace, you cannot change the type to Regular.

 Container Name(s). The name(s) of the container(s) that comprise the tablespace.

 Pages. The size of the container in 4K pages. This option is only valid for DMS

tablespaces.

 Container Type. File indicates the container is an absolute or relative filename while

Device indicates it is a device. This option is only valid for DMS tablespaces.

 Extentsize. The number of 4K pages that are written to a container before skipping to

the next container.

 Prefetchsize. The number of 4K pages that are read from a table when data prefetching

is being performed.

 Overhead. The I/O controller overhead and disk seek and latency time, in milliseconds.

(Used to calculate the cost of I/O during query optimization.)

 Transferrate. The time to read one 4K page into memory, in milliseconds. (Used to

calculate the cost of I/O during query optimization.)

 Bufferpool. The name of the bufferpool used for tables in this tablespace. The

bufferpool must exist. If not specified, the default bufferpool (IBMDEFAULTBP) is

used. This nodegroup of the tablespace must be defined for the bufferpool.

Informix Tablespace (dbspace) Properties

Informix supports the concept of a dbspace, an allocation of space on a physical media for the

storage of tables and indexes. Visible Analyst, which calls these objects tablespaces, adds

The Visible Repository

385

dbspace and storage information to CREATE TABLE statements during SQL generation if

any tables or indexes reference a tablespace object in the repository.

For each tablespace, the following information can be maintained:

 Pathname. If Informix SE is checked, the pathname contains the fully qualified

filename in which you want to store the database table.

 Extent. The length in kilobytes of the first extent for the table.

 Next. The length in kilobytes for each subsequent extent.

 Lock Mode. The granularity used for locking a table, either Page or Row.

 Fill Factor. A percentage that specifies how full each data page is made when creating a

new index on existing data. This value is used as a default for all indexes on the table;

you can specify a different fill factor for each index.

COMPARE MODEL AGAINST SCHEMA
When generating a database schema, it is sometimes useful to be able to compare a model to

an existing database to examine the changes that have been made. To perform the

comparison, select Compare Model Against Schema on the Repository menu. You can use

the current settings, or change your generation options including scope and content.

Once the comparison is complete, the Differences dialog box is displayed.

The Visible Repository

386

Figure 5-38 Differences Between Model and Schema Dialog Box

Objects are displayed in a tree structure with colors used to indicate differences. Items in

green are new to the model and do not exist in the database. Items in blue exist only in the

database and have been deleted in the model. Items in red are different. You can use the

Next and Previous buttons to scroll through the differences. Click Show Only Differences to

eliminate items that are the same in both the model and the database. To save the comparison

information to an HTML file, click Save.

Note

 A number of different factors determine the results of the comparison. One of

the most important is the set of generation options that are used when the

comparison is started. If the options are changed between the time the original

model was generated and when the comparison occurs, you could get

unexpected results. For example, if the database schema was created with the

option set to replace spaces with underscores and then you perform the

comparison with the option turned off, table names and columns may not be

identified properly.

DATA DESCRIPTION SPECIFICATION GENERATION
Visible Analyst supports the generation of Data Description Specifications (DDS) for the

IBM AS/400. DDS is generated for all entities in the repository and is similar to SQL schema

generation (see above). To generate DDS, select Generate DDS from the Repository menu.

Visible Analyst scans your project repository and generates the DDS. You can view both the

generation errors and the generated DDS, with the option to save or ignore either.

The DDS Name Translation selection available on the Options menu allows you to tailor how

object names are generated during AS400 DDS generation and how they are mapped to

Visible Analyst object names during DDS import. There are three mapping schemes

available:

 Logical to Alias. A Visible Analyst object name is mapped to the ALIAS() field.

 Logical to Colhdr. A Visible Analyst object name is mapped to the COLHDR() field.

 Logical to Text. A Visible Analyst object name is mapped to the TEXT() field.

At this time, generation of views in DDS syntax is not supported.

The Visible Repository

387

GENERATING STRUCTURE CHARTS FROM THE
REPOSITORY
COBOL program data can be imported from the Application Browser product and stored in

the Visible Analyst repository. Structure charts can be created from that imported and stored

information.

To use this feature:

 Import Application Browser information using Import.

 Choose Draw VIRTUAL Chart from the File menu.

 Name the diagram when the dialog box requests it.

Visible Analyst scans the repository for structure chart information on a virtual diagram and

adds it to a new diagram. The new chart is displayed.

Regenerating Existing Structure Charts
 Open a structure chart diagram.

 Choose Regenerate Chart from the Diagram menu.

 The structure chart is redrawn from the information on the open diagram and any other

relevant information in the repository. Save it to make it permanent.

Local Area Networks

389

Chapter 6

Local Area Networks

MULTI-USER ACCESS TO PROJECTS
The LAN version of the Visible Analyst adds powerful multi-user capabilities to the basic

functionality of Visible Analyst. It offers program access to a potentially unlimited number of

users operating over a local area network, while creating little or no noticeable system

degradation. With it, projects may be created in such a way that many project team members

can concurrently work on different parts of a system design and/or data model, while

maintaining a common set of project files, including a common repository.

There are two network versions of Visible Analyst available. The Novell LAN version uses

the file and record locking mechanisms within Novell NetWare. The Generic DOS LAN

version supports networks other than Novell networks. Any network that performs standard

DOS file locking is supported.

Typically, program data and executable files are stored in the \VA directory or its

subdirectories on the network file server. There they can be protected against unauthorized

access by limiting Visible Analyst privileges to only those users who have been:

 Granted access to the network.

 Granted access (All Rights are necessary) to the \VA directory.

 Granted access to each individual Visible Analyst project.

 Granted rights to modify a project, as opposed to the right to view only.

It is available for all Visible Analyst tool set configurations.

LAN OPERATING CHARACTERISTICS
The operating characteristics of the LAN version of Visible Analyst are virtually identical to

those of the single user version, except that you must be logged onto the network prior to

accessing the program and starting a work session. Once logged onto the LAN, you have all

of the same capabilities that apply to each Visible Analyst tool described throughout this

manual. You also have other features and capabilities described below.

Local Area Networks

390

LAN Visible Analyst Features and Capabilities

Unlimited Access to Program and Project Files

The number of network users that may access Visible Analyst is limited only by the number

of nodes purchased. A “node” is defined as “concurrent access by a user.” For example, three

nodes equals the ability to have three users concurrently accessing Visible Analyst. You may

assign as many users as you wish to access Visible Analyst, but only three users may run it at

any given time.

Limited Access to Diagrams and Repository Entries

Only one user may access a particular diagram or repository entry at any one time, to prevent

conflicting edits being entered for a diagram or its project repository entries. The only

exception to this rule is if a user opens a diagram in read-only mode. In this case, one user can

modify a diagram, and any number of users can open the same diagram for viewing only.

Security

Access to program and project files is limited to users defined as having access to the

network, access to the \VA directory, access to each particular project and granted rights to

modify a project, as opposed to the right to view only.

Messaging System

The Visible Analyst messaging system allows all users to communicate easily over the

network. The messaging feature gives access to NetWare’s messaging while using Visible

Analyst and is invoked with function key F5. The Generic LAN version does not support the

Visible Analyst messaging system.

Current Activity and Error Message Help Windows

The Current Activity function on the File menu allows you to review the activities of Visible

Analyst users working on the same project. It also provides a description of the activity each

user is performing within the project. The Error Details window allows you to identify users

who are working with project files you are attempting to access.

Novell NetWare Compatibility
The LAN version of Visible Analyst is fully compatible with the network configuration and

protocol requirements of Novell Advanced NetWare v1.0 and higher. Workstations that

access Visible Analyst over the LAN must be running DOS 3.1 or higher.

All descriptions and instructions provided in this chapter assume that NetWare is already

installed, networked workstations or PCs are already connected, users are already

knowledgeable in the procedures required to log on and off the network, and the LAN Visible

Analyst program is already installed (refer to Getting Started). Additional information and

procedures describing how to setup the \VA directory, how to define user security at the

Local Area Networks

391

project level, and how to use Visible Analyst’s networking features are provided in the

following pages.

NetWare MAP ROOT Command

The LAN version of Visible Analyst supports the NetWare MAP ROOT command. This

means that if you have used this command to map a drive letter to a server directory, Visible

Analyst recognizes it and acts accordingly.

Windows Networking
The LAN version of the Visible Analyst should be installed from a client PC onto a common

folder on the Windows server. Once installed on the server, map a drive to the server from

each client PC and then create an icon on the local PC pointing to the VA32.EXE file on the

server. Besides mapping the drive and creating the icon, no additional software is loaded on

the client PC's. All users should be assigned the following installation folder rights: Modify,

Read & Execute, List Folder Contents, Read, Write. It is not necessary to assign Full Control

rights to the users. The same folder rights should be granted to all of the Visible Analyst sub-

folders. Note: After mapping the drive to the server, install the Visible Analyst to the VA

folder, not to the root of the mapped drive.

The newer versions of the Windows operating systems, such as Windows 2000, Windows,

XP, Windows Vista, etc. implemented user level security which affect users access to the

Visible Analyst in both the single user and LAN versions.

“Product Serialization Failure” Error Mesage

When a user first accesses the Visible Analyst, a Btrieve database key is written to the registry

of the users PC. This key is written on the client PC if the user is running the single user or

multi-user version of the Visible Analyst. If the Visible Analyst user is not an Admin level

user of the PC, the key is not written, and the user is unable to access the Visible Analyst. The

error message generated is “Product Serialization Failure” error. To resolve the error, an

admin level user of the PC should log onto the PC, access and then exit the Visible Analyst to

create the key. The admin level user can assign the non-admin level user logon ID full access

rights to the registry key, and the user will be able to access the Visible Analyst.

The Btrieve database engine shipped with the Visible Analyst also writes 2 temporary files to

the local PC’s TEMP folder. If the non-admin user does not have Full Control rights to the

folder, the “Product Serialization Failure” error is generated. To resolve the error, edit the

Home and Trace file keys in HKEY_LOCAL_MACHINE\SOFTWARE\Btrieve

Technologies\Microkernal Workstation Engine\Version 6.15\Settings.

Change the path listed in these keys to a folder such as C:\temp, where the user can be

assigned full control rights to write these temporary files.

If the error message is still generated, contact Visible Systems support at

support@visible.com.

Local Area Networks

392

Preventing Editing Collisions
There are no inherent restrictions on the number of network users that may access Visible

Analyst or Visible Analyst projects concurrently. However, there are restrictions that allow

only one user to access a specific diagram or repository entry at any one time. This restriction

prevents editing collisions; that is, prevents conflicting edits from being entered into the same

diagram or repository entry by different users.

If a potential conflict is detected, Visible Analyst prevents the function from being initiated.

You are alerted to the nature of the conflict and the user(s) involved (as shown in Figure 6-4

later in this chapter). For example, global changes that are normally carried throughout

multiple diagrams in the same project are inhibited in some instances, such as when a global

change impacts multiple diagrams and one or more of those diagrams is currently being

accessed by others.

Local Operation
Projects may be stored on a local workstation drive instead of the network drive by specifying

the appropriate data path when the project is created. Note, though, that any project stored on

a local workstation drive can never be accessed by another workstation; the project becomes a

single-user project.

RUNNING ON THE NETWORK
Before proceeding, be sure that the initial steps in Visible Analyst installation process have

been completed as described in Getting Started. If you are using the DOS Networks version,

you must define users who access Visible Analyst. (See Assigning Access Rights later in this

chapter.) The Netware version of Visible Analyst is accessible to all users defined under

NetWare; you need not redefine NetWare users, but you must decide how you wish to

implement NetWare-level security and the process of creating projects. Appropriate steps for

addressing each of these LAN considerations is provided in the following pages.

Defining Default Path Settings
For the LAN version of Visible Analyst, default settings can be accessed from one centralized

location so that all users start with the same setup information. These defaults can later be

overridden by users. This is most useful to set a network drive and path preferences for

projects and temporary files generated by Visible Analyst.

 Edit the VAW.INI file, located in the Visible Analyst installation directory.

 Insert the statement “Default Data Path=” for project files, and insert the appropriate

drive and directory.

 Insert the statement “Transient Data Path=” for temporary files, and insert the appropriate

drive and directory.

Local Area Networks

393

When a user accesses Visible Analyst from a node on the network for the first time, Visible

Analyst creates a new initiation file named VAW#.INI, where # is the number the network

assigns to the user’s node, and copies the contents of VAW.INI into the new file.

Implementing Security
There are two levels of project security available to network users:

 The lower level of NetWare security is the easiest to implement. It allows any user

assigned to Visible Analyst to create projects at will.

 The second level of NetWare security requires that the supervisor, or a user with

equivalent status, create a subdirectory and assign trustees to any new project before it is

created. For details, refer to Creating Projects on the Network later in this chapter. We

recommend that you choose between the two levels, though multiple variations are

possible. If the two levels described don’t meet your needs, please contact Visible

Systems technical support.

As shipped, Visible Analyst has as the default data path for project data

<path>\VA\DATA\<root>, where <path> is any path you entered for the installation of

Visible Analyst and <root> is the project root. In this way each project resides in its own

subdirectory. For example, project LIB would reside in <path>\VA\DATA\LIB. We strongly

recommended that you leave this default data path setting as shipped as it makes security

much simpler to implement and facilitates switching between levels of security. However, it

can be changed when you create a project if you so desire. (For the remainder of the chapter,

any directory levels above the VA directory are ignored, but you must consider them when

you create directories, etc.)

Implementing the Lower Level of NetWare Security

Selecting this level of security allows any user who becomes a trustee of the VA directory the

ability to create a project. Any user who creates a project, in addition to the supervisor, may

then assign other users access to that project (see Project-Level Security – Assigning Project

Access Rights later in this chapter). Note that this security is operable only within Visible

Analyst; control is not implemented at the DOS command level. As a result, any user with

knowledge of how to access files under DOS may modify or delete any Visible Analyst

projects.

To implement the lower level of NetWare security, simply make each user accessing Visible

Analyst a trustee with all rights to the VA subdirectory on the install-to drive. By default,

assigning a user as a trustee gives that user all rights to that directory and all lower-level

directories.

Implementing the Second Level of Security

This level of security provides all of the security of the lower level and adds security at the

DOS command level. This means that there is no way for an unauthorized user to modify or

Local Area Networks

394

delete any project information. When implemented, the supervisor or someone with

equivalent rights must assign users to each project before the project is created.

For NetWare Versions Earlier Than 3.0

To implement the second level of security, be sure that all of the following are applied:

 For each user who is to access Visible Analyst, make that user a trustee of the VA

subdirectory on the install-to drive. By default, assigning a user as a trustee gives that

user all rights to that directory.

 Revoke the Modify and Parental rights for each user for the VA subdirectory.

 For each user who is to access Visible Analyst, make that user a trustee of the VA\DATA

subdirectory on the install-to drive.

 Revoke all rights for each user for the VA\DATA subdirectory.

For NetWare Versions 3.0 or Later

These NetWare versions implement inheritance rights. To implement the second level of

security, be sure that all of the following are applied:

 For each user who is to access Visible Analyst, make that user a trustee of the VA

subdirectory on the install-to drive. By default, assigning a user as a trustee gives that

user all rights to that directory.

 Revoke the Access Control, Modify and Supervisory rights for each user for the VA

subdirectory. (If you want a user to be able to rename a project, do not revoke the Modify

rights.)

 Revoke all Inheritance rights except Supervisory for the VA\DATA subdirectory on the

install-to drive.

Assigning Access Rights
Users who access Visible Analyst can be assigned one of three levels of security: system

manager, project manager, or user. A system manager has full rights to all projects in Visible

Analyst, can maintain user information, and assign project rights to users. A project manager

can create projects, and assign users to the projects they create. A user can access Visible

Analyst and be granted rights to projects, but cannot create new projects. If you installed

Visible Analyst using the Novell version (Visible Analyst automatically installs the Novell

version if your network is listed in the Windows Control Panel as Novell Netware OS at

installation time), initially you must have the supervisor (or someone with security equivalent

to the supervisor) log into Visible Analyst and assign at least one system manager. By default

any user who can access the Novell server can start Visible Analyst without having been

granted specific access rights; but they can only be a user and do not have rights to any

existing projects or to be able to create new projects. If you are using the DOS Networks

version, you must create user IDs and passwords to secure Visible Analyst access to only

those users who have been defined. To access Visible Analyst for the first time, log in as

supervisor with no password.

To assign user access privileges to Visible Analyst:

Local Area Networks

395

Select Users: 1 Select Users from Tools menu to display the Add User

dialog box (see Figure 6-1).

 Figure 6-1 Add User Dialog Box

2 If you want to change the information about a previously

 defined user, highlight the desired user ID in the list.

Enter the User ID: 3 Enter the user name to be used to log on to Visible

Analyst. If you are using Netware, this name should be

the same as the user name used for login. This field can

only be changed by a system manager.

Enter the User Name: 4 This is an optional field used to further describe the user.

Enter the Password: 5 The password is used by the DOS Networks version to

further enhance security. If a password is defined, both

the user ID and password must be provided when starting

Visible Analyst.

Select the User Type: 6 Select the user type to be assigned to this user. This field

 can only be changed by a system manager.

Save Your Changes: 7 Click Save to record your changes, Erase to cancel the

 changes and clear the selection, or Delete to remove the

 user from the list.

Local Area Networks

396

Creating User Groups
Users who access Visible Analyst can be assigned membership in up to 34 groups. A group is

simply another user, which provides security equivalence. For example, if user A has security

equivalence to user B by adding user B to user A's group membership list, when user B is

assigned to a project, user A has the same rights to that project, even if user A was not

assigned directly to the project.

Groups can also be used to assign a group of users specific access rights to individual

projects. All members of the group inherit the group’s project access rights as explained in the

Project Level Security section of this chapter. However, if a user is granted individual access

to a project with more assigned rights than the rights assigned to the group, the users rights to

the project override the groups assigned access rights. The rights assigned to the group are on

a project-by-project basis; so one project may be Read Only for members of the group, while

another project may be assigned full project access rights.

Groups can contain other groups or users. Visible Analyst expands the group list to contain all

subgroups when checking security access to a project.

The System Managers maintain the Group Membership list.

Note

If you are using the Novell Netware driver, both NetWare groups and Visible Analyst groups

can be used together to provide access to projects.

To create a group and add users to the group:

Add the User Group: 1 Select Users from Tools menu to display the Add User

dialog box (see Figure 6-1).

Enter the Group ID: 2 Enter the name of the group in the User Id field.

Enter the Password: 3 The password is used by the DOS Networks version to

further enhance security. If a password is defined, both

the user ID and password must be provided when starting

Visible Analyst. Users would not normally use the group

ID to access a project, but their own user ID.

Select the User Type: 4 Select the user type to be assigned to this group. This field

 can only be changed by a system manager.

Save Your Changes : 5 Click Save to record your changes.

Add Group Users: 6 Select the user (not the Group ID) from the user list and

click the Group button to display the Update Group List

Local Area Networks

397

dialog as shown in Figure 6-2. Use the << or >> buttons

to add or remove a user from the group.

Update User Group 7 Click the Update button to save the group membership.

Use

Figure 6-2 Add User Dialog Box

Creating Projects on the Network
The steps involved in creating projects on the network depend on the security level you have

chosen, as described earlier in this section. With the lower level of NetWare security, any user

with access to Visible Analyst may create projects. With the second level of security, two

steps must be taken prior to a project being created with Visible Analyst, as described below:

 The supervisor, or a user with equivalence, must create a subdirectory for the project.

Under the recommended data path setting this would be VA\DATA\<root>, where

<root> is the project root of the project to be created. For example, if a user wants to

create a project with the root LIB, the supervisor must create the subdirectory

VA\DATA\LIB on the file server.

 Any user who is to be assigned to the project must be assigned as a trustee to the

subdirectory created in the step above. Note that even after doing this, users must still be

assigned to projects from within Visible Analyst.

Local Area Networks

398

 Note

 Only system managers and project managers can create projects.

Project-Level Security
The LAN version of Visible Analyst gives only the network supervisor and the user who

creates a new project the capability to assign network access privileges to the project. Access

may be assigned to any users having access to the directory where the project is stored.

Access can be limited to viewing project information.

To assign user access privileges to any Visible Analyst project that you create:

Select Modify User List: 1 Select Modify User List from the File menu.

Select the Access 2 Select Add, Delete or Modify Rights from the

Function: submenu.

 If you are adding users, Visible Analyst displays a

dialog box listing the IDs of network users and user

groups not currently assigned access to the project.

 If you are deleting users, Visible Analyst displays a

dialog box listing the IDs of network users who are

currently assigned access to the project.

 If you are modifying user rights, Visible Analyst

displays a dialog box listing the IDs of network users

who are currently assigned access to the project and

the rights each has to access the project. (See Figure

6-3.)

Local Area Networks

399

 Figure 6-3 Modify User Rights Dialog Box

Review the Displayed 3 Add or delete network users or user groups as desired.

List of Users and Make Note that until users have been added to a project, these

Desired Changes: functions are disabled. Note further that initially, users

 have all rights to a project.

Modify Users Rights 4 To modify the rights of any user who should have

to the Project: less than full access to the project, select Modify User

Rights and click the ID of a user or group. The rights

currently available to that user or group are checked in the

list at the bottom of the dialog box. (See Figure 6-3.)

Review the rights of the project users and toggle

individual rights on or off by clicking on them. For

example, if the only item checked on the list is View

Diagram, that user can look at a diagram but cannot make

changes. These rights can be changed later if necessary.

Note

 To restrict user access to individual objects or diagrams, you must use

divisions. See Creating Divisions in the Enterprise Modeling chapter for details.

MESSAGING
Visible Analyst provides access to NetWare’s messaging capability. The feature allows you to

communicate with other network users from anywhere within Visible Analyst. Note that

messaging is available to all network users, regardless of whether or not they currently have

Visible Analyst active; messaging is a function of NetWare rather than Visible Analyst. You

can therefore send a message from your workstation once logged onto the network, or you can

send a message from anywhere in Visible Analyst. The Generic LAN version does not

support the Visible Analyst messaging system.

To send or receive a message while in Visible Analyst:

Initiate Message 1 Press the F5 function key at your workstation to

Sending with the initiate a message. Visible Analyst responds by

F5 Key: displaying the Send A Message dialog box. See Figure

6-4.

Local Area Networks

400

 Figure 6-4 Send Network Message Dialog Box

Enter the ID of the 2 Type the user ID of the recipient network user in the To

User To Receive box. Then type your message in the Message box. Each

Your Message: message is limited to 40 characters. Click OK to send the

 message.

If a Network Message 3 Messages sent to your ID from another user

is Received: automatically appear in a network message box on your

screen if the program NWPOPUP.EXE is running. You

must instruct Windows to start this program when

Windows starts running. A message does not interfere

with work you are doing. Note that messages sent to you

appear on all workstations where you are logged in.

REVIEWING PROJECT ACTIVITY
Whenever a Visible Analyst project that is stored on the network is selected at a workstation,

you can display the current activity and the project history. The Current Activity function on

the File menu displays who is currently accessing the project. The current activity function

presents a list of all users who currently have the project selected and what functions they are

performing. The current activity is updated by Visible Analyst every 10 seconds. The Project

History function, also on the File menu, presents a list of diagrams and the users who last

edited each of them.

LAN HELP FUNCTION
Occasionally while using the LAN version of Visible Analyst, you may attempt to access a

diagram or repository entry that is already selected by another LAN user. Since only one user

may access any diagram or repository entry at any one time, you receive an error message that

explains that the diagram or repository entry is currently being edited; and you are prompted

to click OK to continue. You also have the opportunity to access the LAN help function by

clicking the Details button. Visible Analyst responds by displaying a window titled Error

Details (see Figure 6-4). The Error Details window displays the ID of the network user who

currently has the item selected, as well as the network station (the physical address that the

workstation occupies on the network). Note that if a conflict exists with more than one other

user, the Error Details window appears only for the first user who accessed the diagram or

entry. Once you know the user accessing the item you want, you can send a message to that

user. The Generic LAN version does not support the Visible Analyst messaging system.

Local Area Networks

401

 Figure 6-4 Typical Network Help Details Window

While performing various Visible Analyst activities, you may be interrupted by messages

indicating that you cannot perform a selected function due to a potential editing collision. In

these instances, you can access the LAN help function described above and determine the user

currently working with the function you tried to select. Again, you can send a message to that

user if you wish.

Local Area Networks

402

Visible Analyst Tools

403

Chapter 7

Visible Analyst Tools

GENERAL INFORMATION
Visible Analyst includes a Tools menu (see Figure 7-1) that allows you to perform data

conversion and copying functions at the project level. These functions are an important part of

the overall “housekeeping” tasks that should be used to backup and maintain the organization

of your project files. Not all of these functions are available in the single user Visible Analyst

Student Edition.

 Figure 7-1 Tools Menu

 Backup allows you to back up a Visible Analyst project to one or more floppy disks, to a

local hard disk or, for the LAN version, to a directory on a file server.

Visible Analyst Tools

404

 Restore allows you to restore a Visible Analyst project from one or more floppy disks,

from a local hard disk, or from a file server.

 Copy Project allows you to duplicate a Visible Analyst project.

 Delete Project allows you to eliminate a Visible Analyst project.

 Rename/Move allows you to change the name (root) that was previously defined for a

project, or to rename the directory where its files are stored, or to move the project files

to a different directory.

 Export allows you to convert data repository files for a project into ASCII format for use

in other programs such as a database management system or into one of a number of

other export formats.

 Import allows you to load data into a project data from an ASCII file or from one of a

number of other import formats.

 Rebuild allows you to convert a project from an earlier Visible Analyst version format to

the current format or to recreate a project that may be corrupted due to a power failure

while Visible Analyst is in use, etc.

 Enterprise Copy Allows you to copy a division between an enterprise project and a

satellite project.

 Enterprise Tag Maintenance allows you to remove the link between an enterprise

project and a satellite project.

 Copy Diagram allows you to copy a diagram or a branch (a data flow diagram and all of

its children/grandchildren). This command allows copying similar-methodology diagrams

and branches from one project to another. All data repository information associated with

the diagram(s) is also copied into the new project. Copy Diagram can be used to change

the symbol methodology when copying data flow diagrams into a project using a

different methodology symbol set. Copy Diagram can also be used to change the ERD

Cardinality Notation to the notation defined for the Copied To project.

 Delete Diagram allows you to delete a diagram or a branch.

 Users allows you to define user security information, including user type. For the single-

user and generic DOS network versions of Visible Analyst, you can define user names

and passwords.

 Prototyper allows you to start the Visible Prototyper. If you purchased this tool, you can

work with the prototyping and simulation capabilities.

BACKING UP A PROJECT
The Backup selection on the Tools menu creates backup copies of all files for the currently

selected project. If the drive selected in the dialog box is a floppy drive, a DOS-formatted disk

must be inserted into the drive. The formatted disk does not have to be blank; it may contain

unrelated data, or it may contain data for the same project or other projects being backed up.

If it does contain data for the same project, you are prompted to indicate whether or not you

want the project data on the disk to be overwritten. Also, if the disk you are copying to

becomes full, you are prompted to insert additional disks to complete the backup.

Visible Analyst Tools

405

If the backup destination is a hard disk, such as a file server, any valid drive and path

specification can be entered. If the destination drive becomes full, Visible Analyst asks you to

specify a new location for the backup. When you enter one, the backup continues from where

it left off, with the remaining data going to the new location.

Notes

 It is very important to remember that, if a backup is split between two disks or

directories, as in the previous paragraph, you must not manually consolidate the

files into one directory. Project files that have to be split between the two

locations have the same name and manually consolidating all of the backup files

into a single directory overwrites one of the files, thus losing backed up data

permanently.

 Anytime a project is backed up, it should be restored only by the Visible Analyst

Restore tool. Do not attempt to restore Visible Analyst projects using DOS

commands such as COPY. The Visible Analyst project master file is not updated

correctly.

 If you run the Backup tool while one or more diagrams are being edited, the

diagrams are closed and you are prompted to save any change before the backup

procedure begins.

RESTORING A PROJECT
The Restore selection on the Tools menu allows you to restore a project that has been

previously backed up. When the project restore is performed, all diagrams and repository

entries for the defined project are copied from the backup drive or directory.

If multiple floppy disks were used to backup the project, you are prompted to insert each disk

in the order that the backup was performed to restore the project. If the backup was split over

multiple hard disk directories, you are prompted to enter the path where the next group of

backed up files resides. If the hard disk being copied to already contains data for the project

being restored, the data read from the backup disk overwrites the existing hard disk project

files.

Note

 In the multi-user version, anyone may restore a project. However, only those

who have been granted rights can access it thereafter. If a project was created by

a single-user version of Visible Analyst with security turned off, Visible Analyst

does not know who created it. Thus, when restored into a LAN version, Visible

Analyst doesn’t have creator information. As a result, only a system manager,

supervisor, or another user assigned supervisor equivalence is able to access it

until access rights have been granted to others.

Visible Analyst Tools

406

COPYING A PROJECT
The Copy Project selection on the Tools menu allows you to duplicate an existing project,

providing a means to recreate a project without having to redraw the diagrams. It therefore

provides a convenient and time-saving method for starting new projects that are similar to

existing ones. For example, you can select a project and copy it to a new project root, then

revise and edit the duplicated files to develop unique project entities. The new project files

become another stored Visible Analyst project that can be manipulated in the same manner as

any other Visible Analyst project.

Before any copy is initiated, you are prompted to define a new project name for the duplicate

project, a new description and a location in which to store. The new root name provides a

calling label for the duplicated project files. Note that all project files are copied to the new

project root, including any existing repository files.

DELETING A PROJECT
The Delete Project selection on the Tools menu allows you to eliminate the current project

from Visible Analyst. It is useful as a housekeeping function to erase project files that are no

longer needed. Note that any project that you delete is erased completely, including all

repository entries. Before any deletion is executed, Visible Analyst prompts you to confirm

the project being deleted. This helps prevent erasing the wrong project; however, it is

recommended that you back up all project files using the Backup tool described above,

including those that you are about to delete. This allows you to maintain a project archive, and

lets you restore any project at any time.

Deleting Projects with No Project Files
It sometimes happens that someone deletes the data files for a project from DOS instead of

doing it from within Visible Analyst. The result is that the project is still listed in the project

master file, but cannot be accessed because the data files are gone. To delete a dangling

project from the master file, open the Select Project dialog box from the File menu. Select the

project name you want to delete from the list or type its name into the Project Name box, then

click Remove. The project name is removed from the project master file after confirmation.

The Remove feature is not available in the Visible Analyst student edition. To remove the

project from the project list, select the project in the Project Name dialog, hold down the Alt

key and press the R key on the keyboard. When prompted to remove the project from the

project master file, click OK.

Note

 This function is not a substitute for the Delete Project function. It should only be

used in the circumstances described above.

Visible Analyst Tools

407

RENAMING OR MOVING A PROJECT
The Rename/Move selection at the Tools menu allows you to change the name or description

of an existing project and/or to move it to a different directory. This is another tool that can be

helpful when performing housekeeping functions for your Visible Analyst files. When

renaming a project, only the one-to-four character root is changed. The project and diagram

labels remain the same. If you have decided that the project root should also be the name of

the subdirectory in which project files are to be placed, this directory name is also changed.

REBUILDING A PROJECT
The Rebuild selection on the Tools menu allows you to recreate project files. This may

become necessary for either of the following situations:

 If your Visible Analyst program software has been updated from an earlier version, you

may have to rebuild existing project files to convert them to a format that is compatible

with the new version. Visible Analyst prompts you to perform the rebuild whenever you

access a project for which a rebuild is required.

Note

 If a project was created with a version of Visible Analyst prior to version 6,

contact Visible Systems for assistance.

 If a project becomes corrupted due to a power outage while Visible Analyst is in use, a

bad disk sector, etc., you may be able to salvage all or part of the project files by

performing a rebuild. Visible Analyst helps prevent loss of project data during these

situations; therefore, this type of rebuild should rarely be necessary.

All of the creation dates and last-altered dates are reset to the current date whenever a project

is rebuilt.

EXPORTING REPOSITORY DATA
The Export selection at the Tools menu allows you to convert data repository files for a

selected project into ASCII formatted data files for use by other programs. For example, you

can export repository information into a file that can be accessed by a database management

program.

Visible Analyst Tools

408

Figure 7-2 Repository Export Dialog Box

You can export ASCII data from the repository in one of several formats:

 A relational format that is compatible with most relational databases.

 A proprietary VSC format that is compatible with the ASCII dump used with prior

versions of Visible Analyst and other Visible Systems modeling tools.

 KnowledgeWare (IEW/ADW) format, discussed together with the KnowledgeWare

import, later in this chapter.

 ESF format, discussed in the section on Shell Code Generation in The Visible

Repository.

 SQL format, discussed in the section on SQL Schema Generation in The Visible

Repository.

 Powersoft PowerBuilder format.

 IBM AS/400 DDS format, described later in this chapter and also in the section on Data

Description Specification Generation in The Visible Repository.

Visible Analyst Tools

409

 Visible Prototyper export.

 Visible Developer

 RDBMS Catalog export, discussed in the section on SQL Schema Generation in The

Visible Repository.

 GDPro format.

 ERwin format.

 CompuWare OptimalJ format.

 XML Schema (XSD) Export for entities and classes based on W3C standard.

These export formats are selected from the export dialog box, except for SQL and DDS that

are generated from selections on the Repository menu. Visible Developer 4.x can be

generated from the Export menu or from the Repository menu.

Relational Database Repository Exports
In database terminology, a relation is a common field or fields shared by two different files or

tables. The repository in Visible Analyst is a relational database, with files a set of tables

containing information about a project linked together by relations. The repository export

function converts the internal representation used by the database engine to a delimited text

file, as well as eliminating information either proprietary or simply not useful to you. The

relation linking the exported files together is an ID number that uniquely identifies each

object in the repository.

Export files are named by the project root plus file description method. For example, files in a

repository export of a project named LIB would be named as shown below.

LIBROBJ.DTA Primary object file. One record for each distinct entry in the

 repository.

LIBATTR.DTA Attributes file. Each repository object has properties that are

described in this file such as descriptive information, notes, and

composition values. Attributes that require more than one record

have an associated sequence number. See the table below for a list

of valid attribute types.

LIBDIAG.DTA Diagram file. Each diagram exists as a separate record.

LIBDLOC.DTA Location file. Each object location exists as a separate record.

LIBCLOC.DTA Connected location file. Each pair of connected object locations

exists as a separate record.

LIBRELA.DTA Related object file. Each object that is related to another object,

such as an alias entry, exists as a separate record.

Visible Analyst Tools

410

LIBRELL.DTA Related list file. Each object that is related to a related object, such

as columns for a trigger that belongs to an entity, exists as a

separate record.

Relational Export File Layout

Files created by the Export program are in delimited ASCII format. This means:

 Fields are separated by commas.

 Character fields have trailing spaces removed and are surrounded by double quotes.

 Numbers are converted to their ASCII representations.

 Null character fields are denoted by “”.

 Fields contain no right or left padding.

 There is no alignment on decimal points.

 Each record ends in a carriage return and a line feed.

Relational Export File Structure

The structure of any database files created from data exported from the repository must be set

up to accommodate the maximum field lengths possible for exported data. The field names,

field types and maximum field lengths for each file are listed in Table 7-1.

Table 7-1
Relational Export File Structures

Structure for: - ROBJ.DTA

Field Field Name Type Width Dec

1 ObjectNameLC Character 128 0

2 ObjectType Numeric 4 0

3 ObjectID Numeric 4 0

4 DivisionID Numeric 4 0

5 ClassID Numeric 4 0

6 VersonID Numeric 4 0

7 ObjectName Character 128 0

8 ObjectSubtype Numeric 2 0

9 ObjectOwnerID Numeric 4 0

10 CreationDate Date 10 0

11 CreationUserID Numeric 4 0

12 ModificationDate Date 10 0

13 ModificationUserID Numeric 4 0

14 AssociatedNumber Numeric 4 0

TOTAL 314

Structure for:  ALTTR.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0

Visible Analyst Tools

411

Table 7-1
Relational Export File Structures

2 AttributeType Numeric 4 0

3 Sequence Numeric 4 0

4 AttributeLine Character 254 0

TOTAL

 266

Structure for:  DIAG.DTA

Field Field Name Type Width Dec

1 DiagramType Numeric 2

2 DiagramName Character 40 0

3 DiagramID Numeric 4 0

4 VersionID Numeric 4 0

5 ObjectOwner Numeric 4 0

6 AlphaDesignator Character 40 0

7 LineStyle Numeric 2 0

8 PageSize Numeric 2 0

9 DiagramProcNum Character 40 0

10 CreationDate Date 10 0

11 CreationUserID Numeric 4 0

12 ModificationDate Date 10 0

13 ModificationUserID Numeric 4 0

TOTAL 166

Structure for:  DLOC.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0

2 LocationNumber Numeric 2 0

3 DiagramID Numeric 4 0

4 UpperLeftX Numeric 4 0

5 UpperLeftY Numeric 4 0

6 LowerRightX Numeric 4 0

7 LowerRightY Numeric 4 0

TOTAL 26

Structure for:  CLO.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0

2 LocationNumer Numeric 2 0

3 ConnectedID Numeric 4 0

Visible Analyst Tools

412

Table 7-1
Relational Export File Structures

4 ConnectedLocNum Numeric 2 0

5 ConnectionStyle Numeric 2 0

TOTAL 14

Structure for:  RELA.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0

2 AttributeType Numeric 4 0

3 Sequence Numeric 4 0

4 RelatedID Numeric 4 0

5 Item1 Numeric 4 0

6 Item2 Numeric 4 0

TOTAL 24

Structure for:  RELL.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0

2 AttributeType Numeric 4 0

3 Sequence Numeric 4 0

4 RelatedID Numeric 4 0

5 AssociatedID Numeric 4 0

6 Item1 Numeric 4 0

7 Item2 Numeric 4 0

TOTAL 28

Note

 A number of attribute type fields contain multiple pieces of information

separated by hex characters. In Table 7-2 below, these separators are indicated

by the notation <n> where n can be a number between 1 and 10.

Table 7-2
Attribute Types Used in: ATTR.DTA

Type Description Layout

0 Description “Text”

3 Values & Meanings “Text”

4 Composition “Text”

5 Modules Contained “Text”

6 Process Description “Text”

7 Module Description “Text”

8 Function Description “Text”

Visible Analyst Tools

413

Table 7-2
Attribute Types Used in: ATTR.DTA

Type Description Layout

9 Notes “Text”

12 Physical Information “Storagetype<1>StorageLength

<2>DecimalPlaces<3>DefaultValue<4>

PictureClause<5>Owner<6>AllowNull”

18 Process Number “Text”

19 Invocation Type “Text”

20 DM Information “Type”

21 Unique Index “IndexName<1>IndexType”

22 Performance Index “IndexName<1>IndexType”

23 Relationship “ControllingKey<1>Flags<2>

FromToCard<3>ToFromCard<4>

OnDelete<5>OnUpdate<6>

FromToCardText<7>

ToFromCardText<8>ConstraintName”

26 Parameter “Text”

27 Class Information “Cardinality<1>CardText<2>Flags”

28 Database File “FileName, Size, Reuse”

Sequence is Database type*1000+

 Sequence where DatabaseType equals

1 for Oracle and

 2 for SQLServer

“Indextype, SortedData, FillFactor,

IgnoreDupKey,

 DupRow” for SQLServer

Sequence is Database Type *1000+

 SequenceType where Database Type

equals 1 for

 Oracle and 2 for SQLServer, and

SequenceType is 0 to

 define physical information for the

table, 100+ key

 number for unique keys, and 200+

index number for

 performance indexes. (Key number for

the primary key

 is zero.

100 User Object

Definition

projectcontrolrecord

“ObjectTypeName<1>LinkSupport<2>

LinkToType<3>LinkToCard<4>

LinkDisplayName<5>CompSupport<6>

CompType<7>CompDisplayName”

Visible Analyst Tools

414

Table 7-2
Attribute Types Used in: ATTR.DTA

Type Description Layout

101 User Attribute

Definition

projectcontrolrecord

“AttributeName<1>StorageType<2>

StorageLength<3>StorageDecimal”

1000+ User Attribute “Text”

2000+ User Object Line “Text”

Table 7-3
Attribute Types Used In: RELA.DTA

Type Description Layout

1 Alias Sequence – ORder number of Alias entry

RelatedID – ObjectID of Alias entry

2 Related To Sequence – Order number of related entry

RelatedID – ObjectID of related entry

10 Associator Element RelatedID – ObjectID of associator

11 Data Only Module RelatedID – Object of data only module

15 Trigger RelatedID – ObjectID of trigger

Item1 – Trigger Flags

AssociatedID ObjectID of trigger column (RELL.DTA)

16 Check RelatedID – Object of check

AssociateID – ObjectID of check column (RELL.DTA)

21 Unique Key Sequence – Key number

RelatedID – ObjectID of column

Item1 – Sequence number that specifies the order of the

 column in the key

Item 2 – Index order (0 = ASC, 1 = DESC)

22 Performance Index Sequence – Key number

RelatedID – ObjectID of column

Item1 – Sequence number that specifies the order of the

 column in the key

Item2 – Index order (0 = ASC, 1 = DESC)

23 Relationship Sequence

 0 –From Entity

 1 – To Entity

 2 – From-To-Relationship

 3 – To-From Relationship

 4 – Discriminator

Visible Analyst Tools

415

Table 7-3
Attribute Types Used In: RELA.DTA

 5 – From Role

 6 – To Role

 7 – From Qualifier

 8 – To Qualifier

RelatedID – ObjectID of related item (RELL.DTA)

The following is set only if sequence is 1.

AssociatedID – Column that is part of the key

Item1 – Sequence number that specifies the order of the

 column in the key

Item2 – Index order (0 = ASC, 1 = DESC)

25 Friend RelatedID – ID of friend class or module

29 Database Phys Inf. Sequence – See definition in ATTR.DTA

RelatedID – ObjectID of Tablespace

Note 1: The User Object Definition and User Attribute Definition attribute types are only

used with the system object projectcontrolrecord.

Note 2: For Trigger, Check, and Relationship attribute types, there will be records in both the

RELA.DTA and RELL.DTA tables.

VSC-Format Repository Exports
When you perform an Export with VSC format selected, Visible Analyst dumps a project data

repository to an ASCII format file. The file name of the resulting ASCII file is root + .AD

where root is the project root. A layout of the resulting ASCII file is shown in Table 7-4. All

fields except those describing the number of description, notes, location, etc., field records are

enclosed in double quotes.

Table 7-4
STRUCTUR.DBF File Structure

Field Field Name Type Width Dec

1 FIELD_NAME Character 10 0

2 FIELD_TYPE Numeric 2 0

3 FIELD_LEN Numeric 3 0

4 FIELD_DEC Numeric 3 0

TOTAL 18

Note 1: Describes the format of the structure files.

The export file is a variable record length file that is divided into three sections. The first

section is the header that is a single record that gives basic information about the file contents.

Visible Analyst Tools

416

The next section defines the user attributes and objects that are contained in the project. The

third section contains the repository objects, each defined as an Object Block. The Object

Block is comprised of an Object Header followed by zero or more Field Blocks and an Object

Footer. The order of the Field Blocks within the Object Block is not important except that the

KEYS, CHECK, and TRIGGER fields must be present after the COMPOSITION or CLASS

COMPOSITION Field Block in the specification.

Note

 A number of fields contain multiple pieces of information separated by hex 01

characters (which appear on your screen as “smiley faces” when using DOS

utilities), <crlf> indicates a carriage return line feed sequence.

Table 7-5
Repository Export VSC Format

Record 1 – Header Record “project root”, “File creation date”, “File creation

time”[,User Attribute Count [, User Entry Type

Count]]<crlf>

User Attribute Information “user defined name”, type, length, description<crlf>

Note: The number of records is indicated by the User

Defined Count in the header record

User Entry Type Information “user entry type name”, LinkSupport, “LinkToType”,

LinkToCardinality, “LinkDisplayName”,

CompSupport, “CompType”,

“CompDisplayName”<crlf>

LinkSupport = digit 0 – no support, 1 – supported

LinkToType = VRE standard or aggregate type

LinkToCardinality = digit 0 – 1:1, l – l:m, 2 – m:1,

 3– m:m

LinkDisplayName = Text name for the define

 dialog box

CompSupport = digit 0 – no support, 1 – supported

CompType = VRE standard or aggregate type

CompDisplayName = Text name for the define

 dialog box

Note: The number of records is indicated by the User

Entry Type Count in the header record.

Subsequent Records Object Header

Item ID record

ENTRY “Entry Key”, “Entry Type | User Defined

 Name”, “Additional Information” [, “[Time Stamp

]”] <crlf>

Entry Key [Class Name ::] Entry Name [::: [Parameter Key]]

This is the ‘ENTRY LABEL’ in the Repository. Class

Visible Analyst Tools

417

Table 7-5
Repository Export VSC Format

Name is the name of the class that owns the object.

This is an optional field. Entry Name is the key field

that is used in the Define dialog box as the primary

name. Both Class Name and Entry Name are ASCII

fields up to 128 characters in length. Parameter Key is

used for Module types to define the argument types

that uniquely identify an instance of a function. Each

argument type is an object in the repository of type

class, data element, or data structure, and is followed

by an ampersand (&) if the parameter is passed by

value or reference, or an asterisk (*) if it is passed by

address. There is no limit to the number of parameters

a function may contain. The colons are required even

if there are no parameters.

Note: It is possible for there to be duplicate keys (this

can happen if there are files and data flows with the

same name).

Entry Type This is a number that indicates the type of entry as

follows:

0 = Data element

1 = Process

2 = File, Data Store

3 = Source/Sink, External Entity

4 = Data Flow

5 = Miscellaneous

6 = Alias

7 = Data Structure

8 = Domain

14 = Function

15 = Module

16 = Library Module

17 = Macro

18 = Library Macro

19 = Data Only Module

20 = Info Cluster

21 = Data Couple

22 = Control Couple

23 = Generic Couple

24 = Data Interface Table Row

25 = Control Interface Table Row

26 = Generic Interface Table Row

Visible Analyst Tools

418

Table 7-5
Repository Export VSC Format

28 = Program

34 = Entity

35 = Associative Entity

36 = Attributive Entity

37 = Relationship Name

38 = Cluster

40 = Relationship Line

43 = Local Data Element

45 = Class

46 = State

47 = Event

48 = Tablespace

50 = View Object

52 = Actor

53 = Use Case

54 – System Boundary

55 = Object (Instance of a Class)

56 = Message (Instance of a Class Method)

SubType If entry type is greater than 65535, then the low order

word contains the entry type as described above, and

the high order word contains the subtype. This

optional field applies only to module types and classes

and is used to denote the following special classes:

Module Subtypes

0 = Standard

1 = Stored Procedure

2 = Check Constraint

3 = Trigger

Class Subtypes

0 = Standard

5 = Structure

6 = Union

7 = Element

8 = Entity

9 = Associative Entity

10 = Attributive Entity

13 = Domain

14 = View

User Defined Name This is the name of the user defined entry type and it

Visible Analyst Tools

419

Table 7-5
Repository Export VSC Format

replaces the Entry Type.

Additional Information For aliases, this field contains the owner entry key and

the owner entry type separated by hex 01 characters.

For relationship name and relationship line entries,

this field contains the From Entity name, To Entity

name, From-To Relationship name and To-From

Relationship name, separated by hex 01 characters.

For structure chart items appearing on a virtual

diagram:

For Invocation Lines, special compound type of all

information necessary to create a virtual diagram

location as follows:

 Type, bounding box, source module, destination

 module (separated by hex 01 characters).

 type = Invocation_Normal[0x01],

 Invocation_Data[0x02],

 Invocation_Lex[0x03]

 (bounding box = 1sx, 1sy, 1ex, 1ey)

Note: The modules referenced in this record must

also be included in the same import file.

In all other cases this field is empty.

Time Stamp This optional field holds the Create and Modify dates

for the object. It is used for import only. The format is

Create Date followed by Modify Date, separated by

hex 01 characters, as follows:

 yyyy-mm-dd, yyyy-mm-dd (separated by hex 01

 characters)

Object Footer END ENTRY <crlf>

Object Fields FIELD “Field Type Name”, Number of Records<crlf>

The basic format for all object fields is a header that

specifies the name of the field and the number of lines

in the body of the field. Many types use “plain text”

that is defined as a list of lines each with a single

quoted string with a maximum line length of 254

characters after processing. Standard Analyst Text

means that the field uses the same format per line as

the Analyst define screen field bearing the same name.

Entry names can be up to 128 characters in length.

Names in fields use Entry Key format unless the Entry

Visible Analyst Tools

420

Table 7-5
Repository Export VSC Format

key information is redundant; i.e., Local data elements

listed in a class composition must be part of that class.

ADM DATA Type, min, max, average<crlf>

Type is the ASCII number for K (key), M (multiple),

or G (group).

ALIAS “Standard Analyst Text” <crlf>

There may be up to 10 aliases per entry.

ASSOCIATOR “Standard Analyst Text” <crlf>

A relationship can have one associator and can be up

to 128 characters in length.

ATTR: “Standard Analyst Text” <crlf>

User-defined attribute entries. The actual Field Type is

“ATTR:User Attribute Name”. There is one of these

for each user attribute used on the object.

CHECK “Column Name”, “Check Constraint Name” <crlf>

CLASS COMPOSITION “Local data element”, “Type Name”, Array Limit,

Flags <crlf>

The Type Name is an object in the repository of type

Class, Data Element, or Data Structure. Both Local

data element and Type Name can be up to 128

characters in length.

Three pieces of information are in the flags fields. One

item from each of the following categories is ORed

together:

Reference

 Address [0x80]

 Reference [0x100]

 Value [0x00]

Visibility

 Implementation [0x18]

 Private [0x10]

 Protected [0x08]

 Public [0x00]

Qualification

 Constant [0x400]

 None [0x000]

 Static [0x800]

 Volatile [0x200]

CLASS DATA Cardinality, “Cardinality Text”, Flags <crlf>

Cardinality can be one of the following values:

Visible Analyst Tools

421

Table 7-5
Repository Export VSC Format

 One [0x01]

 One or many [0x02]

 Many [0x03]

 Zero or One [0x04]

 Zero or Many [0x05]

Cardinality text can be up to 20 characters in length.

Three pieces of information are stored in the flags

field. One item from each of the following categories

is ORed together (Persistent and Abstract are

optional):

Currency

 Active [0x06]

 Guarded [0x20]

 Sequential [0x00]

 Persistent [0x4000]

 Abstract [0x8000]

COMPOSITION “Standard Analyst Text” >crlf>

This field can be used with objects that support com-

position; that is, data structures, entities, data stores.

DATA ONLY MODULE “Standard Analyst Text” <crlf>

This field is used with an information cluster entry,

and can be up to 128 characters in length.

DBFILES Database Type, “File Name”, Size, Reuse <crlf>

This field is used with a tablespace entry to specify

either the data files that comprise the tablespace or the

logical device name. Database Type is 1 for Oracle

and 2 for SQLServer.

DBPHYSINFO “Tablespace Name”, Database Type, Sequence, Index

Type, Additional Information <crlf>

This field is used with either an entity or a tablespace

entry to specify physical storage information. There

can be one DBPHYSINFO object for each entity,

unique key, and performance index defined.

Tablespace Name should be blank {“”} if the current

entry is a tablespace.

Database Type is 1 for Oracle, 2 for SQLServer, 3 for

Informix, 4 for DB2.

Sequence is 0 to define physical information for the

table, 100+ key number for unique keys, and 200+

index number for performance indexes. (Key number

for the primary key is zero.)

Visible Analyst Tools

422

Table 7-5
Repository Export VSC Format

Index type can be one of the following values:

 Sorted [0x00]

 Hashed Ordered [0x10]

 Hashed Scattered [0x20]

Additional Information for Oracle:

No Sort, PCTFree, PCTUsed, INITrans, MAXTrans,

InitialExtent, NextExtend, PCTIncrease, MINExtents,

MAXExtents, FreeLists, FreeListGroups, Offline

Additional Information for SQLServer indexes:

SortedData, FillFactor, IgnoreDupKey, DupRow

DESCRIPTION “Standard Analyst Text” <crlf>

This is a short description for the entry. Up to two

lines of information can be specified.

DIAGRAM LINES lsx, lsy, lex, ley, line)style, terminator_style, color,

start_symbol, end_symbol, next_segment,

associated_line, loop_height<crlf>

DIAGRAM SYMBOLS left, top, right, bottom, text_type, associated_object,

font_name, format_information, color, text<NL>

FRIEND “Friend Name” <crlf>

This field is used with classes to specify either classes

or functions that are friends of the current object. See

the description for Entry Key for the format.

FUNCTION DESCRIPTION

KEYS

“Standard Analyst Text” <crlf>

Key Type, Key Number, “Key Name”, Column Count

<crlf>

“Column Name”, Order <crlf>

Key Type is either 21 for unique keys or 22 for

performance indexes.

Key Number is either zero for the primary key or non-

zero for alternate keys and performance indexes.

Column Count indicates the number of columns in the

key.

Order indicates the sort order of the column and is

either zero for ascending or one for descending.

LINK “Standard Analyst Text” <crlf>

User-defined object link references. The actual Field

Type is “LINK:User Object”. There is one of these for

each user object referenced by the object.

LOCATION Diagram Type, “Diagram Name”, Upper Left X,

Upper Left Y, Lower Right X, Lower Right Y,

Visible Analyst Tools

423

Table 7-5
Repository Export VSC Format

Associated Line Count <crlf>

“Associated Line Name | Parent Flow Name”, Start X,

Start Y, End X, End Y, Direction <crlf>

This field is a list of all diagram locations for the

object. Each diagram location consists of a header line

followed optionally by either a parent flow name

record for data flows or list of associated lines for

other objects.

Diagram Type can be one of the following values:

 Data Flow 1

 Structure Chart 2

 Entity Relationship 3

 Unstructured 4

 Decomposition 5

 Class 6

 State Transition 7

 Entity Life History 8

 Use Case 9

 Sequence 10

 Collaboration 11

 Activity 12

Diagram Name can be up to 40 characters long. Each

diagram within a diagram type must have a unique

name. If the name is prefixed by hex 9B, the diagram

is a virtual diagram imported from Application

Browser.

Associated Line Count is the number of lines attached

to the object on the indicated diagram.

Associated Line Name is the name of the attached

line; it can be up to 128 characters long.

Direction can be one of the following values:

 Input 49

 Output 48

 or

 Couple Down 48

 Couple Up 49

 Couple Bidirectional 50

MODULE DESCRIPTION

MODULES CONTAINED

“Standard Analyst Text” <crlf>

“Standard Analyst Text”<crlf>

This field is used with an information cluster entry.

There can be up to seven modules each up to 128

Visible Analyst Tools

424

Table 7-5
Repository Export VSC Format

characters long.

NOTES

PARAMETER

“Standard Analyst Text” <crlf>

“Name, “Type Name”, Array Limit, Flags

The Type Name is an object in the repository of type

Class, Data Element, or Data Structure. Both Name

and Type Name can be up to 128 characters long.

Two pieces of information are stored in the flags field.

One item from each of the following categories is

ORed together:

Pass By

 Address [0x80]

 Reference [0x100]

 Value [0x00]

Qualification

 Constant [0x400]

 None [0x000]

 Volatile [0x200]

PHYSINFO Data Type, Length, Decimal, “Default Value”,

Picture”, “Owner”, Allow Null <crlf>

OR

Data Type, “Domain Name”, “Owner”, Allow Null

<crlf>

This field is used with data elements or classes with an

elemental subtype. The first version is used if the

entry does NOT reference a domain.

Default Value can be up to 20 characters long.

Picture can be up to 18 character long.

Owner can be up to 8 characters long.

Allow Null is either ASCII 89 (Y) or 78 (N).

PROCESS DESCRIPTION

PROCESS NUMBER

RELATED TO

“Standard Analyst Text” <crlf>

“Standard Analyst Text” <crlf>

“Standard Analyst Text” <crlf>

This field is used with structure chart items to create

an association with data flow diagram items. For

modules, there can be up to 10 processes listed; for

couples, there can be one data element listed; and for

data only modules, there can be one data store, data

structure, data element, or data flow listed. Each

related to item can be up to 128 characters long.

RELATIONSHIP Header

Visible Analyst Tools

425

Table 7-5
Repository Export VSC Format

Controlling Key, Flags, From-To Cardinality, To-

From Cardinality, On Delete, On Update, “From-To

Cardinality Text”, “To-From Cardinality Text”,

“From Role Name”, “To Role Name”, “From

Qualifier Name”, “To Qualifier Name” <crlf>

OR

Controlling Key, Flags, From-To Cardinality, To-

From Cardinality, On Delete, On Update, “From-To

Cardinality Text”, “To-From Cardinality Text”,

“Discriminator Name” <crlf>

Group/Prefix

Group Number, “Prefix 1”, “Prefix 2”,…<crlf>

Foreign keys “Foreign Key Column Name”, <crlf>

This field is used with a relationship line entry to

supply information used during SQL Generation. A

relationship field consists of one header, one

group/prefix line, and one line for each column of the

foreign key. The second form of the header is used

with supertype/subtype and inheritance relationships,

while the first form is used with all other relationship

types.

Controlling key is zero to indicate the primary key is

used in the owner entity, while any other number

indicates an alternate key number.

Four pieces of information are stored in the flags field.

One item from each of the following categories is

ORed together:

Relationship Type

 Normal [0x0]

 Inheritance [0x01]

 Aggregation [0x03]

Denormalization Option

 None [0x0]

 Collapse Child [0x80000]

 Duplicate Parent [0x10000]

 Duplicate Parent and Retain [0x180000]

Identifying [0x2000]

Use Suffix [0x200000]

Cardinality can be one of the following values:

 One [0x01]

 One or Many [0x02]

Visible Analyst Tools

426

Table 7-5
Repository Export VSC Format

 Many [0x03]

 Zero or One [0x04]

 Zero or Many [0x05]

On Delete and On Update can be one of the following

values:

 Cascade [0x01]

 Restrict [0x00]

 Set Default [0x03]

 Set Null [0x02]

Cardinality text can be up to 20 characters long.

Discriminator, Roles and Qualifier names can be up to

128 characters long.

Group Number is used with supertype/subtype

relationships to indicate how relationships are grouped

together. Relationships drawn with the same start

point on the supertype should have identical group

numbers.

TRIGGER “Trigger Name”, Operations, Fire time, Scope, # of

associated columns <crlf>

The values to use are:

Operation – Note that some dialects allow you to

specify more than one operation.

 Update [0x01]

 Insert [0x02]

 Delete [0x04]

Fire Time

 Before [0x00]

 After [0x08]

Scope

 Table [0x00]

 Row [0x10]

For TRIGGER field records, the above structure is

used. For each associated column there is one

associated column record, as follows:

“Column Name” <crlf>

VALUES AND MEANINGS “Standard Analyst Text” <crlf>

VIEW SELECT SQLDialect, SQLStatement<crlf>

SQLDialect is one of the supported dialect IDs.

SQLStatement is the RAW dialect-specific SQL

statement for the view, it is a standard analyst text

Visible Analyst Tools

427

Table 7-5
Repository Export VSC Format

string that may take as many additional lines as

necessary. This field is SUBORDINATE to the

VIEW SPECIFICATION and should be used only if

the view specification is not available.

VIEW SPECIFICATION This field defines how a view is built from its base

entities. It has some basic flags and a list of Sub

Query Select (SQS) definitions that make up the view.

Each SQS has a header line with a number of entity

lines and join lines following it.

Leader line.

MSCFlags, SQSCount<crlf>

SQS header line.

SQSName, Union, Distinct, Filter, GroupBy, Having,

StartWith, ConnectBy, EntityCount, JoinCount<crlf>

Entity line.

BaseEntity, JoinAlias, DP_ULX, DP_ULY, DP_LRX,

DP_LRY<crlf>

Join line.

FirstEntity, SecondEntity, JoinRelation, JoinType,

JoinExpression<crlf>

Filter, GroupBy, Having, StartWith, ConnectBy, and

JoinExpression are all pseudo SQL strings that use

Visible Analyst standard syntax and have embedded

column and SQS references. See the VIEWSPEC

repository definition for definition of the named

values. The strings are in expanded format.

Note

 Bounding boxes for structure chart types refer to “virtual diagram” positions.

The virtual diagram is a temporary object created by import so that invocation

lines can exist in the repository without an associated diagram. Virtual locations

disappear when the associated objects are added to real diagrams. Virtual

locations are not visible when editing repository items.

Table 7-6 lists the record item definitions.

Table 7-6
Record Item Definitions

diagram_type A number representing the diagram type:

Visible Analyst Tools

428

Table 7-6
Record Item Definitions

 1 = Data Flow

 2 = Structure Chart

 3 = Entity Relationship

 4 = Unstructured

 5 = Decomposition

 6 = Class

7 = State Transition

 8 =Entity Life History

 9 =Use Case

 10 =Sequence

 11 =Collaboration

 12 = Activity

notation If the diagram type is data flow, the notation used to draw symbols:

 1 = Yourdon

 2 = Gane & Sarson

 4 = SSADM

 5 = Mtrica

If the diagram type is entity relationship, the notation used to draw

relationships:

 1 = Crowsfoot

 2 = Arrow

 3 = Bachman

Note: If IDEF1X notation is specified in view_level, this setting

indicates the alternate relationship notation.

view_level The level of detail to be displayed on an ERD:

 1 = Entity name only

 2 = Entity name and primary key

 3 = Entity name and all attributes

 8 = Use IDEF1X notation

 16 = Expand associator elements (IDEF1X only)

 32 = Display discriminators (IDEF1X only)

 64 = Display entity name outside box (IDEF1X only)

The level of detail to be displayed on a class diagram:

 1 = Class name only

 2 = Class name and attributes

 3 = Class name, attributes, and methods

view_details Display physical characteristics on an ERD:

 1 = Display physical name

 2 = Display data type

 4 = Display null option

Visible Analyst Tools

429

Table 7-6
Record Item Definitions

 8 = Replace domain references with actual physical type

 16 = Use alias name instead of actual name

Level of detail to display on a class diagram:

1 = OMT Notation

5 = UML Notation

 8 = Display public attributes

 16 = Display private attributes

 32 = Display protected attributes

 48 = Display data type

 128 = Display initial value

 256 = Display public methods

 512 = Display private methods

 1024 = Display protected methods

 2048 = Display argument list

 4096 = Display virtual method tag

lsx X-coordinate of starting point.

lsy Y-coordinate of starting point.

lex X-coordinate of ending point.

ley Y-coordinate of ending point.

line_style Style of the line:

 1 = single solid (default)

 2 = bold solid

 3 = extra bold

 4 = double

 5 = wide double

 6 = dotted

 7 = dashed

 8 = bold dashed

 9 = dashed arc

 10 = solid arc

 13 = generic couple

 15 = data couple

 16 = control couple

 17 = data connection

 18 = control connection

 19 = loop

 20 = dashed elbow

 21 = solid elbow

 22 = supertype

 23 = overlapping supertype

Visible Analyst Tools

430

Table 7-6
Record Item Definitions

 24 = aggregation

 25 = supertype elbow

 26 = overlapping supertype elbow

 27 = aggregation elbow

 28 = object link

 29 = object lifeline

 30 = note link

 31 = object link elbow

 32 = note link elbow

Types 13 through 19 should only be used on a structure chart.

terminator_style Adornment that appears at the startpoint/endpoint of a line.

Dataflow, structure chart, decomposition, and state transition

 1 = solid arrow at endpoint

 2 = open arrow at endpoint

 3 = solid arrow at startpoint and endpoint

 4 = open arrow at startpoint and endpoint

 5 = lexical inclusion at endpoint

 6 = decision diamond at endpoint

 7 = lexical inclusion and decision diamond at endpoint

 11 = single stick arrow

 12 = single half-stick arrow

For entity relationship and class diagrams, one number from each

column must be added together.

 Parent Cardinality Child Cardinality

 0 = undefined 0 = undefined

 256 = one 1 = one

 512 = one or many 2 = one or many

 768 = many 3 = many

 1024 = zero or one 4 = zero or one

 1280 = zero or many 5 = zero or many

color Pen color used to draw line, stored as a Red-Green-Blue (RGB) value

where each component can have a value from 0 to 255.

(((BYTE)(R) | ((WORD)(G)<<8)) | (((DWORD)(BYTE)(B))<<16)))

start_symbol Number of symbol to which the starting point of the line is connected.

If zero, the starting point is not connected to a symbol.

end_symbol Number of symbol to which the ending point of the line is connected.

If zero, the ending point is not connected to a symbol.

next_segment If this field is non-zero, this indicates the line number of the next

segment in a multi-segment line. Segments should be listed

Visible Analyst Tools

431

Table 7-6
Record Item Definitions

sequentially. The line_style and terminator_style for all segments

should be the same. If the line is connected to symbols, only the

start_symbol field in the first segment and the end_symbol field in the

last segment need to be set.

associated_line On a structure chart, if the line_style is 13, 15, or 16, this field

indicates the line number to which the couple is associated. If this

value is less than zero, it indicates a return couple, otherwise it is a

passed couple.

loop_height On a structure chart, if the line_style is 19 (loop), this field indicates

the height of the loop.

left X-coordinate of upper left corner of box that completely contains the

object.

top Y-coordinate of upper left corner of box that completely contains the

object.

right X-coordinate of lower right corner of box that completely contains the

object.
bottom Y-coordinate of lower right corner of box that completely contains the

object.

symbol_type Object type as stored in the repository:

Data Flow Diagram

 1 = Process

 2 = File or Data Store

 3 = Source/Sink or External Entity

Functional Decomposition Diagram

 14 = Function

Structure Chart

 15 = Module

 16 = Library Module

 17 = Macro

 18 = Library Macro

 19 = Data-Only Module

 20 = Information Cluster

 21 = On-page Connector

 22 = Off-page Connector

Entity Relationship Diagram

 34 = Entity

 35 = Associative Entity

 36 = Attributive Entity

 50 = View Object

Class Diagram

Visible Analyst Tools

432

Table 7-6
Record Item Definitions

 45 = Class

State Transition / Activity Diagram

 46 = State

Entity Life History Diagram

 47 = Event

Use Case Diagram

 52 = Actor

 53 = Use Case

 54 = System Boundary

Sequence/Collaboration Diagram

 55 = Object

 56 = Message

foreground_color Pen color used to draw symbol, stored as a Red-Green-Blue (RGB)

value where each component can have a value from 0 to 255.

(((BYTE)(R) | ((WORD)(G)<<8)) | (((DWORD)(BYTE)(B))<<16)))

background_color Brush color used to paint symbol background. Stored the same as

foreground color.

associated_diagram Name of the diagram that is associated with this symbol. This entry is

used to create linkages between levels on a dataflow diagram,

connected pages on a structure chart or class to state transition

relationships. If no linkage exists, this field should be NULL ("").

drawing_instruction Internal drawing instruction for non-methodology symbols. For all

others this should be NULL ("").

symbol_name The name of the symbol. or NULL (“”). If this field is set, there

should not be a name for the object in the DIAGRAM TEXT section.

process_number The process number for the symbol. or NULL (“”). If this field is set,

there should not be a process number entry for the object in the

DIAGRAM TEXT section. This field is only valid for process

numbers.

text_type A number indicating the type of text:

 -1 = process/data store number

 1 = symbol label

 2 = line label (primary)

 3 = line label (secondary - used only for relationships)

 4 = information cluster – module

 5 = information cluster - data module

 6 = caption

associated_object Number of symbol or line to which this text entry is associated.

font_name Name of font used to draw label.

format_information Formatting options for text:

Visible Analyst Tools

433

Table 7-6
Record Item Definitions

 S# = point size, where # is replaced by a number

 B = bold

 I = italic

 U = underline

 C = text is centered in bounding box

text This field contains the entry label. Embedded carriage returns are

replaced by ASCII 31.

ConstraintType One of

VRCNST_CHECK 0

VRCNST_DEFAULT 1

VRCNST_NULL 2

MemberName Name of a class member object.

ElementName Entry key for an elemental type.

ArrayLimit old. size of an array defined in the text composition field.

If DataType is VRT_ARRAY then this is the same as ArrayLength.

Flags VR_END_GROUP 0x00010000

VR_IN_GROUP 0x00020000

VR_AND_GROUP 0x00040000

VR_EASY_NOT_NULL 0x10000000

VR_EASY_UNIQUE 0x20000000

UseValues Bit field that defines whether the values in the record are definitions or

copied from the base type.

VRPHI_USE_NullType 0x0001

VRPHI_USE_Picture 0x0002

VRPHI_USE_Owner 0x0004

VRPHI_USE_Default 0x0008

VRPHI_USE_IdentitySpec 0x0010

DataType Analyst VRT data type.

VRT_UNDEFINED 0

VRT_BIT 1

VRT_VARBIT 2

VRT_CHAR 3

VRT_NATIONAL_CHAR 4

VRT_VARCHAR 5

VRT_NATIONAL_VARCHAR 6

VRT_LONG_VARCHAR 7

VRT_BINARY 8

VRT_VARBINARY 9

Visible Analyst Tools

434

Table 7-6
Record Item Definitions

VRT_LONG_VARBINARY 10

VRT_UNICODE_CHAR 11

VRT_UNICODE_VARCHAR 12

VRT_UNICODE_LONG_VARCHAR 13

VRT_LARGEINT 14

VRT_INTEGER 15

VRT_SMALLINT 16

VRT_TINYINT 17

VRT_MONEY 18

VRT_SMALLMONEY 19

VRT_DECIMAL 20

VRT_ZONEDDECIMAL 21

VRT_FLOAT 22

VRT_SMALLFLOAT 23

VRT_DATE 24

VRT_TIME 25

VRT_DATETIME 26

VRT_SMALLDATETIME 27

VRT_INTERVAL 28

VRT_SERIAL 29

VRT_UPDATESTAMP 30

VRT_ROWID 31

VRT_SYSNAME 32

VRT_USER_TYPE_1 33

VRT_USER_TYPE_2 34

VRT_USER_TYPE_3 35

VRT_USER_TYPE_4 36

VRT_USER_TYPE_5 37

VRT_ARRAY 253

VRT_LIST 254

VRT_DOMAIN 255

Length Length of the object, type specific in meaning. For bit and floating

point types it is a number of bits, for decimal types it is the number of

significant digits, for date types it is a special packed value, for all

other types it is a number of characters.

Decimal The number of decimal places to the right of the decimal point. For

floating point types it is the scale.

DefaultValue Constant expression in pseudo SQL that defines the a default for this

type.

Visible Analyst Tools

435

Table 7-6
Record Item Definitions

Picture COBOL picture clause.

Owner User field.

AllowNull NULL Y

NOT_NULL N

NOT_NULL_WITH_DEFAULT D

IDENTITY I

IdentitySpec Seed, Increment

DefaultName Constraint name for the default clause

NullName Constraint name for the Null clause

BaseTypeName Entry Key for the base elemental object that is a basis for this type.

ArrayLength Size of the array for VRT_ARRAY

0 Dynamic, >0 Actual fixed size.

An example of an exported ASCII file is shown in Table 7-7.

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”

(‡ is substituted for the hex 01 character)
“BT6”,1995 10 27,”10:17:11”,1,3

PowerBuilder Extensions”,4,0,0

annotation”,0,“0”,0,“”,1,“45”,”annotation Description”

requirement”,0,“0",0,“",1,“0",“requirement Description”

“Display Format”,2,“304",1,“",0,“0",“Format:"

ENTRY “264",”40",“Entity1‡Entity2‡may have‡Is an extension of"

FIELD “RELATIONSHIP”, 2

0,8192,2,1,0,0,“",“",“",“",“",“"

0

END ENTRY

ENTRY “A Parent Flow”,“4",“"

FIELD “COMPOSITION”,, 2

“SubFlow1 +”

“SubFlow2"

FIELD “LOCATION”,, 1

1,“TopLevelDiagram",398,594,1016,861,0

END ENTRY

ENTRY “A process for top flow”,"1",""

FIELD “PROCESS NUMBER”, 1

Visible Analyst Tools

436

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”

(‡ is substituted for the hex 01 character)
“1.1"

FIELD “LOCATION”, 3

1,"Top Flow",700,250,1084,696,2

SubFlow1",85,273,716,336,49

SubFlow2",85,614,716,550,49

END ENTRY

ENTRY “ColumnID”,"458797",""

FIELD “PHYSINFO”,, 1

22,60,0,"","","",32END ENTRY

ENTRY “ColumnName”,"458797",""

FIELD “PHYSINFO”, 1

1,0,0,"","","",32

END ENTRY

ENTRY “Entity1",”34",""

FIELD “COMPOSITION”, 2“

“[PK] ColumnID”“

“[PI1] ColumnName”

FIELD “KEYS”, 4

21,0,"",0,1

“ColumnID”,0

22,1,"",0,1

“ColumnName”,0

FIELD “LOCATION”, 2

3,"An ERD Diagram",350,250,932,538,1

“264",913,420,1461,813,48

END ENTRY

ENTRY “Entity2",”36",""

FIELD “CLASS COMPOSITION”, 2

“”,"ColumnID",0,0

“SupplementalID”,"ColumnID",0,0

FIELD “KEYS”, 3

21,0,"",0,2

“ColumnID”,0

“SupplementalID”,0

FIELD “LOCATION”, 2

3,"An ERD Diagram",1200,800,1782,1088,1

“264",913,420,1461,813,49

END ENTRY

Visible Analyst Tools

437

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”

(‡ is substituted for the hex 01 character)
ENTRY “Is an extension of”,"37","Entity1‡Entity2‡may have‡Is an extension of”

FIELD “LOCATION”, 1

3,"An ERD Diagram",913,420,1461,813,0

END ENTRY

ENTRY “SubFlow1",”4",""

FIELD “LOCATION”, 2

1,"Top Flow",85,273,716,336,1

“A Parent Flow”

END ENTRY

ENTRY “SubFlow2",”4",""

FIELD “LOCATION”, 2

1,"Top Flow",85,614,716,550,1

“A Parent Flow”

END ENTRY

ENTRY “Entity2::SupplementalID”,"43",""

END ENTRY

ENTRY “Top Flow”,"1",""

FIELD “PROCESS NUMBER”, 1

“1"

FIELD “LOCATION”, 2

1,"TopLevelDiagram",1000,650,1384,1096,1

“A Parent Flow”,398,594,1016,861,49

END ENTRY

ENTRY “sample erd”, “41”, 3‡1‡1‡0”, “1997-05-20‡1997-05-20”

Field “DIAGRAM SYMBOLS”, 2

175,212,757,500,34,0,11141119, “”,””

1334,931, 1916,1219,34,0,11141119,””,””

Field “DIAGRAM LINES”, 1

739,350,1639,944,21,261,0,1,2,0,0,0

FIELD “DIAGRAM TEXT”, 5

365,324,567,387,1,1,”Times New Roman”, “CS12”,0,”customer”

1541,1043,1709,1106,1,2,”Times New Roman”,”CS12”,0,”invoice”

1086,275,1291,329,2,1”Arial”,”S10”,0,”generates”

1028,371,1349,425,3,1,”Arial”,”S10”,0,”is generated by”

1283,48,2407,133,6,0,”Times New Romas”,”BIS16”,255,”Sample Entity Relationship

Diagram”

END ENTRY

ENTRY “sample dfd”, “41”, “1‡2”,””

Visible Analyst Tools

438

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”

(‡ is substituted for the hex 01 character)
FIELD “DIAGRAM SYMBOLS”, 1

1011,315,1395,761,1,,0,11141119,”process one dfd”,””

FIELD “DIAGRAM LINES”,4

461,495,646,742,1,1,0,0,0,2,,0,0

646,742,1027,632,1,1,0,0,2,0,0,0

1377,586,1869,714,1,1,0,1,0,3,0,0

1903,3157,2895,3735,1,1,0,0,0,0,0,0

FIELD “DIAGRAM TEXT”, 4

1191,336,1214,382,-1,1,”Courier New”,”C8”,0,”1”

1161,551,1290,614,1,1,”Times New Roman”,”CS12”,0,”process”

697,572,927,635,2,1,”Times New Roman”,”S12”,0,”input flow”

1517,534,1773,597,2,2,”Times New Roman”,”S12”,0,”output flow”

END ENTRY

IMPORTING DATA INTO THE REPOSITORY
There are several types of imports that can be done to get external data into the Visible

Analyst repository.

 Generic format that imports from ASCII files in the proprietary VSC format.

 KnowledgeWare (IEW/ADW) format.

 Excelerator “Excel” format.

 SQL format.

 AS/400 DDS (Data Description Specification) format.

 Application Browser format.

 Powersoft PowerBuilder format.

 RDBMS Catalog format.

 Uniface format.

 Unify VISION format.

 GDPro format.

 ERwin .ER1 or XML format

 XMI format for CompuWare OptimalJ.

 Progress 4GL

All are described below.

Visible Analyst Tools

439

Note

 The Import tool makes significant modifications to your project repository. For

this reason it is good practice to backup the project to which you are importing

prior to the import. In this way you can easily recover from any unintentional

project changes.

General Import Information
After you have prepared the data file contents you want to import into Visible Analyst, there

are three stages to the import: preparation, verification, and the actual import.

Preparation

You must first decide on the format of the imported data. You can choose from the formats

listed above. If you select RDBMS Catalog, you must select an SQL dialect. If you select

SQL format, you must also select the SQL dialect and type a schema name. (See Figure 7-3.)

For both RDBMS Catalog and SQL format, you have the option to infer foreign keys.

 Figure 7-3 Import Dialog Box

Visible Analyst Tools

440

Next, you must decide upon the import options, how Visible Analyst should handle imported

data vis-à-vis the information already residing in the project repository. You have three

choices:

 Overwrite All tells Visible Analyst to add everything in the import file to Visible Analyst

regardless of whatever is already there. Visible Analyst overwrites existing data or

creates new records and fields as necessary.

 Overwrite None indicates that nothing already in your repository is to be touched. Import

file information that would cause such an overwrite is ignored.

 Type List gives you a detailed means to customize the import, as described below.

Import Customization

Customization allows you to make flexible choices on what repository types and what fields

within those types are imported. Furthermore, you can specify how import data/existing data

collisions are handled. (See Figure 7-4.)

 Figure 7-4 Repository Import Customization Settings

Visible Analyst Tools

441

For each repository type (data element, control couple, etc.), you can choose whether items of

that type within the import file are to be imported by checking the Include in Import box for

that type. Note that you can set import characteristics for subtypes of the compound types

individually, regardless of the settings you make for the compound type. For example, you

can choose to import All Standard DFD types, but choose not to import Aliases and

Miscellaneous items.

For each of the above types you chose to import, you can check both the repository fields you

wish to import and whether or not you want existing data in those fields to be overwritten.

You have additional flexibility with the Merge option. The basic idea of merging is that if a

field exists in the import file and the corresponding field already in the repository is empty,

the file data is imported regardless of overwrite settings for the remaining fields of that

repository item. If Merge is on (the default setting), Visible Analyst brings in all data fields

for an item except for those fields that contain data and for which overwriting is prohibited. If

Merge is turned off, if any field for a repository item is non-importable because of an

overwrite restriction, no fields for that item are imported. You should turn Merge off for a

repository type only if this all-or-nothing approach suits your needs.

When you have completed your customization settings, you can review them by selecting the

repository types in the dialog box list and noting the options set for each. (The easiest way to

do this is with the up and down arrow keys.) If you have set some import characteristics for a

compound type, say All Entity Types, and different ones for a subtype of that compound type,

say Attributive Entities, when you display the characteristics for the compound type you are

informed that those for the subtype are different.

Note

 Customized import characteristics are saved and are applied to future imports

for which you pick Type List as the Import Option. You can modify these at the

time of future imports and the changed characteristics are saved. You can,

however, reset them all (turn all customizations off) if you wish. In the Types to

Import dialog box (see Figure 7-4), select All for the import type and toggle the

Include in Import box on and then off. All options are then reset, and you can

save this status by clicking the OK button.

Verification

Clicking OK at the Import dialog box runs the verification function to allow you to check that

the import will be carried out as you expect. There are two reports that result from verification

that you can view on the screen, print, or save to a file. You should review these carefully.

Both are described below.

Visible Analyst Tools

442

Import File Error List

The Import File Error List (see Figure 7-5) shows, for all repository types, what is done to

them on import. In other words, it summarizes the import characteristics you specified. At the

top are the compound types and below them are the individual types that either are not part of

any compound type or that vary from the compound type to which they belong. At the bottom

of the report are descriptions of errors in the import file, if any. The existence of errors means

that the actual import cannot proceed until you correct them and rerun the import verification

procedure.

 Figure 7-5 Import File Error List

Import File Overlap List

At the top of the Import File Overlap List (see Figure 7-6) is the same summary of import

characteristics as above. Below is a report that shows, for every entry in the import file for

which there is an overlap with data already in the repository, how the Import function applies

the import characteristics you specified in the customization dialog box.

Visible Analyst Tools

443

 Figure 7-6 Import File Overlap List

Importing the Data

After the verification step has run error-free, you can run the actual import. When it is

complete, you see the Import Action List (see Figure 7-7). This again shows a summary of

your import characteristics. Below that, it displays a list of every item in the import file and

how it was handled by the Import tool. If you notice that a major error in the way data was

imported, you can delete the project and restore the backup you made before beginning the

import procedure.

 Figure 7-7 Import Action List

The Import Procedure
To use the import tool:

Select Import: 1 Select the Import tool from the Tools menu.

Visible Analyst displays the import dialog box. See

Figure 7-3.

Select the Format of 2 Select the format of the import file (what application

the Import File You it comes from (SQL, IEW, etc.)) from the list box. Then

Want to Import: choose or enter the name of file you wish to import.

Visible Analyst Tools

444

Choose your Import 3 Decide which import options you want—Overwrite All,

Options: Overwrite None, or Type List—to customize your

import. If you choose the Type List option, the Modify

Type List button is enabled.

Customize the Import: 4 If you want to customize your import, click the Modify

Type List. Click OK after making your choices to save

the current selections. Click Cancel to revert to the

previously saved import customizations, if any.

Verify the Import: 5 Follow the import process. See Figures 7-5 and

7-6.

Run the Import: 6 Execute the import. When it is complete, check the

results shown on the Import Action List, as shown in

Figure 7-7. The import is now complete.

Import Formats

VSC Format Imports

The Import selection on the Tools menu allows you to load information into a project data

repository from an ASCII file. The ASCII file format required is the same as that generated by

the VSC format of the repository export. This means that you may use the VSC format to

export from one project and import into another project. You may also create an ASCII file in

this format from another application or database and import it into a Visible Analyst project.

Import from Excelerator™

Project data should be exported from Excelerator using its “E” format, the default. Files in

that format consist of a header record and data records. One E-file is created for each project.

One data record in an E-file contains one entry from the Excelerator repository. The import

from Excelerator to Visible Analyst works one project or E-file at a time.

There are several issues involved in importing Excelerator repository items into Visible

Analyst:

 Excelerator allows names no longer than 32 characters, but the uniqueness rules are less

strict than those of Visible Analyst. In Excelerator, an object name must be unique only

within its entry type (for example, a data element and a process may share the same

name). An import naming convention has been developed to resolve possible problems;

Visible Analyst appends names with the entry type name when several entries use the

same name.

Visible Analyst Tools

445

 Excelerator may have more than 70 different entry types, depending on its configuration,

and that number may grow in new versions of Excelerator. All Excelerator entry types

can be divided into three categories:

1 Entry types that have direct correspondence with Visible Analyst entry types are

converted to the Visible Analyst type. Still, some of the attributes of such entries do

not have corresponding attributes in Visible Analyst. These attributes may be lost or

be moved to the Notes field during the transfer.

Almost all of the Visible Analyst objects are among the Excelerator entry types.

Missing are couples, interface table rows, information clusters, different module

types, different entity types and domains.

2 Entry types that don’t have analogs in Visible Analyst are ignored.

3 Diagrams are entries in the Excelerator repository. Because of the great differences

between the way these two products draw diagrams, there would be so many

problems with the conversion of Excelerator diagrams into Visible Analyst diagrams

that Excelerator diagrams are ignored during import in the current release.

 Excelerator allows both an input picture and an output picture for a data element. Visible

Analyst uses whichever of these is present. If both exist, the output picture is used.

The list of the Excelerator entry types that can be imported into Visible Analyst is below.

Only entry types from the basic Excelerator product (XL/IS) are included in the list. Those

from others (XL/DB2, XL/CSP) would be ignored in any case.

Table 7-8
Entry Types Imported from Excelerator

Excelerator ID Excelerator Type Name Visible Analyst Entry Type

DAE

DAR

DAF

DAS

ELE

EXT

FUN

PPS

PRC

REC

DNR

Data Entity

Data Relationship

Data Flow

Data Store

Data Element

External Entity

Function

Primitive Process Spec

Process

Record

Data N-ary Relationship

Entity

Relationship

Data Flow

Data Store

Data Element

Exernal Entity

Module

Process Description

Process

Data Structure

Associative Entity + Relationships

Visible Analyst Tools

446

KnowledgeWare IEW/ADW Import and Export

Project data from IEW (Information Engineering Workbench) can be exported to and

imported from a set of four formatted text files. Those files are relational database files

converted into an ASCII format. The file names are fixed by IEW. The following is a

simplified description of these files:

OI.EXP The object file. It contains entry names, types and internal

 IDs.

AI.EXP The association file. It contains composition/location information and

 relationships.

PI.EXP The property file. It contains non-text (short) object properties.

TI.EXP The text file. It contains text (long) object properties: description and notes.

The import/export works on a project basis; a Visible Analyst project corresponds to a set of

four formatted text files created by/exported to IEW.

 Figure 7-8 Repository Export Log to IEW Format

Notes on Import

In IEW, a project is designated by the name of the directory in which it is stored. It is

probable that the files exported from IEW are stored in the project directory.

Visible Analyst Tools

447

 Some IEW attributes get translated to Visible Analyst data elements and some to data

structures. If an attribute is a concatenation in IEW, then it is imported as a data structure.

Only top-level attributes and concatenations go directly to the composition field of an

entity. Attributes that are members of a concatenation are placed in the composition field

of the proper data structure. Relationships that are members of concatenations are not

placed in the composition field of the data structure; they are imported as relationships.

 Local data types are not imported as Visible Analyst repository entries. They only supply

the physical characteristics for the associated attributes (data elements).

 Visible Analyst does not allow entities and relationships in the composition of a data

flow. Only data flows and attributes from an IEW flow expression can go to the data flow

composition field.

 Visible Analyst does not support exact values for a relationship’s cardinality. All values

greater than one are interpreted as “many.”

 Text fields (IEW definition and comments) get reformatted to fit 60-character lines. For

Visible Analyst entries with the composition field (entities, data structures, data flows,

etc.), the IEW definition is imported as the Visible Analyst description and is limited to

two lines.

Notes on Export

 An export from Visible Analyst in IEW format causes four files to be created in your

transient file path.

 In IEW an attribute (data element) cannot exist without being, at some level, in the

composition of an entity. Thus, free-standing data elements and data structures do not get

exported to IEW. All of the data elements and data structures from the full decomposition

of an entity (excluding associator/elements) are exported as attributes of that entity, and

data structures generate concatenations.

 In IEW an attribute can only describe one entity. Thus, each Visible Analyst data element

or data structure generates as many IEW objects as the number of entities where it is used

in the composition field.

 The physical information of data elements generate IEW local data type objects.

 Data flow decomposition is limited to data flows and data elements or data structures that

are used in the composition field of an entity.

 For Visible Analyst entries that have three text fields (description, notes and a third one –

values & meanings, process description, etc.), the description field and the third field are

concatenated into an IEW definition.

 For relationships, text fields for both relationship directions are merged to form one IEW

text field.

 IEW requires relationships to be named in both directions. The export procedure

generates the relationship name “reverse of …” for the reverse direction of a Visible

Analyst uni-directional relationship.

 IEW requires that a creator user name be attached to each object. On export to IEW, this

will be set to VAW for each object exported.

Visible Analyst Tools

448

General Notes

There are several other issues involved in moving data between the IEW repository and

Visible Analyst:

 Creation and modification dates are transported.

 IEW only allows names no longer than 32 characters, but the uniqueness rules are less

strict than those of Visible Analyst. Further, IEW has different rules for the characters

allowed in an object name. The import and export routines have naming conventions to

resolve possible problems.

 IEW objects that have direct correspondence with Visible Analyst entry types are

converted to the Visible Analyst type. Still, some of the attributes of such entries do not

have corresponding attributes in Visible Analyst. These attributes may be lost or be

moved to the Notes field during the transfer. Entry types that don’t have analogs in

Visible Analyst are ignored.

The list of the IEW objects that can be imported into Visible Analyst is shown in Table 7-9.

Table 7-9
IEW Objects for Import/Export

IEW Object IEW

Type

Code

IEW Workstation Visible Analyst Entry Type

Attribute Type

Entity Type

Relationship Type

Function

Process

Data Flow

Data Store

External Agent

Global Data Type

Local Data Type

10003

10007

20044

10058

10000

10008

10012

10002

10016

10048

Planning, Analysis

Planning, Analysis

Planning, Analysis

Planning

Planning, Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Data Element or Data Structure

Entity (fundamental, associative,

attributive)

Relationship

Function

Process

Data Flow

Data Store

External Entity

Domain

Data Element Physical Inf.

Import from SQL

The SQL import utility allows you to create a Visible Analyst data model from SQL DDL

statements. Like other utilities, you can execute it by selecting Import from the Tools menu.

The program reads the SQL file, searches for supported DDL statements, and generates

Visible Analyst entities, data elements, and corresponding relationships.

Visible Analyst Tools

449

The SQL Source File

An SQL file for import is a free-format ASCII file with the following characteristics:

 Tokens (that is, SQL keywords) are separated by spaces, tabs, and new-line characters.

 Single line comments are introduced with two dashes (—) or an exclamation mark (!).

 Multi line comments are introduced with /* and terminated by */ and you cannot have

nested comments.

Only DDL statements get Visible Analyst’s attention; all others are ignored. Each create table

statement generates an entity. Each column in the table generates data elements in the

composition field of the entity, with physical information. The create table statements can

conform to Ansi-92 standards and are dialect dependent.

There are three types of entities: fundamental, associative and attributive. Visible Analyst

determines the entity type based upon the foreign key references. If no foreign key constraints

are defined in the create or alter table statements, they can be inferred by enabling the Infer

Foreign Keys option.

Alter Table Statements

If a foreign key is referenced outside the scope of the current create table statement, most

dialects create an Alter Table Statement at the end of the schema. Visible Analyst reads these

alter table statements and generates the appropriate entities if they don’t exist and populates

the entity with the primary and foreign keys, check constraints, and unique key indexes if this

information is provided.

Check Constraints

Visible Analyst supports table and column check constraints as well as primary and foreign

key constraints on columns.

Tables/columns are allowed multiple constraints. If no name exists, the constraint is defined

using the table/column name. If there are duplicate constraint names, each instance is

suffixed with an indexed number.

Primary and Foreign Key Clauses

A primary key clause generates a [PK] prefix before the names of the data elements that are

components of the primary key in the entity’s composition field. When the Classic User

Interface is turned off on the options menu, the primary key is indicated in the repository

entry for an entity by a yellow key on a yellow icon displayed before the attribute name in the

Attributes field.

A foreign key clause generates a relationship bearing the name of the foreign key. In the case

of an unnamed foreign key, the relationship is named Related to. The entity in which the

foreign key clause is found is the destination entity for the relationship; the entity referenced

by the foreign key is the source entity. The relationship’s cardinality on the source entity end

Visible Analyst Tools

450

is set to 1:1 and that on the destination entity end is set to 0:many. If the entity in which the

foreign key is found is an attributive entity (fully dependent on the parent entity), then the

relationship’s cardinality on the source remains 1:1 but that on the destination entity end is set

to 0:1.

When the Classic User Interface is turned off on the options menu, the foreign key is

indicated in the repository entry for an entity by a white key on a yellow icon displayed before

the attribute name in the Attributes field.

If the Infer Foreign Keys option is selected, Visible Analyst infers foreign key relationships

based upon the following criteria:

 Any columns participating in foreign key constraints defined by the schema are ignored

during the inferencing process.

 Any column that is part of a primary or unique key is included in the foreign key

candidate pool.

 When a column matches an item in the candidate pool in both name and data type

(including length and precision), it is marked as a foreign key column.

 A relationship is created between the entity containing the inferred foreign key and an

entity that contains the largest number of column matches. If there are multiple entities

that have the same number of column matches, a set of supertype relationships is created

between a pseudo parent entity named SupertypeNetworkParent_x and each of the

matching entities.

Data Element Naming Convention

The Import tool maintains the uniqueness of the generated data element names. If two or more

columns under different tables have the same name but have differing data types, the column

names are suffixed with an index numbering scheme. If the Import tool generates an element,

and the data type is not supported by Visible Analyst, the element is defined as a domain and

the type is undefined.

create table table_name [ignored text]

(

 column_name storage_type [(length [, dec])]

 [[not] null]

 [[with default | default default_value]]

 [ignored text] ,

 [Primary key [primary_key_name] (column_name , …) ,]

 [Foreign key [foreign_key_name] (column_name , …)

 references table_name

 [ignored text],

Visible Analyst Tools

451

 Figure 7-9 Import Format, SQL Create Table Statement

Domains

The import tool supports an object type called domain if importing Rdb or SQLServer

dialects.

Unique Indexes

Create unique indexes generates alternate keys in an entity as long as there is a primary key

defined or the index is part of a concatenated primary key for the entity. If no primary key

exists for the entity, the unique index is referenced as a primary key.

Performance Indexes

Create indexes (that is, non-unique indexes) generate performance indexes in an entity.

Comments on Tables and Columns

Any comments associated with a particular column or table appears in the repository

description field of the object. There is an upper limit of 160 characters per comment.

Stored Procedures

If your dialect supports stored procedures, Visible Analyst creates a module with a subtype of

stored procedure when a stored procedure is encountered upon import. The text associated

with every stored procedure in the DDL is stored in the module description field in Visible

Analyst. If using Informix, you must have an “end procedure” statement following the stored

procedure. If using SQLServer, you must include a newline Go newline after each stored

procedure. For Rdb, you must have an “end module;” and for Oracle Server, a balanced

begin/end block is required. Currently Rdb is the only dialect to support a module. When a

module is encountered upon import, a corresponding stored procedure is created in the Visible

Analyst repository; and the text associated with the module is stored in the module description

field.

Triggers

Rdb, Oracle Server, SQLServer, Informix, and DB2 dialects support triggers. For SQLServer,

the trigger must be followed by a newline Go newline statement or an EOF. Each trigger is

associated with a table. It is always fired after; and Visible Analyst supports insert, delete or

update commands. For Oracle Server, each trigger is associated with a table. It can be fired

before or after; and Visible Analyst supports insert, delete, update with a column list and a

firing scope for either the row or table. For Rdb, the support is the same as Oracle Server

except the firing scope is specified as part of the trigger body.

Visible Analyst Tools

452

Tablespace

Create Tablespace statements generates a tablespace object in the repository. If an entity or

index references a tablespace, the link is maintained. For SQLServer, the sp_addsegment()

and sp_extendsegment() stored procedures also generate a tablespace object. You must have

DBA privileges to extract physical properties.

Views

Create View statements generate view objects in the repository. The composition field is

populated with the list of columns used by the view, and the Select statement is converted to a

database-neutral format. This allows views to be regenerated for any target database.

Identity Clause Support

SQLServer version 6.x, 7.x, 2000, 2005 and System 10/11 are the only dialects to support

identity clauses. If a numeric data type is encountered and the identity clause follows this data

type in the SQL DDL, upon import Visible Analyst creates this column with an Allow Null

value of Identity.

RDBMS Catalog Import

Data model information can be transferred between any of the supported RDBMSs and

Visible Analyst in a seamless fashion. This function populates a Visible Analyst project

database with the data model information as defined in the RDBMS. The supported RDBMSs

are Centura SQLBase, SQLServer, Oracle Server, DB2, and Informix, as well as any ODBC

compliant database. Please refer to the individual RDBMS for installation guidelines.

The information captured includes all entity and attribute definitions, any key information, as

well as views, triggers, constraints and stored procedures, if your RDBMS supports them.

Refer to Import from SQL described above for more information.

You may need DBA privileges to extract physical properties.

To import RDBMS database definitions into Visible Analyst:

 Select Import from the Tools menu, choose RDBMS Catalog and click OK.

 The Select Data Source dialog is displayed. This dialog box lists the ODBC drivers

installed on the PC which are used to connect to the database. After selecting the

appropriate ODBC driver, or creating a new one, the connection is made to the database.

You will be prompted to enter the database login and connection information before the

connection is made. Refer to Connecting to an RDBMS Engine in Getting Started for

more information on the dialog box.

 Visible Analyst reads the RDBMS database definitions, converts them to SQL DDL, and

displays an import action list (see Figure 7-7), showing a summary of the objects to be

imported. If this import action list is correct, simply click the Import button at the bottom

of the screen; and the repository is populated with your data model information. You can

Visible Analyst Tools

453

then have Visible Analyst automatically generate an ERD from the data model

information that was imported.

DDS Import

An IBM AS/400 DDS (Data Description Specification) import allows the creation of a data

model from DDS statements, and is similar to an SQL import. A DDS source file is an ASCII

file with 80-character, fixed length, column position formatted lines. The format is shown in

Table 7-10.

Table 7-10
DDS Source File Format

Field # Columns Meaning

1 1-5 Line number.

2 6 Always “A”.

3 7 ‘*’ indicates the line is a comment.

4 17 ‘R’ = record, ‘K’ = key, ‘ ‘ = element.

5 19-28 Record/element name (10 characters).

6 30-34 Length (elements only).

7 35 Storage type (elements only):

 ‘P’ = packed dec.,, ‘S’ = zoned dec.,,

 ‘B’ = binary,, ‘F’ = float,

 ‘A’ = character,, ‘H’ = hexadecimal,

 ‘L’ = date,, ‘T’ = time>,

 ‘Z’ = timestamp.

8 36-37 Decimal places.

9 45-80 Attributes:

ALWNULL = allow null

DFT(value) = default

TEXT(‘text’) = comment

VARLEN = variable length (character).

FLTPCN(*DOUBLE) = double precision.

If the attributes for one element do not fit in columns 45-80, they can be continued on the

following line(s) in columns 45-80. Key specifications follow the element specifications.

Below is a DDS example:

00010A R PERSON TEXT(‘Entity Person’)

00020A* Elements

Visible Analyst Tools

454

00030A PERSON_ID 10 A TEXT(‘Person ID’)

00040A NAME 40 A TEXT(‘Name’)

00050A INFO 400 A TEXT(‘Info’) ALWNULL

00060A VARLEN

00070A WEIGHT 6 P2 DFT(200.00)

00080A HEIGHT 4 P1 DFT(6.0)

00090A* Key Components

00100A K PERSON_ID

The DDS Name Translation selection available on the Options menu allows you to tailor how

object names are mapped to Visible Analyst object names during DDS import. There are

three mapping schemes available:

 Logical to Alias. A Visible Analyst object name is mapped to the ALIAS() field.

 Logical to Colhdr. A Visible Analyst object name is mapped to the COLHDR() field.

 Logical to Text. A Visible Analyst object name is mapped to the TEXT() field.

Import Data from Application Browser
Data from Application Browser can be imported into Visible Analyst. COBOL code can be

put into the Application Browser Code Base and viewed in its diagrams. This import

procedure enters this COBOL information into the repository of a Visible Analyst project

created in Visible Analyst, using the Import tool from the Tools menu.

Conversion Information

COBOL Data Division items are converted into data structures and data elements. The overall

structure of the code creates structure chart items in the Visible Analyst project repository.

When you print reports on such a project, structure chart items have diagram location

references. These references appear as “|virtual”. This is because the import procedure creates

a virtual diagram in Visible Analyst while creating structure chart items from Code Base

information. You can generate structure charts from this repository information.

In addition to the procedure modules, files, data structures, and data elements created, one

data only module is created for each COBOL module (source file). It contains the 01 level

Data Division definitions. The name of this module is the COBOL source module name with

the suffix _DATA.

If a paragraph contains a PERFORM statement that executes a single paragraph, a standard

invocation is created. If multiple paragraphs are performed, for example PERFORM P1

THRU P5, a logical module is created with the name P1..P5 with a lexical inclusion

invocation to it. Invocations for the individual paragraphs are created from the P1..P5 module.

GOTO statements between these paragraphs generate control connections between the

modules in Visible Analyst.

Visible Analyst Tools

455

FALLTHRU statements are usually ignored because their action is implied by the standard

method of connecting modules. However, in the case of pathological connections that jump

out and then back into the list of paragraphs executed by a PERFORM THRU block,

FALLTHRU statements are converted into control connections to show the flow through

modules outside the list.

A CALL statement in COBOL that calls an external source module generates an invocation

from the calling module to the top module of the called program module hierarchy. Any pa-

rameters used with the CALL statement in the original COBOL code are lost in the current

version of Visible Analyst.

OCCURS clauses in the COBOL source are semantically translated properly into Visible

Analyst if the OCCURS value is a simple numeric. Complex OCCURS clauses containing

DEPENDING ON, INDEXED BY, etc., are placed into the item Notes field.

Other Conversion Information

Copy libraries used in the original COBOL source are expanded in-line and incorporated into

the Visible Analyst repository in their expanded forms.

Currently, the RENAMES statement in COBOL is not supported in Visible Analyst.

COBOL paragraph comments are placed in the Notes field of the module representing the

paragraph.

The external name for a COBOL file appears in the Notes field of the file in Visible Analyst.

A Visible Analyst data structure is created for each non-lowest-level item in a COBOL Data

Division data definition.

Lowest-level items, including non-subdivided level 01 items and level 77 items, become data

elements.

Level 88 statements have their values listed in the Values & Meanings field of the data

element with which it is associated in the COBOL source.

Naming Considerations

There are certain name transformations that occur during the import because of different

naming rules in the Application Browser and Visible Analyst. First, Application Browser

names that begin with a number are prefixed with the letter “A” to conform to the Visible

Analyst rule that names must begin with a letter. Second, a suffix is added to Application

Browser names that are used in different places with different meanings, so that they can be

distinguished in Visible Analyst. During the import, an intermediate list of names is created.

Names from the COBOL Data Division hierarchy are appended to the item name, separated

Visible Analyst Tools

456

by periods. Then the names are shortened, keeping only the information necessary to make

the names unique. Because of the 128-character name length limit in Visible Analyst,

characters may be removed from the middle of the suffixes and numbers added to maintain

uniqueness within the name length limits.

Code Generation Implications

The source code of a COBOL paragraph is saved in the Module Description field of the

Visible Analyst module that is generated from the paragraph. If you later want to generate

code from the Visible Analyst project, you should first make sure you have made the correct

settings in the Shell Code Generation Options dialog box. This is accessed by selecting Code

Generation Options from the Options menu. In the box labeled Included Module Information,

be sure that the Module Description item is checked so that the Module Description field is

included in the generated code. Also, make sure that the Code button is selected so that the

Module Definition field is interpreted as code and not just as a comment.

Powersoft PowerBuilder Interface

Data model information can be transferred between Visible Analyst and the PowerBuilder

application development system from Powersoft. This information includes entity and

attribute definitions and extended attributes, such as comments on tables and columns, and

validation rules, information that is stored in the PowerBuilder system tables.

To transfer data to PowerBuilder:

 Select Export from the Tools menu, choose PowerBuilder and click OK.

The process is similar to SQL schema generation in that you must choose the data you want to

generate. SQL DDL statements are created and are executed against the PowerBuilder system

tables. This, in turn, creates tables, columns and validation rules.

To import validation rules from PowerBuilder:

 Select Import from the Tools menu, then choose PowerBuilder format.

Note

 The directory where PowerBuilder is installed must be included in your PATH,

because Visible Analyst must execute PowerBuilder programs to transfer data.

Uniface Interface

Data Model information can be transferred between Visible Analyst and the Uniface

application development system from UNIFACE. The Visible Analyst import/export is fully

compatible with Uniface v5.2. The information transferred includes entity and attribute

definitions, including short descriptions and notes fields, primary and alternate keys, and

Visible Analyst Tools

457

relationships based upon the foreign key definitions. This information is stored in the

conceptual schema derived using IDF.

To transfer data to Uniface:

 Select Export from the Tools menu, choose Uniface, and click OK.

Data Model information is exported to an ASCII file in the Uniface CASE Interface Format

(CIF). This file can be imported into Uniface using the CASE load feature.

To import database definitions from Uniface:

 Choose the SQL dialect you would like the conceptual schema data types and interface

syntax to map to by choosing SQL Dialect from the Options menu.

 Select Import from the Tools menu, and choose the Uniface format.

 Select the CIF file to import. This file is created using the CASE unload feature of

Uniface to export a conceptual schema to the CASE Interface Format. You can use the

point-and-click method to highlight the file, or type the filename and PATH.



Describe/GDPro Interface

Object models (class diagrams) can be exported to and imported from GDPro. Information

transferred includes class diagrams, class objects, attributes, methods, and friends. It is a two-

step process.

To export from Visible Analyst:

 Select Export from the Tools menu, select GDPro and click OK.

 Start GDPro, and select Import From Visible Product from the Tools menu.

 Type the name of the file to be imported and click OK.

 The file created by Visible Analyst is called “project root”.ad and is located in the

transient data directory.

A class is created in the target GDPro system for every class, entity, associative entity, and

attributive entity defined in the VSC export file. If the class subtype is set to structure, the

ClassFormat property is set to struct. If the subtype is union, ClassFormat is set to union. All

other subtypes are created as standard classes.

Inheritance/supertype relationships are created as CLD_Generalization_Links, while all other

relationship types are created as CLD_ClassAssociations. Class diagrams and entity-

relationship diagrams are created as class views. Data elements (attributes) and methods are

only imported if they belong to a class/entity. Free standing data elements are ignored. If a

data element is used by more than one object, its definition is repeated in each class. Any

spaces that appear in the name of an object are replaced with underscores.

To import from GDPro:

Visible Analyst Tools

458

 Start GDPro, and select Export to Visible Product from the Tools menu.

 Select Import from the Tools menu, select GDPro, select the file generated in step one

and click OK.

For each class defined in GDPro, a class is created in the VSC import file. The subtype is set

according to the ClassFormat attribute.

Relationships between classes are created for both CLD_Generalization_Link and

CLD_ClassAssociation objects. Class diagrams are created for each class diagram view.

Class attributes are created as local data elements.

Table 7-11
Object Property Mappings

 Visible Analyst

Property

GDPro

Property

Class Description ClassDescription

 Notes ClassDescription (appended)

 Friend FriendDefinition

 Persistent PersistentClass

 Abstract ClassType

 Attributes ClassAttribute

 Methods Operations

Data Element Description AttributeDescription

 Values and Meanings AttributeDescription (appended)

 Notes AttributeDescription (appended)

 Type Type

 Length ArraySpecifier

 Default InitialValue

 Visibility AttributeVisibility

 Qualification AttributeScope, Constant, Volotile

Method Description OperationDescription

 Notes OperationDescription (appended)

 Visibility OperationVisibility

 Qualification OperationType

 Returns ReturnType

 Arguments Parameters

Relationship – Normal Label AssociationName

 Role Role

 Cardinality RoleMultiplicity

Visible Analyst Tools

459

Table 7-11
Object Property Mappings

 Visible Analyst

Property

GDPro

Property

Relationship – Supertype Discriminator Discriminator

 Visibility InheritanceMethod

 Virtual Virtual

 Note

 Spaces that appear in names are changed to underscores.

 If a global object is referenced by a class, it becomes a local object for each

class that references it. All information for that object is duplicated in each

class.

ERwin Interface

Data models can be both exported to and imported from ERwin. Information transferred

includes entities, relationships, attributes, triggers, and constraints.

To export from Visible Analyst:

 Select Export from the Tools menu, select ERwin (ER1), and click OK.

 Select the name and location of the ER1 files to be created, and click OK.

To import from ERwin:

 Select Import from the Tools menu, select ERwin 3.x choose the desired ER1 file, and

click OK.

Select Import from the Tools menu, select ERwin (XML) as the import file type for ERwin

v4.x, 7.x, select the XML file and click OK.

XML Schema

An XML Schema based on the W3C standard for the entities and (optionally) classes can be

generated via the Tools | Export menu. To include classes in the generated schema, add the

classes to an entity diagram.

XMI Import

Static structure models (class diagrams) can be imported from an XMI document created by

other modeling tools such as Rational Rose. Before the file is imported, it is parsed for

correctness according to the UML.DTD supplied with Visible Analyst. This file must exist in

the same directory as the XML file being imported.

To import an XMI document:

 Select Import from the Tools menu, select XMI.

Visible Analyst Tools

460

 Choose an XML file that contains an XMI specification, and click OK.

If the XML file is valid, classes and relationships are imported into the Visible Repository.

Zachman Framework

461

Chapter 8

Enterprise Modeling

ENTERPRISE MODELING OVERVIEW
Visible Analyst supports enterprise modeling by linking together projects in a parent-child

relationship. The enterprise project is a large corporate-wide project that contains data from a

number of subordinate or satellite projects. The enterprise project is used to warehouse all

information pertaining to an organization, while the satellite project contains only a subset of

the enterprise project allowing users to work with components that are important to their

development and not be bothered with the details of the entire enterprise.

Information is transferred between the enterprise and satellite projects through the use of

divisions. If you are working in the satellite project, you have access not only to the objects

defined in that project, but also to objects defined by the division in the enterprise project that

you have access to. The type of access depends on how the enterprise link was created. You

have a choice of read-only access, meaning enterprise objects cannot be modified, or

proposed change access, meaning enterprise objects can be modified but the modifications are

not reflected in the enterprise project. If a user is given proposed change access, this can be

further restricted to individual objects. Users with system manager access see a checkbox on

the divisions screen that allows them to see all of the divisions defined for the project.

The Enterprise Copy tool is used to synchronize a satellite project with the enterprise project.

There are extensive reconciliation tools to manage the synchronization process, including a

difference analysis tool that displays side-by-side the differences between an enterprise object

and a satellite object.

When viewing object definitions in the enterprise repository, the satellite projects that use the

object are noted; and in the satellite, the enterprise project is displayed. There is no limit to the

number of enterprise projects that can be maintained, nor to the number of satellite projects

that can be connected to an enterprise project.

Divisions
A division is a logical group of repository objects or diagrams that can be used to transfer data

between an enterprise project and a satellite project. Divisions can also be used to restrict

access to objects within a project. This section explains the techniques for working with

divisions within the repository.

Zachman Framework

462

Creating Divisions

To create a new division or to modify an existing one:

Open the Dialog Box: 1 Select Divisions from the Repository menu.

Choose a Division 2 If you want to create a new division, type the name

Name: in the Division box. If you want to change an existing

division, select it from the drop-down list. (See Figure

8-1.)

 Figure 8-1 Repository Divisions Dialog Box

Zachman Framework

463

Note

 Only divisions to which you have been assigned Access Control rights appear in

the division list. See Assigning Users to Divisions later in this chapter for more

information.

Narrow the Scope of 3 If you have a large number of objects in your repository,

Available Objects: you may want to limit the number of items that appear in

the Available Objects list.

To display all objects in the repository, choose Entire

Repository.

To display all objects of a specific class or type, choose

Specific Type and then select the model type and object

type you wish to use.

To display all objects on a specific diagram, choose

Specific Diagram and then select the diagram type and

diagram you wish to use. The Available Objects list

contains all the objects on the diagram and the name of

the diagram itself.

 Note

 If you choose Specific Diagram and no objects appear in the Available Objects

list, and the project was created with version 6.0 of Visible Analyst, you may

need to Rebuild the project or to edit the diagram for the objects to appear.

 If there are a large number of objects in the repository, the Available Objects list

may be updated incrementally. The list is initialized and then updated every few

seconds until all objects in the selected scope have been added.

Select Members: 4 A division is made up of repository objects or diagrams.

To add items to a division, highlight the desired objects in

the Available Objects list and click  to move them

into the Members list.

To remove members from a division, highlight the

members in the Members list and click  to move them

into the Available Objects list.

To select all items in the current list (the current list has

the focus), click Select All. To invert the selections, click

Zachman Framework

464

Invert. Invert is handy if you want to select everything in

a list except a few items; select the items you want to

exclude and then click Invert. Both Select All and Invert

are only applicable if the focus is on either Members or

Available Objects.

If the scope is set to a specific diagram and you select the

diagram entry, all items in the list are selected. If you then

de-select one of the objects, the diagram selection is also

de-selected. Any action that causes the diagram entry to

be selected causes all items in the list to be selected.

Update the Repository: 5 When you have finished modifying a division, select

 Add or Change:

To add a new division, click the Add button. If the

division does not already exist, it is added to the

repository.

To change the name of a division or its membership list,

click Change. If you alter the name of an existing

division, you can add a new division with same

membership list or simply change the name.

Note

 If you have not been assigned Create Division rights, you cannot add divisions

to a project.

Assign Users: 6 To grant access to a division, click the Users button. This

allows you to assign specific users to a division, each

having a different set of rights. If a repository object or

diagram is a member of a division, only users who have

been assigned rights to that division can access the object

or diagram. See Assigning Users to Divisions later in this

chapter for more information.

Deleting Divisions

To remove a division from the repository:

Open the Dialog Box: 1 Select Divisions from the Repository menu.

Choose a Division: 2 Select the division to delete from the drop-down list.

Zachman Framework

465

Delete the Division: 3 Click Remove to delete the division from the repository.

If the division has enterprise links, you must remove the

link before deleting the division. See Removing

Enterprise Links later in this chapter for details.

Assigning Users to Divisions

If a repository object or diagram is a member of a division, only users who have been

assigned rights to that division can access the object or diagram.

To assign user rights:

Open the Dialog Box: 1 Select Divisions from the Repository menu and then

click the Users button on the Repository Divisions dialog

box.

Choose a Division: 2 Select the division whose user list you wish to modify

from the drop-down list.

Note

 Only divisions to which you have been assigned Access Control rights appear in

the division list.

Select Users: 3 To add users to a division, highlight the desired items in

the Available Users list and click  to move them into

the Users list.

To remove users from a division, highlight the items in

the Users list and click  to move them into the

Available Users list.

To select all items in the current list (the current list has

the focus), click Select All. To invert the selections, click

Invert. Invert is handy if you want to select everything in

a list except a few items; select the items you want to

exclude and then click Invert. Both Select All and Invert

are only applicable if the focus is on either Users or

Available Users.

Update the User List: 4 When you have finished modifying a user list for a

division, click Change to update the repository.

Zachman Framework

466

Select User Rights: 5 To change the rights of a user assigned to a division,

highlight the user. The user’s current rights are displayed

in the Rights box. When a new user is added to a division,

the division rights are set to the project rights. Users can

have the following rights in a division

Delete Diagrams. The user can delete any diagram in the

division.

Delete Items. The user can delete any item in the division.

This includes deletion from the repository and deletion

from a diagram.

Modify Diagrams. The user can add or move items on a

diagram.

Modify Items. The user can change the definition of a

repository object.

View Diagrams. The user can display diagrams in the

division, but if they have no other diagram rights, they

cannot alter the diagrams.

View Items. The user can display repository entries in the

division, but if they have no other object rights, they

cannot alter the entries.

Access Control. The user can assign other users to the

division and change their rights, and modify the division

membership list.

Note

 If more than one user is selected, the rights displayed are a combination of all

the rights for the selected users.

Change User Rights: 6 To change the rights of the selected users, click Modify

Selected Users. To change the rights of all the users in the

division, click Modify All Users.

Zachman Framework

467

Enterprise Copy
Enterprise Copy is used to create the connection between one project and another. The source

project is the enterprise, while the target is the satellite. After Enterprise Copy has been

performed, the members of the synchronized division have the same definition in both

projects. Enterprise Copy division rights can also be used to “hide” or not display items on

the satellite project diagrams copied from the enterprise project. These non-displayed items

can be attributes of selected classes, entities, etc. or selected diagram objects and lines. See

the section “Hiding Satellite Objects” later in this chapter.

To synchronize an enterprise project with one of its satellites:

Note

 Before starting an Enterprise Copy operation, it is a good idea to make a backup

of both the enterprise and satellite projects.

Open the Dialog Box: 1 Select Enterprise Copy from the Tools menu. The

current project is used as the enterprise project.

 Figure 8-2 Enterprise Copy Dialog Box

Choose a Division: 2 Select the division to be synchronized. If no divisions

Zachman Framework

468

exist, see Creating Divisions earlier in this chapter for an

explanation of the procedure.

Select a Satellite Project: 3 If this is the first time the division has been used in an

enterprise copy operation, click Find Satellite to choose a

satellite project. Otherwise, select the appropriate project

from the list of satellite projects that are already

connected to this division.

Start the Synchroniza- 4 Click Update to start the enterprise copy. If conflicts are

tion Process: detected between objects in the enterprise project and

objects in the satellite, you must select the appropriate

update action.

Select the Update 5 For each object that has a different definition in the

Actions: enterprise and satellite projects, follow the process

outlined in Selecting Update Actions to determine the

definition to be used in both projects after the

synchronization process.

Resolve Name Conflicts: 6 If there are name conflicts, follow the procedure outlined

in Resolving Object Name Conflicts.

Assign Rights to the 7 The first time a division is used in an enterprise copy

Division: operation, only the user performing the copy has rights to

the objects in the division in the satellite project. To add

other users, follow the procedure outlined in Assigning

Users to Divisions earlier in this chapter.

After the Enterprise Copy operation is complete, each object in the synchronized division has

a link between the two projects. If you examine the definition of a synchronized object by

selecting Define from the Repository menu, the enterprise object has all satellite projects

listed in the Locations field, while the satellite object notes the enterprise project in the upper

right corner of the Define dialog box. See Displaying Enterprise Links later in this chapter for

more information.

Selecting Update Actions

If the enterprise copy procedure detects an object in the enterprise project that has a different

definition in the satellite project, you must choose the definition to be used in both projects

after the synchronization process is complete.

Each object that has a conflicting definition is displayed in the Conflicting Objects list with a

default action of either a question mark (?) or Advise. A question mark means neither a source

Zachman Framework

469

nor a target definition has been selected. Advise indicates either the item exists outside the

division being synchronized, or the object has a different type in each project. These items

must be reviewed individually before the update process can continue. (Figure 8-3)

 Figure 8-3 Select Update Actions Dialog Box

In order to complete the copy operation, each object in the list must use either the source

definition or the target definition. When making your selections, you have the following

options:

 Select All Source Objects. All definitions from the source (or enterprise) project are

used.

Zachman Framework

470

 Select All Target Objects. All definitions from the target (or satellite) project are used.

 Select All Newer Objects. All objects with the latest modification date are used. If the

objects were modified on the same day, you must visually inspect the definitions to

determine the appropriate action.

 If you want to inspect the differences between an object pair, select the item from the list

and click View Differences. Once all object definitions have been selected, click OK to

continue the copy procedure.

Note

 If an object appears in one project but not the other, it is listed in the conflict list.

If you choose the project that does not contain the object, the entry is removed

from both projects.

 One selected action may impact another object in the list. For example, if in the

enterprise project you add a new data element as a primary key column to an

entity, and that column does not exist in the satellite, and you choose to use the

entity definition from the enterprise but the column definition from the satellite,

not only is the data element deleted but the primary key is also removed from

the entity.

Compare Objects

If the definition of an object or diagram differs in the enterprise project and the satellite

project, you must choose the definition to be used during the enterprise copy operation.

The Compare Objects dialog box displays the definitions side by side so that you can visually

inspect the differences. To use the source (or enterprise) definition, select Use Source Object.

To use the target (or satellite) definition, select Use Target Object. To defer making a choice,

select Cancel. If the item being inspected is a diagram, you can set the zoom level using the

Zoom box in the bottom corner of the dialog box. (See Figure 8-4.)

Zachman Framework

471

 Figure 8-4 Compare Objects Dialog Box

Resolving Object Name Conflicts

To resolve conflicts if the enterprise copy procedure detects a name conflict between the

source and target projects:

Select the Conflicting 1 From the Conflicting Names list, select the object

Object: and click View Conflict. A list of conflicting objects is

displayed indicating whether the object is in the target

project, the source project, or both.

Choose a Conflict 2 Select an object from the Conflicting Objects list.

Resolution Method: Select Delete to remove the conflicting item or

Rename to change its name. These two options are valid

if the item exists in the source project, the target project,

or both projects. If a conflicting object does not exist in

Zachman Framework

472

both, the Match option can be used to connect an object

from the source to an object in the target.

You must select two items from the list with the Match

option, one from the source and one from the target, and

then choose the one to be the new object in both projects.

Click OK to confirm your selections. (See Figure 8-5.)

 Figure 8-5 Conflicting Objects Dialog Box

Continue Copy 3 Click Reanalyze on the Conflicting Names dialog box to

Operation: continue with the enterprise copy. If there are still

problems, repeat steps 1 and 2 until all conflicts have

been addressed. When the list contains only conflicts that

have been corrected, click OK to continue.

Zachman Framework

473

Displaying Enterprise Links
If an object being examined in the repository Define dialog box has enterprise links to other

projects, a marker is displayed to the right of the object name. If you double-click on the

marker, a list of enterprise links is displayed. Each link displays the following information.

 Project. The name of the project to which this object is linked.

 Type. The type of link. Enterprise indicates the current project is the parent project, while

Satellite indicates the current project is the child.

 Synchronized. The last date an Enterprise Copy operation was used to synchronize the

projects.

 Location. The drive and directory where the linked project is stored.

Removing Enterprise Links
To remove the links between an enterprise project and one of its satellites:

Open the Dialog Box: 1 Select Enterprise Tag Maintenance from the Tools

menu. The current project is used as the enterprise

project.

Choose a Division: 2 Select the division whose members are to have their

 link removed.

Note

 Only the link between the two projects is removed. The objects themselves

remain in both projects.

Select a Satellite 3 Select the appropriate project from the list of satellite

Project projects that are connected to this division.

Start the Removal 4 Click Remove to sever the link. You are prompted to

Process: to confirm your action.

Repeat the Process: 5 If you want to select another satellite project or another

division to update, start the process again beginning with

either step 2 or step 3. When you are finished, click Close.

After the remove operation is complete, each object in the previously synchronized division

has its link between the two projects deleted.

Database Synchronization
The enterprise modeling comparison facilities can also be used to synchronize an entity-

relationship model with a generated database. To perform the synchronization, follow the

steps below.

Zachman Framework

474

Create a New Project: 1 Create a new project that contains the database to be

 synchronized.

Import the Database: 2 Select Import from the Tools menu. Using either

the SQL Import or the RDBMS Catalog Import option,

create a data model based on the database.

Create a Division: 3 Create a division in the new project encompassing the

entire repository. See Creating Divisions earlier in this

chapter for details.

Perform Enterprise 4 Select Enterprise Copy from the Tools menu.

Copy: Follow the steps outlined earlier in this chapter for

synchronizing an enterprise and satellite project. When

the process is complete, the original data model is updated

to reflect any changes that were made in the database.

Remove Enterprise 5 Select Enterprise Tag Maintenance from the Tools menu

Links: to remove the links between the two projects.

Delete the Temporary 6 Select Delete Project from the Tools menu to remove

Project: the temporary project.

Note

 If you have denormalized any relationships or used any structures such as

domains in your original data model and the target database does not support

those structures, you cannot completely synchronize the model with the

database.

Printing Division Reports

Selecting the Print button on the Repository Divisions dialog opens the Print Division dialog.

This dialog allows you to generate an HTML file listing all items in the selected division. The

report can be sorted Alphabetically or by Entry Type. When Entry Type is selected, the Show

Composition (Attributes) checkbox includes the attributes of component division items. These

items include entities, classes, data elements, etc.

The report can also mark items that have been changed.

None: Specifies no marking of division members will take place

Since: If checked, items that have been changed since the selected date will be marked in red.

Zachman Framework

475

Since last synchronization (Enterprise Copy) with: If checked, items that have been

changed since the date of the last enterprise copy synchronization with the selected project

will be marked in red.

Hiding Satellite Objects

Users may choose not to display or print all of the information displayed on a satellite project

diagram. Entity Attributes not germane to the end users, or processes external to the

discussion can be hidden through the use of Division Rights assignment. To select the items

not to be displayed in the satellite project diagrams, follow the steps below.

Create a Division: 1 Create a division in the enterprise project containing all

objects to be transferred to the satellite project.

Perform Enterprise 2 Select Enterprise Copy from the Tools menu.

Copy: Follow the steps outlined earlier in this chapter for

synchronizing an enterprise and satellite project.

Create a New Division: 3 In the satellite project, create a new division that contain

the objects that will be "hidden". See Creating Divisions

earlier in this chapter for details.

Revoke Division Rights: 4 Revoke all tights to the new division for other users

assigned access to the division except “View Diagrams”.

Revoke all rights for these users to the original Division.

See Assigning Users to Divisions earlier in this chapter

for details.

When the user opens a subject area model or prints the model, the hidden objects will not be

displayed or printed, even though they are still in the project and have links back to the

enterprise project. To add objects to the division and be displayed on the diagram, follow this

procedure.

Assign Division Rights: 1 While logged into the project with all rights to the new

division, open the subject area, right mouse click on the

object and select Divisions to display the Change Division

Membership dialog.

Select Display Options: 2 In the Change Division Membership dialog select the new

division and check the Members area to add the object to

the division and display the object on the diagram. For

objects that can display attributes such as entities or

classes, check the individual attributes to be displayed.

Zachman Framework

476

When users assigned only “View Diagrams” access the project and open the diagram, only

those objects added to the new division will be displayed. If an entity is selected but noe

attributes of the entity are selected, the entity will be shown at the entity display level. Other

entities would be displayed at the Attribute display level if this display level is selected.

Figure 8-6 Change Division Membership

Zachman Framework

477

Chapter 9

Zachman Framework

INTRODUCTION
It has been Visible Systems Corporation’s experience that no matter where you start in your

application development activities, you will soon find yourself making certain “assumptions”

about things not under your control or outside of your scope. To confirm or validate these

assumptions, you find yourself addressing the artifacts up and down the Zachman Framework

rows and/or across the columns to capture the true drivers for the system: who? what? where?

when? why? and how?
1
 This means coordinating with the affected or interested business

experts, system users, and management.

In 1987 John Zachman wrote, “To keep the business from disintegrating, the concept of an

information systems architecture is becoming less of an option and more of a necessity.
2
”

From that assertion over a decade ago, the Zachman Framework for Enterprise Architecture

has evolved and become the model around which major organizations view and communicate

their enterprise information infrastructure. The Zachman Framework draws upon the

discipline of classical architecture to establish a common vocabulary and set perspectives--a

framework--for defining and describing today’s complex enterprise systems. Enterprise

Architecture provides the blueprint--or architecture--for the organization’s information

infrastructure and provides a framework for managing information complexity and managing

change.

Today the Zachman Framework has become a standard for Enterprise Architecture used by

many of the most successful organizations in the world. Evidence of the acceptance of the

Framework has been apparent at the annual forums conducted by the Zachman Institute for

Framework Advancement (ZIFA, www.zifa.com). At each forum, attendees hear

presentations on the many different aspects and practical uses of the Framework. Visible fully

supports both the concept and philosophy of the Zachman Framework. Visible helps clients

gain greater control of their information systems and technology requirements through

development of an enterprise-wide architecture.

1 “Visible and the Zachman Framework for Enterprise Architecture” by Alan Perkins p. 2. Copyright  1997-2001,

Visible Systems Corporation.
2 “A framework for information system architecture” by J.A. Zachman p. 454 IBM Systems Journal, Vol. 26, Nos. 3,

1987, 1987, 1999 IBM.

Zachman Framework

478

Visible takes an engineering approach to developing an enterprise architecture. We use a

combination of forward and reverse engineering to establish the enterprise architecture.

Forward engineering tasks include business planning and data and process modeling. Reverse

engineering tasks include analysis and documentation of all existing structures for the

organization. The result is a model that represents an integrated view of the enterprise

architecture framework, with redundancies and discrepancies resolved and documented. All

conceptual and logical architecture components can all be maintained in the Visible Analyst®.

The Visible Analyst supports the tasks and techniques involved in the creation and

management of an enterprise architecture, with sufficient flexibility to integrate and support

other approaches to software engineering. Visible Analyst captures business plans of multiple

organization levels and maintains the hierarchy of planning components (mission, goals,

strategies, measures, business rules, etc.).

Unlike many other modeling tools, Visible Analyst has the capability of directly linking each

business plan component to the entities and attributes of a data model that support/implement

the planning elements. This feature is used to control quality and completeness, and to ensure

that process and system designs meet business requirements. Visible Analyst can also be used

to specify physical information system designs based on the data model or import physical

designs of existing data structures into the repository, and then link them back to the business

plan component.

It is important to remember that the example Visible Analyst Enterprise Project using the

Zachman Framework explained in this chapter is not a static one-time snapshot view of the

enterprise. As mentioned in the cell explanations, the artifacts such as the business plan,

physical data model, security architecture, strategic goals, etc. will change as the enterprise

changes. Using the Visible Analyst and its repository to model the enterprise provides a one-

stop location where all information about the enterprise is located. External documents may

be changed, but the hyperlinks to the artifacts are maintained within the enterprise project,

allowing for both a birds eye and physical implementation perspective of the enterprise.

Zachman Framework

479

Figure 9-1 Zachman Framework

Image provided courtesy of the Intervista Institute, Copyright  Intervista Institute

(www.intervist-institute.com)

THE ZACHMAN FRAMEWORK CELL DEFINITIONS AND
EXAMPLE ARTIFACTS

When implementing an Enterprise Architecture Framework, it is important where you begin.

In our white paper, “Enterprise Architecture Engineering”
3
 by Alan Perkins and Clive

Finkelstein, available on our web site at www.visible.com, they state, “A well documented

Enterprise Architecture is a logical organization of information pertaining to the following

multi-level, multi-dimensional, enterprise wide elements.

 Strategic goals, objectives, strategies

 Business rules and measures

 Information requirements

3 “Enterprise Architecture Engineering” by Alan Perkins and Clive Finkelstein p.3. Copyright  2000, Visible
Systems Corporation.

http://www.intervist-institute.com/
http://www.visible.com/

Zachman Framework

480

 Processes, systems and applications

 Relationships between architecture elements

 Technology infrastructure”

They emphasize that the most important starting point is that establishing the right

sponsorship helps to insure successful development and deployment. Alan also explains,

“…all potential users of the applications and systems based upon the architecture must be

involved in the process. Without both management sponsorship and near universal

involvement, enterprise-wide architecture engineering projects usually fail.”
4
 Additional

white papers are available on our web site at www.visible.com that help explain the “Critical

Success Factors for Enterprise Architecture Engineering”, “Business Rules ARE Meta-Data”,

etc.

Each cell of the framework is described using the following format beginning with the “What

column Planner perspective” and proceeding down the column in a top-to-bottom left-to-right

order.

 Cell location, label, perspective and descriptive type

 An explanation of the cell definition

 The artifact created in the project to implement the cell. The name and location of

the cell is included in the artifact label where appropriate, such as "Row 4 Column 1

Physical Data Model".

 A detailed explanation of the project artifact

 Alternative artifacts that could be created in the project to implement the cell

The Zachman project explanation contains many different types of artifacts, consisting of

diagrams, strategic planning statements, lists, user defined objects, etc., and each was created

to document a specific cell of the framework. Only one example artifact was created for each

cell, while additional artifact option types are included in each cell explanation when

appropriate. An actual enterprise project will have multiple artifacts representing a particular

cell. When using the Visible Analyst in a real-world implementation of the framework, users

should consider using the Enterprise Modeling feature to eliminate any naming conflicts, to

maintain logical and physical data model separation, program specification, etc. The

Enterprise Modeling feature will maintain the linkage between the artifacts in the projects,

promoting object re-use.

Framework Rules

4 “Critical Success Factors for Enterprise Architecture Engineering” by Alan Perkins p. 4. Copyright  2000 Visible
Systems Corporation. http://www.visible.com/AboutUs/whitepapers.html.

http://www.visible.com/
http://www.visible.com/AboutUs/whitepapers.html

Zachman Framework

481

Before beginning an enterprise project and creating the cell artifacts, it is important that users

know and understand the rules of the framework as described by John Zachman and John

Sowa.
5

1. The columns have no order.

2. Each column has a simple, basic model.

3. The basic model of each column must be unique.

4. Each row represents a distinct, unique perspective.

5. Each cell is unique.

6. The composite or integration of all cell models in one row constitutes a complete

model from the perspective of that row.

7. The logic is recursive.

The following cell definitions provide examples of the cell artifacts created in the example

project as well as an overview of the Visible Analyst’s repository and modeling capabilities.

Each cell is detailed in a cell-by-cell review including an explanation of the artifacts created

for the cell in the Visible Analyst. A backup copy of the Zachman example project is

available; please contact Visible Systems support at support@visible.com for a copy of the

project.

Column 1: The “Data” or “What” column

Provides an understanding of the data important to the business with finer amounts of detail

shown at each succeeding perspective.

Row 1, Column 1 - “List of Things Important to the Business”

Objectives/Scope (Contextual)

Data column, Planner role

Entity = Class of Business Thing

Cell explanation
6

A list of items, objects, assets, etc. important to the business and defined at a high level of

aggregation. The list is dependent on the enterprise modeled, and “…defines the scope, or

boundaries, of Rows 2 – 5 models of things significant to the Enterprise”
7
. A software or

5
 “Extending and formalizing the framework for information systems architecture” by J. A. Sowa and J. A. Zachman,

IBM Systems Journal, Vol. 31, No 3, 1992. Pages 599-603
6
 The cell definitions are based on the cell explanations as described in the following documents:

"The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright  Zachman Institute for

Framework Advancement www.zifa.com

and "A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright 

2000, Essential Strategies, Inc www.essentialstrategies.com
7
 "The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright  Zachman Institute for

Framework Advancement www.zifa.com

mailto:support@visible.com

Zachman Framework

482

manufacturing company would include Vendors, Products, Clients, Product Facilities, etc. A

law firm would include specific knowledge areas, trial experience, etc., while educators

would include a curriculum, educational levels, specific teaching disciplines, etc.

Project implementation

Implemented as an Strategic Planning Statement

Artifact explanation

The strategic planning statement’s Detailed Description repository field contains the list of

items important to the business. This list includes Employees, Financial Resources,

Accounting Procedures, Equipment and Technology, Profits etc. Using the Links tab of the

statements repository entry, this statement was linked to the Row 1 Column 1 “List of things

important to the business” cell.

Each item in the list could have been be added as a separate sub-statement, and the repository

fields of the individual statements populated with the discrete explanation of the items.

Hyperlinks to external documents, which further describe this high level aggregation of the

business, can be created if necessary.

Alternative project implementations

 A User Defined Object of type “Business Object” can be created and implemented as

an item in the list, with each item maintaining separate repository entries that can be

linked to other cell artifacts.

 The list can be maintained in any word processing application and a hyperlink to the

file created in any one of the cells descriptive-type fields (notes, detailed description,

etc.) in the repository.

Row 2, Column 1 - “Semantic Model”

Enterprise Model (Conceptual)

Data column, Owner role

Entity = Business Entity

Relation = Business Relationship

Cell explanation

Contains a model of the things
8
 important to the business, as seen by the participants in the

business, and is modeled as a high-level entity relationship diagram. These relationships are

later implemented as business rules.
9

8
 "A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright 

2000, Essential Strategies, Inc. www.essentialstrategies.com

Zachman Framework

483

Project implementation:

Implemented as an Entity Relationship diagram.

Artifact explanation:

This conceptual data model diagram contains a model of the high-level business objects and

the relationships maintained between the objects. Entities include Company Employees,

Company Management, Company Business Relationships, Products, etc. The relationships

model the business concepts between the entities, such as Employees - design - Products;

Employees – produce – Products; Company Management – acquires – Capital Resources, etc.

Alternative project artifact implementations:

A class diagram could be used to model this cell with the classes identifying the business

objects and the relationships between these objects defining the business concepts.

Row 3, Column 1 - “Logical Data Model”

System Model (Logical)

Data column, Designer role

Entity = Data Entity

Relation = Data Relationship

Cell explanation

The Technology neutral fully normalized logical data model with attributes and unique

identifiers defined to record information important to the business.

Project implementation

Implemented as an Entity Relationship diagram

Artifact explanation

The entities involved in the logical data model can be modeled on one global diagram, and

then separate subset entity relationship diagrams created if desirable. Note that key

relationships between entities in the Visible Analyst extend across the diagrams for purposes

of model analysis to provide additional analysis / and verification of the models.

The subset area diagrams can be copied to satellite projects using the Enterprise Copy feature

and implemented as physical data models while maintaining the relationships to the logical

data model.

9
 "The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright  Zachman Institute for

Framework Advancement www.zifa.com

Zachman Framework

484

Note

 A physical data model can be reverse engineered from any ODBC compliant

RDBMS, and the physical model used as the basis for creating a new logical data

model.

Alternative project artifact implementation

A class diagram can also be used to model this cell.

Row 4, Column 1 - “Physical Data Model”

Technology Model (Physical)

Data column, Builder role

Entity = Segment/Table

Relation = Pointer/Key

Cell explanation

The entities in the subject areas are converted into table definitions of a technology

constrained fully attributed entity relationship model. All keys, indexes, table and column

check constraints, database storage information, stored procedures, etc., are defined for

implementation into a specific RDBMS.

Project implementation

Implemented as an Entity Relationship diagram

Artifact explanation

The fully attributed entities and relationships are added to entity relationship diagram(s) with

corresponding Visible Analyst repository entries. All physical information about the entities

and elements is defined, including primary, foreign and alternate keys; unique and non-unique

indexes; table and column check constraints; database storage information; stored procedures;

triggers; etc. Each diagram can be modeled to correspond to specific business subject areas,

such as Accounting, Shipping, Sales, etc. and these individual diagrams used as the basis of

the generated SQL DDL.

Note

 The RDBMS tables, attributes, keys, index, trigger, stored procedure, tablespace

information, etc., can be reverse engineered from the existing RDBMS and used to

populate a Visible Analyst project. Diagrams can automatically be generated to view

the imported tables and relationships, and data element definitions. Foreign keys can

be inferred during the reverse engineering procedure to auto generate relationships if

none are defined.

Alternative project artifact implementation

Zachman Framework

485

A class diagram can be used to model the physical information, and once the classes are

copied to an entity diagram, SQL DDL can be generated.

Row 5, Column 1 - “Data Definition”

Detailed Representations (Out-of-Context)

Data column, Sub-Contractor role

Entity = Field

Relation = Address

Cell explanation

The artifact is the implementation and data definition of the tables and column in the specific

RDBMS, as well as the SQL DDL script.

Project implementation

A User Defined Object of type “Database” was created and implemented as the repository

object “SQL Server Database”.

Artifact explanation

This “SQL Server Database” user-defined object functions in 2 ways:

1. As a container object to list all of the entities associated with a business area

implemented in a specific database(s). Entities can be listed in many of these user

defined ‘database’ objects.

2. As the Visible Analyst repository entry linked to the implemented code, which can

be stored in a source control application or stored in an external file. When a source

code control application is used, the objects Links To field on the Links tab lists the

connection to the source code control application. Otherwise, a hyperlink is created

to connect the object to the external file containing the SQL DDL script.

The generated SQL DDL code could be pasted into the objects Notes field or a user-defined

attribute could be created to store the SQL DDL code as part of this object’s repository entry.

Alternative project artifact implementation(s)

A pre-defined Visible Analyst “Cluster” repository object is used to contain a group of

entities that can be displayed as one symbol on a diagram. Its purpose is to reduce the amount

of displayed detail. The cluster object would be used to define the entities implemented in a

specific database based on a specific diagram. The External Link to the source code control

application would be entered in the “Links To” field on the cluster’s Links tab. Note that

entities can only exist within one cluster.

Zachman Framework

486

Column 2: The “Function” or “How” column

Describes the process and functions performed by the business. Additional detail is displayed

for each succeeding perspective.

Row 1, Column 2 - “List of Processes the Business Performs”

Objectives/Scope (Contextual)

How column, Planner role

Function = Class of Business Processes

Cell explanation

This cell lists the processes /activities the business performs.

Project implementation

Implemented as a Functional Decomposition diagram.

Artifact explanation

The Functional Decomposition Diagram was chosen because the symbols allow the user to

display the high-level business functions and processes in a hierarchical relationship. Each

methodology symbol maintains a separate repository entry allowing the user to fully describe

the function/process, and include hyperlinks to external documents if necessary. Through the

use of off-page connectors, each function and its sub-processes can be modeled on separate

multi page diagrams and copied to a satellite project if necessary for further decomposition.

The Functional Decomposition Diagrams also can be used to spawn a high-level data flow

diagram that segues into the next cell in the column, Business Process Modeling.

Alternative project artifact implementation(s)

 The Strategic Planning Statements can be used to define the business functions and

high-level child processes in the statement hierarchy.

 A hyperlink from this cell to an external document listing the functions and

processes can be used to link the cell to the document.

Row 2, Column 2 - “Business Process Model”

Enterprise Model (Conceptual)

How column, Owner role

Process = Business Process

I/O = Business Resource

Cell explanation

Zachman Framework

487

The activities of the business function and processes are described independent of system

implementation. The inputs and outputs describe the business resources.

Project implementation

Implemented as a Business Process Model diagram.

Artifact explanation

The Business Process Model diagram, using the BPMN notation developed by

the Business Process Management Initiative (www.bpmi.org) and the Object

Management Group (OMG www.omg.org) is specifically suited for modeling the business

processes. These diagram models communicate the business processes including the business

processes, the events (triggers) that begin, end or interrupt the processes, and the information

(artifacts) used and developed by the processes. The BPMN notation supports Private

(internal), Abstract (public) and Collaboration (global processes).

The repository entries for the diagram symbols capture the processes, events and data details

in excruciating detail. The model analysis confirms the integration of the lower level

processes with the associated model items.

Alternative project artifact implementation(s)

 The data flow diagram can also be used to model the business processes.

 The functional decomposition diagram can be used to model the business processes

 The activity diagram can be used to model the business processes.

Row 3, Column 2 - “Application Architecture”

System Model (Logical)

How column, Designer role

Process = Application Function

I/O = User Views

Cell explanation

An information perspective of the business processes explaining the controls and mechanisms

and conversion of input data to output data.

Project implementation

Implemented as a Business Process Model diagram.

Artifact explanation

The Business Process Model diagram type is used to model the control mechanisms of the

processes to include the various events and gateways that define the function of the

Application Architecture.

http://www.bpmi.org/
http://www.omg.org/

Zachman Framework

488

Alternative project artifact implementation(s)

 The data flow diagram can be used as the artifact to define this cell.

 An activity diagram can be used to show the high-level inputs, processes and

synchronization of the application architecture.

 A class diagram could also be used to define the business users, the methods of the

business, and the relationships between the business users.

 A Use Case diagram can also be used and then “nested” to an Activity diagram,

where the inputs and outputs can be shown interacting with the business processes.

Row 4, Column 2 - “System Design”

Technology Constrained Model (Physical)

How column, Builder role

Process = Computer Function

I/O = Data Element Sets

Cell explanation

This system design is converted into to the module definitions or class methods. A high level

of abstraction is necessary to model this cell.

Project implementation

Implemented as an Activity diagram.

Artifact explanation

The Business Process Model diagram was chosen because of its capabilities to display not

only the events and states of the system design but the concurrency of actions to be completed

before processing can continue.

Alternative project artifact implementation(s)

 Structure Chart diagrams could be used to model the programs architecture, i.e.

calling structure and information passed from module to module.

 A data flow diagram can be used as an alternative diagram artifact

 An activity diagram can also be used because of its capabilities to include the events

and concurrency of the processes.

 A Sequence diagram could also be used to define the calling structure and methods.

 A class diagram can also be used.

Row 5, Column 2 - “Program”

Detailed Representations (Out-of-Context)

How column, Sub-Contractor role

Zachman Framework

489

Process = Language Statement

I/O = Control Block

Cell explanation

The programs designed in the above columns are converted / compiled into the actual running

programs

Project implementation

The Visible Analyst repository has a predefined repository object labeled as a "Program",

which is used to link to the program code stored in a source code control application.

Artifact explanation

This "program" object can be linked to the external code maintained in a source code control

application such as RAZOR or Visual Source Safe using the Links To field on the programs

Links tab. All methods associated with classes are stored in the Visible Analyst repository

with an entry type of "module". These modules can be added to the composition field of the

program object, detailing which modules are used in the program. Additionally, structure

chart diagrams or sequence diagrams can be used to model the modules and calling structure

of the program.

Inclusion of a hyperlink to sections of the code such as header files or code files written in C,

C++, C#, VB files, .Net .sln files, etc. can also be created.

Alternative project artifact implementation(s)

 Creation of a user defined object similar to the program repository object mentioned

above to maintain a link to the source code control application storing the generated

program code.

 Link to Visible Developer, which creates the 3-tier business object program as ASP,

VB6 or .Net code.

 A structure chart diagram can also be used to model the program and be the sequence

object linked to the code.

Column 3: The “Network” or “Where” column

Describes the geographical distribution of the enterprise’s activities.

Row 1, Column 3 - “List of Locations in Which the Business Operates”

Objectives/Scope (Contextual)

Where column, Planner role

Zachman Framework

490

Node = Major Business Location

Cell explanation

A list of locations where the business operates.

Project implementation

Implemented as a Functional Decomposition diagram.

Artifact explanation

The functional decomposition diagram was chosen to create a hierarchy of the business

architecture with the corresponding repository entries providing fields to maintain a detailed

description of the location. Hyperlinks to external items for each location can also be included

as part of the locations repository entry, to record contract information, rules and regulations

specific to the location, etc.

Alternative project artifact implementation(s)

 Strategic planning statements could be used to describe each location, with

subsidiary locations defined as sub-statements.

 A ‘locations’ user defined object could be created in the repository, and hyperlinks

created to reference the external contracts, rules and regulations, etc, as noted above

Row 2 Column 3 “Logistics Network”

Enterprise Model (Conceptual)

Where column, Owner role

Node = Business Location

Link = Business Linkage

Cell explanation

The detailed communications chart, listing the communications network and the protocols

used, such as voice, data, post, rail, shipping, etc. and how the locations interact.

Project implementation

Implemented as a Structure Chart diagram.

Artifact explanation

The structure chart diagram type was selected so that the nodes could be modeled as modules

and the links signifying the individual communications between the modules defined as data

couples. These couples as well as the modules maintain repository entries allowing for a

detailed description of the communications nodes and links. Hyperlinks to external

information can also be included in the repository definitions. Additional details of the

diagram symbols and the objects they represent can be defined in the repository using user-

defined attributes as necessary.

Zachman Framework

491

Each location can be modeled independently but connected to the main location diagram via

on-page or off-page connections.

Alternative project artifact implementation(s)

 A planning statement or user-defined object can be created to reference this cell, and

a hyperlink to an external application supporting a network diagram can be created.

 Hyperlinks to other documents or artifacts associated with this cell but modeled

externally can be created.

Row 3, Column 3 - “Distributed System Architecture”

System Model (Logical)

Where column, Designer role

Node = I/S Function (Processor, Storage, etc.)

Link = Line Characteristics

Cell explanation:

Architecture of the data distribution, where it is created, and where used. Technology neutral,

it would contain the descriptions of the system facilities, “…controlling software at the nodes

and lines (processors/operating systems, storage devices/DBMS’, peripherals/drivers,

lines/line operation systems, etc)”.
10

Project implementation:

Implemented as a Structure Chart diagram.

Artifact explanation

The structure chart diagram was used so that the data couples signifying the Links show the

transfer of the information between the module symbols as Nodes on the diagram. Additional

details of the diagram symbols and the objects they represent can be defined in the repository

using user-defined attributes.

Alternative project artifact implementation(s)

 A planning statement or user-defined object can be created to reference this cell, and

a hyperlink to an external application supporting a system architecture diagram can

be created.

10

 The cell definitions are based on the cell explanations as described in the following documents:

"The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright  Zachman Institute for

Framework Advancement www.zifa.com
and

"A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright  2000,

Essential Strategies, Inc www.essentialstrategies.com

Zachman Framework

492

 Hyperlinks to other documents or artifacts associated with this cell but modeled

externally can be created.

Row 4, Column 3 - “Technology Architecture”

Technology Constrained Model (Physical)

Where column, Builder role

Node = Hardware/System Software

Link = Line Specification

Cell explanation

Shows the physical design of the computer facilities including the details of the hardware and

software used at the business locations.

Project implementation

Implemented as a Structure Chart diagram.

Artifact explanation

The structure chart diagram was used so that the data couples signifying the Links show the

transfer of the information between the module symbols as Nodes on the diagram. Additional

details of the diagram symbols and the objects they represent can be defined in the repository

using user-defined attributes.

Alternative project artifact implementation(s)

 A planning statement or user-defined object can be created to reference this cell, and

a hyperlink to an external application supporting a technology architecture diagram

can be created.

 Hyperlinks from the cell to other documents or artifacts associated with this cell but

modeled externally can be created.

Row 5 Column 3 “Network Architecture”

Detailed Representations (Out-of-Context)

Where column, Sub-Contractor role

Node= Address

Link = Protocol

Cell explanation

The definitions of the node address and line specification, which are translated into

specifications of particular protocols, communication facilities, etc.,
 8
are defined in this cell.

8
 "A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright 

2000, Essential Strategies, Inc. www.essentialstrategies.com

Zachman Framework

493

Project implementation

Implemented as the User-Defined Object of type” Architecture” and the repository entry

"Row 5 Column 3 Network Architecture Implementation".

Artifact explanation

This user defined objects’ text fields are used to maintain the network architecture

information. It can be hyperlinked to an external application that models network architecture,

or hyperlinked to external documents describing the architecture.

Alternative project artifact implementation

A planning statement could be used as a “container” object to maintain information about the

network implementation.

Column 4: The “People” or “Who” column

Those involved in the business and their relationship to the technology.

Row 1, Column 4 - “List of Organizations Important to the Business”

Objectives/Scope (Contextual)

Who column, Planner role

People = Class of Agent

Cell explanation

A list of people and organizations important to the business, including organizational units

and their scope and boundaries is the artifact created for this cell.

Project implementation

Implemented using a Strategic Planning Hierarchy statement.

Artifact explanation

Only one planning statement was used to identify the people and organizations important to

the business. Practically, each person, organization and organizational unit should be entered

as sub-statements in the statement hierarchy to maintain individual repository entries. This

procedure facilitates the definition of the person / unit especially when hyperlinks are created

to external documents describing the relationship. Contact information with vendors; venture

capital contracts; rental agreements; technology contracts; shipping agreements are some

simple examples of the additional documentation associated with the people and organizations

important to the business.

Note

Zachman Framework

494

 Not all users should be granted access to the sensitive business documents. In some

cases a listing of the documents may be sufficient to define the artifact rather than a

hyperlink to the actual documents themselves.

Alternative project artifact implementation(s)

 A functional decomposition diagram could also be used to identify the business units

and the individuals, organizations and organizational units in a hierarchical diagram.

 A user-defined object could also be used to identify the people and organizations

important to the business.

Row 2, Column 4 - “The Work Flow Model”

Enterprise Model (Conceptual)

Who column, Owner role

People = Organizational Unit

Work = Work Product

Cell explanation

Allocation of responsibilities as described in an organizational chart with secondary

documents defining the products. Security requirements are also included within this cell.

Project implementation

Implemented as a Business Process Model diagram.

Artifact explanation

The Business Process Model diagram type was chosen because it models concurrent actions

to be completed before the next action begins along with the inputs and outputs. The model

also includes the use of Swimlanes (Pools) to categorize the activities performed by the

respective roles of the business users

Alternative project artifact implementation(s)

 Data flow diagrams can be used to model the organizations, organizational units and

processes performed.

 An Activity diagram can also be used to model the workflow.

 A functional decomposition diagram can be used to model the organizations chart.

 A Use Case could also be used, with links to a nested activity or collaboration

diagram modeling the work products.

Row 3, Column 4 - “Human Interface Architecture”

System Model (Logical)

Who column, Designer role

Zachman Framework

495

People = Role

Work = Deliverable

Cell explanation

Defines the people, their roles and responsibilities and interacting with the technology to

create the deliverables.

Project implementation

Implemented as a Use Case diagram.

Artifact explanation

The Use Case diagram captures the interaction of the people and the work deliverables.

Nested links to an activity diagram including the use of user-defined attributes and the use of

hyperlinks to the deliverables can be modeled to show additional detail.

Alternative project artifact implementation(s)

 Data flow diagrams can be used to model the processes performed by the

organizations interacting with the technology and resulting deliverables.

 A functional decomposition diagram can be used to model the interactions and the

deliverables.

Row 4, Column 4 - “Presentation Architecture”

Technology Constrained Model (Physical)

Who column, Builder role

People = User

Work = Screen Format

Cell explanation

The actual interface is modeled with presentation formats including screens, navigation paths,

security rules, etc.

Project implementation

This cell was implemented as a Use Case diagram.

Artifact explanation

The Use Case diagram can also be nested to an activity diagram. Each of the repository

entries can be tied to the implementation code, such as the screen design as shown in the user

interface code generated by Visible Developer. The security considerations can be modeled as

user-defined attributes, separate user defined objects, or as planning statements and each of

these repository objects linked to the appropriate Use Case symbol artifact. Hyperlinks to

some external tools can also be created as necessary.

Zachman Framework

496

Alternative project artifact implementation(s)

 A database view object can be used to list the data elements used in the menu

screens, and the Extended Attributes tab of the elements repository definition used to

store the presentation information.

 A hyperlink from this cell can be used to a human interface architecture diagram or

the screen configuration files developed in an external application.

Row 5, Column 4 - “Security Architecture”

Detailed Representations (Out-of-Context)

Who column, Sub-Contractor role

People = Identity

Work = Job

Cell explanation

Individual’s program access permissions and work they are authorized to perform.

Project implementation

Implemented as a Class diagram.

Artifact explanation

Implemented as a class diagram with the class representing the users, programs, and the

elements defining the class data such as permissions, security mechanisms, etc. Methods can

also be defined for classes as an additional level of detail. Hyperlinks to the code stored in a

configuration management application can also be created.

Alternative project artifact implementation

An entity diagram can be used with a user-defined attribute or user-defined object substituting

for the method’s definition.

Column 5: The “Time” or “When” column

Used to describe the effects of time on the business, and interacts with column 2, the How

column.

Row 1, Column 5 - “List of Events Significant to the Business”

Objectives/Scope (Contextual)

When column, Planner role

Time = Major Business Event

Cell explanation:

Zachman Framework

497

A description of the business cycle and when events significant to the business occur.

Project implementation:

Implemented as a Planning Statement.

Artifact explanation:

The events are modeled as subset planning statements allowing for further definition and

linkage to other artifact items listed in subsequent How columns.

Alternative project artifact implementation(s):

 A used-defined object could contain this list.

 Hyperlinks from the cell’s definition to external documents describing the event.

Row 2, Column 5 - “Master Schedule”

Enterprise Model (Conceptual)

When column, Owner role

Time = Business Event

Cycle = Business Cycle

Cell explanation

When the business functions occur, including the initiating event and the processing order.

Project implementation

Implemented as a Business Process Model diagram.

Artifact explanation

The Business Process Model diagram models the business events, processes and when

functions are to happen and under what circumstances.

Alternative project artifact implementation(s)

 A state transition diagram can be used to model this cell.

 An Entity Life History diagram can be used to model this cell.

 An activity diagram can be used to model this cell.

 A list of events and time lines can be defined as a user defined object or as an

external documents hyperlinked to the cell.

Row 3, Column 5 - “Processing Structure”

System Model (Logical)

Zachman Framework

498

When column, Designer role

Time = System Event

Cycle = Processing Cycle

Cell explanation

Model of the system events and times to complete the data transformation processes and

entity state changes.

Project implementation

Implemented as a Business Process Model diagram.

Artifact explanation

The Business Process Model diagram is used to show the business system processes and the

events causing the change in state. Detailed information is documented in the appropriate

repository fields with additional user defined attributes added as necessary.

Alternative project artifact implementation(s)

 A data flow diagram can be used to model this cell.

 A state transition diagram can be used to model this cell.

 The activity diagram can be used to model this cell.

 The collaboration diagram can be used to model this cell.

 The sequence diagram can be used to model this cell.

Row 4, Column 5 - “Control Structure”

Technology Constrained Model (Physical)

When Column, Builder role

Time = Execute

Cycle = Component Cycle

Cell explanation

Triggers, messages, responses etc, described as system events with physical properties and

processing cycles detailed.

Project implementation:

Implemented as a Sequence Diagram.

Artifact explanation:

The sequence diagram models the calling structure of the programs and the returns, etc. The

details are stored in the appropriate repository fields with additional user defined attributes

added as necessary.

Zachman Framework

499

Alternative project artifact implementation(s)

 The state transition diagram can be used to model this cell.

 A business process model can be used to model this cell.

 The structure chart diagram can be used to model this cell.

 The collaboration diagram can be used to model this cell.

Row 5, Column 5 - “Timing Definition”

Detailed Representations (Out-of-Context)

When Column, Sub-Contractor role

Time = Interrupt

Cycle = Machine Cycle

Cell explanation

Schedule Online and Batch applications (Function Details), showing the interrupts and

machine cycles.

Project implementation

Implemented as a Collaboration diagram.

Artifact explanation

The collaboration diagram shows the timing of the application through the use of the

messages that implement the business scenario.

Alternative project artifact implementation

A sequence diagram can also be used to model this cell.

Column 6: The “Motivation” or “Why” column

Translation of the business goals and strategies into the ends and means of the business.

Row 1, Column 6 - “List of Business Goals/Strategies”

Objectives/Scope (Contextual)

Why column, Planner role

Ends/Means = Major Business Goal / Critical Success Factor

Cell explanation

The goals and strategies of the business are identified.

Project implementation

Zachman Framework

500

Implemented as a Strategic Planning Statement.

Artifact explanation

The strategic planning statement hierarchy is specifically suited to create the artifacts

necessary for this cell. The users can extend the statement types, and an editable priority field

is available for assignment to each statement in addition to the predefined repository fields.

Links to the other artifacts can be defined in the Links To field on the Links tab in the

repository. Hyperlinks to external documents can also be created when necessary.

Alternative project artifact implementation(s)

 The functional decomposition diagram can be used to define the hierarchy.

 Hyperlinks to an external document or another statement hierarchy application can

be used.

Row 2, Column 6 - “Business Plan”

Enterprise Model (Conceptual)

Why column, Owner role

End = Business Objective

Means = Business Strategy

Cell explanation

The business plan contains the strategies, goals, financial considerations and motivation of the

company. These artifacts can include both textual descriptions as well as financial documents.

Project implementation

Implemented as a Planning Statement hierarchy.

Artifact explanation

Individual strategic planning statements should be defined and can include references to

external documents and artifacts hyperlinked to the statement. The “Cost Structure”, “Capital

Funding” statements might reference MS Excel spreadsheets, while the textual description of

the “Business Plan” statement contains a hyperlink(s) to MS Word document(s).

Note that these statements are linked to the functional decomposition diagram symbols

repository entries as an example of the artifact integration available in the Visible Analyst.

Alternative project artifact implementation(s)

 An alternative implementation is the functional decomposition diagram "Row 2

Column 6 Business Plan Hierarchy". The decomposition diagram allows the artifacts

to be listed as a hierarchy, and would include hyperlinks to the external documents

the symbols represent. While each artifact can be represented within a symbols Notes

field or as a user-defined attribute, maintaining them external to the application

Zachman Framework

501

allows these artifacts to be updated and maintained in one place while still linking to

the symbol in the enterprise project. Note that the decomposition diagram symbols

are linked to the individual planning statements to demonstrate the cross artifact

reference capability in the Visible Analyst.

 A class diagram could be used to diagram the business plan and the methods used to

detail the business constraints.

Row 3, Column 6 - “Business Rule Model”

System Model (Logical)

Why column, Designer role

End = Structural Assertion

Means = Action Assertion

Cell explanation

Business rules can be considered as the meta-data of the enterprise to include the intents and

means of the business, and are part of the information implemented as checks on the database

and enterprise information. Examples of these business rules as meta-data include Definitions

of Business Terms; Data integrity constraints; Mathematical and functional derivations;

Logical inferences; Processing sequences; Relationships among facts about the business, etc.

Project implementation

Implemented as a Planning Statement hierarchy.

Artifact explanation

The strategic planning hierarchy provides the structured hierarchy allowing the meta-data to

be defined, and most importantly, to be linked to the implementation of these rules to the data.

The tables, columns, check constraints, business processes, database access security rules, etc.

that implement the business rules are linked to the business rule statement.

Alternative project artifact implementation

Create a hyperlink from this cell to a User Defined Object created to store these business

rules.

Row 4, Column 6 - “Rule Design”

Technology Constrained Model (Physical)

Why column, Builder role

End = Condition

Means = Action

Zachman Framework

502

Cell explanation

This cell describes the physical specifications of the Business Rules.

Project implementation

Implemented as a User Defined Object of type “Rule Design” labeled “Row 4 Column 6 Rule

Design”, linked to the repository entries that implement the rule design, such as the

relationship cardinality between entities / classes, column or table check constraints, a

business process that enforces these rules, etc.

Artifact explanation

Since this cell describes the physical specifications of the Business Rules, implementation of

these rules can also be enforced as part of the relationship cardinality or as table or column

check constraints on the Class | Entity in the repository. (Remember, entities can be used on

class diagrams and methods, keys, constraints, etc., can be defined and the class/entity used

for SQL DDL and code generation). Additional user-defined attributes can be added to the

project as necessary to store specific textual descriptions of the specifications.

Note

 There is some agreement in the enterprise community that the UML OCL Language

be used to represent the artifacts of this cell. Enter the following links into a web

browser for an explanation of the OCL language. The artifacts referenced by the

OCL can natively be created in the Visible Analyst using the supported diagram

types or identified as a user defined attribute(s). See

http://www-3.ibm.com/software/awdtools/library/standards/ocl.html and

http://www.klasse.nl/ocl for details.

Alternative project artifact implementation(s)

 Program rule design can also be detailed in the methods associated with a class,

either defined on the Class or Sequence diagram.

 The cell’s repository entry may also contain hotlinks to appropriate external

applications.

Row 5, Column 6 - “Rule Specification”

Detailed Representations (Out-of-Context)

Why column, Sub-Contractor role

End = Sub-condition

Means = Step

Cell explanation

Enforcement of the business rules in the programs are the artifacts.

http://www-3.ibm.com/software/awdtools/library/standards/ocl.html
http://www.klasse.nl/ocl

Zachman Framework

503

Project implementation

Implemented as Application modules and Database tables, Data and Function Details.

Hyperlinks from these repository entries to the implementation artifacts (programs) from the

cell can be created.

Artifact explanation

The Rule Design artifacts as defined in the previous cell in this column are implemented in

the code and applications as part of the Application modules, Database tables, Data and

Function Details, etc. These programs or code should be hyperlinked to the Rule Design

artifacts.

Alternative project artifact implementation

Application modules could be detailed as sequence or structure chart diagrams, but it is more

appropriate to link to the code implementing the rules.

Error Messages

505

Appendix A

Error Messages

INTRODUCTION
This appendix lists all Visible Analyst error messages and their explanations. The error

messages are listed in alphabetical order.

Note

 These messages are listed in absolute alphabetical order. This means that if a

message begins with the word “The,” it is alphabetized under “The” not under

the first important word.

 Some error messages contain the names of individual objects. In this generic

listing, these individual names have been replaced with “X”. Further, such a

message is alphabetized using the “X”.

Error Messages

506

A change is pending for this diagram - Cannot edit.

Another user has performed a global change that could affect this diagram. You

cannot access the diagram until the other user saves his or her work or aborts the

edit.

A class must be labeled before a Nest operation can be performed.
An unnamed class cannot be decomposed.

A couple may only be changed into another couple type.

Once a couple line type is created, the Change Type option limits its transformation

to other couple line types. For instance, a generic couple can be changed to a data

couple; however, the generic couple cannot be changed to a loop line.

A diagram is being inserted into the tree - This branch cannot be altered.

Another user is inserting a diagram into the tree that could affect the diagram you

have selected. The diagram cannot be edited. To determine the user ID of the person

inserting the diagram, select the Current Activity option from the File menu and find

the users with an activity of “is creating new diagram.” The person in question is

one of these users. You may contact him/her by using the message facility (press the

F5 key).

A gateway cannot be the source or target for a message flow.

A message flow cannot be attached to a gateway.

A message flow must connect objects in different pools.

A Message Flow is used to show the flow of messages between two entities that are

prepared to send and receive them. In BPMN, two separate pools on a diagram will

represent the two entities. A Message Flow MUSTconnect two pools, either to the

pools themselves or to flow objects within the pools. They cannot connect two

objects within the same pool.

A join already exists between this pair of entities.

Only one join relationship can exist between a pair of table instances in a view. For

non-relationship based joins, you can add restrictions to the join expression either by

editing the join expression field or by dragging columns from the parent table to the

child table in the view window.

A non-couple cannot be changed to a couple.

The Change Type option in the Change Item dialog box cannot be used to transform

an invocation line or loop line type into a couple.

A non-loop may not be changed into a loop.

Error Messages

507

The Change Type option on the Change Item dialog box cannot be used to transform

an invocation line or a couple into a loop line.

A process must be added to this context diagram.

A process must be added and named before the diagram is saved when a context

diagram is requested.

A process must be labeled before a nested decomposition can be performed.

An unnamed process cannot be decomposed.

A program can only have one item as the root module.

The composition field of a program indicates the top level module of that program.

Only one module may be specified.

A relationship can be labeled only when two NAMED entities are attached.

A relationship only has meaning when attached to two entities. It must join two

entities before a relationship can be labeled and added to the repository.

A relationship cannot be connected to a view.

When a view appears on an entity relationship diagram, relationship lines cannot be

connected to the view because a view does not contain foreign keys.

A supertype/inheritance relationship already exists between this pair of objects.

Only one supertype or inheritance relationship can be drawn between a pair of

entities or classes.

A supertype/inheritance relationship cannot be recursive.

A supertype or inheritance relationship cannot be drawn such that the start and

endpoints are the same object.

A supertype relationship cannot be used with a non-fundamental entity.

A supertype relationship cannot be drawn if the child entity is either an associative or

attributive entity. These entity types imply special relationships to their parents that

are in conflict with supertype relationships. Either draw a different type of

relationship or change the entity type to fundamental.

A tree file for project “x” is damaged or missing.

When copying a portion of a project, the tree file could not be found or was

damaged. Restore the project.

A user-defined object cannot have the same name as a VAW entry type.

Error Messages

508

When creating a user-defined object, the name of the object cannot be the same as

any of the built-in Visible Analyst types. For example, you cannot create an object

named Process.

Access denied - another user is editing this diagram.

A diagram can be edited by only one user at a time. The selected diagram is already

in use.

Activity diagram ‘x’ is not associated with a class, use case, or activity.

This warning is the result of not exploding a class, use case or activity to the

indicated activity diagram. To resolve the warning, open a class, use case or activity

diagram, select the appropriate object, and use the explode feature to attach to the

indicated activity diagram.

Actor labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated actor to another

actor or use case on the use case diagram. To resolve the error, draw a line from the

actor to any use case or actor using the Connect function.

Aggregation line not added.

A construct that was originally created from a class diagram can be loaded into an

entity relationship diagram. However, aggregation relationships are not supported on

ERDs, so that relationship type is ignored.

All pure virtual methods will be reset to virtual. Continue?

If you want to change an abstract class to a concrete class, the class definition cannot

contain pure virtual methods because a concrete class can be instantiated. Visible

Analyst resets pure virtual methods to virtual in this case.

All users have been added to this project’s edit list.

All users currently defined to NetWare have been assigned to this project. There are

none left to add.

All virtual methods will be reset to pure virtual. Continue ?

If you want to change a concrete class to an abstract class, Visible Analyst resets

virtual methods to pure virtual.

An intermediate event attached to the boundary of an activity cannot be the target for a

sequence flow.

When an intermediate event is attached to the boundary of an activity, it represents

exception or compensation handling. The event must be the source of a sequence

Error Messages

509

flow and cannot be a destination. Any input sequence flows must be connected to the

activity itself.

To be attached to the boundary of an Activity, an Intermediate Event MUST be one

of the following Triggers: Message, Timer, Error, Cancel, Compensation, Rule, and

Multiple.

An intermediate event attached to the boundary of an activity can only have one out-

going sequence flow.

When an intermediate event is attached to the boundary of an activity, it represents

exception or compensation handling. The event must be the source of a sequence

flow and can only have one outgoing sequence flow.

To be attached to the boundary of an Activity, an Intermediate Event MUST be one

of the following Triggers: Message, Timer, Error, Cancel, Compensation, Rule, and

Multiple.

An item could not be added due to space constraints.

When loading a construct, the maximum number of objects was reached before the

entire construct could be loaded.

An off-page connector with output connections cannot be used.

An off-page connector with input connections (invocation lines drawn from a

module symbol to the off-page connector) is acting as a reference to a module on

another diagram. The Page function can operate on this type of page connector. An

off-page connector with output connections (an invocation line drawn from the off-

page connector to another symbol) cannot be the object of a Page function.

Another user is currently adding this item - Create cannot be performed.

Someone has created the specified item, but it has not been saved. Click the Details

button for more information.

Another user is currently adding this item - Label cannot be used.

Another user is adding this item to the repository, but it has not been saved. Try

again later or click the Details button for more information.

Another user is currently modifying this item - Cannot be used as a subflow.

If another user is modifying a data flow repository entry, it cannot be used as a

subflow.

Another user is currently modifying this item - Edit cannot be performed.

Only one user can edit a repository entry at one time.

Error Messages

510

Another user is currently modifying this item - Split cannot be performed.

Another user is modifying the repository entry for this data flow. Split operation

cannot be performed.

Another user is editing an item that would be affected - Operation denied.

If a name change is attempted on a repository item and another user is editing a

component item, the operation is denied.

Another user is modifying the user list of this project.

Only one user at a time can change the list of users that can access a project.

Another user is performing an operation requiring exclusive project access.

This project cannot be accessed until the user currently performing an operation

requiring exclusive rights is complete. These operations include all the operations on

the Tools menu such as Backup, Restore, Copy, etc.

A sequence flow cannot cross a pool boundary.

Sequence flows must connect objects within a single pool. If no pool is shown on a

diagram, it is assumed that all objects are in the same pool.

A sequence or message flow cannot be attached to a data object.

Sequence flows can only be used between flow objects, while message flows can

only be used between flow objects or pools.

A start event cannot be the target for a sequence flow.

A start event signals the beginning of a process so it cannot have an incoming

sequence flow.

At least one user must be assigned to a division.

If all users are removed from a division, there is no way to maintain division

information or use the division in an Enterprise Copy operation. In addition, the user

must have Access Control rights to the division in order to modify the division

contents and user list.

At least one user must have Access Control rights to a division.

If no user has Access Control rights to a division, there is no way to maintain user

information for the division.

Attached relationship(s) exist, cannot delete this entity.

Error Messages

511

An entity cannot be deleted inside the repository if relationships are attached to that

entity on a diagram. All relationships attached to this entity on all views where it

appears must be deleted before it can be deleted.

Bad entry label.

Label does not begin with an alphabetic character.

Boilerplate not found.

The boilerplate you requested for this diagram cannot be found.

Boilerplate too big to fit on diagram.

The current boilerplate is larger than the selected diagram size. Either make the

diagram drawing area larger or change the boilerplate.

Both the Related To and Values & Meanings fields contain information.

Only one of these fields may contain a value. If you declare that this item is related

to another existing item, the values and meanings information should be specified in

the repository entry for that item.

C struct “x” has no composition defined.

A data structure exists in the repository that has nothing in its composition field.

Can’t add Check condition “x” to Repository - Name Conflict.

The name of the check condition you are trying to add to the repository is the same

as another object already in the repository. You must select another name to add it.

Can’t add Trigger “x” to Repository - Name Conflict.

The name of the trigger you are trying to add to the repository is the same as another

object already in the repository. You must select another name to add it.

Can’t change process # - Diagrams that would be affected are being edited.

A process number change affects all child diagrams in the same branch of the tree.

Another user is editing one of these diagrams so the operation is denied.

Can’t Get Device Context for Printer.

Windows was unable to access the selected printer. Verify the printer settings.

Can’t Get Repository Handle.

Visible Analyst could not find the repository for this project. Make sure that your

files have not been moved or deleted.

Can’t perform global change - Diagrams that would be affected are being edited.

Error Messages

512

Another user is currently editing a diagram that would be affected by a global change

so the operation is denied.

Can’t perform conversion, project is not in version 6.0 format.

In order to be converted to the format of the current version, a project must first be in

version 6.0 (or later) format. If you have a version of Visible Analyst older than

version 6.0, please call Visible Systems Corporation so that we can assist you in this

conversion.

Can’t perform Nest - Diagrams that would be affected are being edited

Another person is editing the diagram or a child of the diagram whose name was

selected as the object of a Nest operation. Use the Current Activity facility on the

File menu to determine the user IDs of these people. Send an appropriate message to

them using the messaging facility (press F5).

Cannot add because record already exists.

A user cannot be added to the list of valid users because the name is already used.

Cannot add this alias - It already exists as another entry.

The specified alias already exists as another entry type. All items in the repository

must be defined with unique labels.

Cannot copy portion of project that contains context diagram.

A context diagram cannot be copied into an existing project. However, the image of

the context diagram can be copied into another project by using the Construct

function on the Diagram menu. The construct should be created from the existing

context diagram and loaded into the copy-to project.

The loading of the construct into the copy-to project does not migrate the data

repository information maintained for the objects appearing on the diagram, but the

information for these objects is migrated if they are referenced by other diagrams

included in the Copy operation.

To determine whether the information was migrated, use the Define option on the

Repository menu and select each object to view its data repository definition.

Cannot delete record because it doesn’t exist.

This user has not been added to the security list, so his/her ID cannot be deleted.

Cannot get record because it doesn’t exist.

There is no security record for the user you specified.

Cannot open reports file.

Error Messages

513

The custom reports definition file REPORTS.TBL could not be opened. It has been

deleted or is otherwise unavailable. Since it is necessary to the operation you just

requested, you should copy it from your master media.

Cannot open SQLDIAL.TBL file.

The file SQLDIAL.TBL contains information on all SQL dialects supported by

Visible Analyst. It has been deleted or is otherwise unavailable. Since it is necessary

to the operation you just requested, you should copy it from your master media.

Cannot perform Spawn - Diagrams that would be affected are being edited.

The Spawn function affects all diagrams in same branch of the DFD tree, and one or

more users are editing some of these diagrams. Use the Current Activity function on

the File menu to determine the user IDs of these people and send an appropriate

message to them using the messaging facility (press F5).

Class type not specified for ‘x’.

When defining attributes for a class, the type is required.

COBOL configuration file ‘x’ cannot be opened. Can’t generate COBOL code.

The file COBOLTYP.TBL contains information on how COBOL code should be

generated. It has been deleted or is otherwise unavailable. Since it is necessary to the

operation you just requested, you should copy it from your master media.

COBOL configuration file ‘x’ contains invalid data. Can’t generate COBOL code.

The file COBOLTYP.TBL contains information on how COBOL code should be

generated. It has been improperly edited or otherwise corrupted. Since it is necessary

to the operation you just requested, you should fix the editing improprieties (if you

are certain how to do so) or copy it from your master media.

Component must have a name.

When defining components using the Add Components dialog, a name must be given

for each component. The name is used to reference the component in the repository

and is thus required.

Conflict between default VALUE and USAGE INDEX or REDEFINES for item ‘x’. The

default VALUE has been ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be

generated. There is a conflict between specifications in this file and the information

you specified in the repository, or an internal inconsistency in specifications in this

repository entry. The code generator continues to generate code, but it ignores what

you specified for the default value for this item.

Error Messages

514

Conflict between picture and USAGE INDEX for item ‘x’. The picture has been

ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be

generated. There is a conflict between specifications in this file and the information

you specified in the repository, or an internal inconsistency in specifications in this

repository entry. The code generator continues to generate code, but it ignores what

you specified for the picture for this item.

Conflict between picture class and the number of decimal places for item ‘x’. The

number of decimal places has been ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be

generated. There is a conflict between specifications in this file and the information

you specified in the repository, or an internal inconsistency in specifications in this

repository entry. The code generator continues to generate code, but it ignores what

you specified for the number of decimal places for this item.

Connected page does not exist.

This diagram has been connected to another diagram with the Page function. The

connected diagram has been deleted.

Construct ‘x’ not found. Enter new location:.

The construct file for the construct you selected has been deleted or is otherwise

unavailable. If the file has been moved to another disk location, enter its path. If the

file no longer exists, you should eliminate the dangling construct name and prevent

recurrences of this error message. To do this, click Cancel. Then click Delete in the

Construct dialog box to eliminate the construct name that generated this error.

Construct exceeds page size.

The current construct is of easel size and cannot be loaded into the current diagram,

which is standard size. Either make the diagram drawing area larger or use a

different construct.

Could not add a user-defined type for the current field.

The import program could not add a user-defined type for this field.

Couple ‘x’ used in ‘y’ has the same C name as a module.

Couples ‘x’ and ‘y’ used in ‘z’ have the same C name.

The naming rules and name length requirements for Visible Analyst are different for

those in C. When generating shell code for C, repository item names must be

transformed into C names. It is possible for two differently named items in Visible

Analyst to end up with the same C name. This would cause problems if you try to

compile this generated code. You should change one of the names so that the

generated code name is different from that for the other item.

Error Messages

515

Database is corrupt. Run Rebuild and try again.

Something happened to the project database. Run Rebuild from the Tools menu to

restore it to normal functioning.

Date constant expected.

A date constant is required in a ‘where’ clause restriction.

Decomposition hierarchy incompatible with data flow diagrams.

Changes have been made to a set of data flow diagrams spawned from an FDD

function that are inconsistent with the set of processes descending from that function

on the FDD. The Spawn Verify function cannot reconcile them. You must manually

change one set of diagrams to match the other. To avoid this error in the future,

changes to the hierarchy of functions and processes should be made to the FDD.

Then you can let the Spawn function carry the changes to the DFDs rather than edit

them both independently.

Diagram exceeds maximum page size.

Visible Analyst could not automatically draw an editable view because all of the

items you specified to include in the view could not be included without having to

overlay symbols. You have several options:

 You can print the view to see what it looks like and decide what to do later.

 You can return to the selection process and select fewer items to include in the

view.

 You can decrease the size of the symbols in the symbol template, which might

sufficiently ease the crowding of symbols to make it possible to draw an editable

diagram.

 You can create clusters, including some of the entities on this view, and create

an unstructured cluster diagram.

 You can reduce the point size of the fonts used for the text used to label lines

and symbols before generating the view. This causes Visible Analyst to scale the

size of the symbols and lines down to match the text and squeeze more

information onto the view. The more important of the two is the text used to

label the relationships because it decreases the space between the entities.

Your best option is probably to reduce the number of entities in the view, for a view

of the current complexity is probably difficult to understand even if you create an

editable diagram.

Diagram label already used in this project - Enter another label.

Each diagram in a project must have a unique name.

Error Messages

516

DLL ‘x’ not found. Cannot import.

The DLL program file specified is missing or not in the VA directory.

DOS file name for program ‘x’ is not unique, file ‘y’ has been overwritten.

During shell code generation, the output file created overwrote an existing file.

Duplicate ‘x’ clause.

The indicated clause is duplicated in the custom report specification.

Duplicate couple ‘x’ in call between ‘y’ and ‘z’.

A couple appears twice on an invocation line between modules “Y” and “Z”. This

would cause a duplicated parameter in generated C code. Note that it is possible that

this couple appears along the invocation and is also listed in the composition of an

ITR that is attached to the invocation. In this case, its duplication would not be

obvious from looking at the diagram.

Duplicate definition for ‘x’.

When defining methods for a class, a method name can be used more than once, but

each instance must have a different set of arguments to make it unique.

Duplicate label encountered, object label not added.

During a construct load or tree copy operation, any label that could cause two

different entry types to share the same name or create a second instance of an object

limited to a single appearance on a diagram is ignored. The text of the symbols

defined with duplicate labels is removed, resulting in diagrams containing unnamed

symbols. An analysis of the project can be used to identify unlabeled symbols.

Duplicate parameter ‘x’.

There is a duplicate parameter in the ‘params’ clause of a custom report

specification.

Enterprise connections exist for this project. Should the copied project be a satellite of

the same project(s) as its source?

When copying a project that has enterprise connections, you can choose to duplicate

the connections in the new project or remove them. Answering yes maintains the

connections between the copied project and all projects that had links to the original

project.

Entity labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated entity to any events

on an entity life history diagram. To resolve the error, draw a line from the entity to

any event type or structure box using the Connect function.

Error Messages

517

Entity labeled ‘x’ should have no input connections.
The entity on an entity life history diagram must be at the top of the hierarchy. To

resolve the error, remove all input connections to the entity.

Entry could not be found that matches current entry characteristics.

When searching for an item in the repository, an item with the selected entry

characteristics could not be found.

Entry type expected.

An entry type is required in the selected report query.

Error reading file.

There was a system error reading a requested file. The current task cannot proceed.

Error reading reports file.

There was a system error reading the saved reports file. The requested report cannot

proceed.

Error reading user-defined object links. Delete entry and run rebuild.

The structure containing links to user-defined objects has been damaged. You must

delete this entry and re-create the link. This may happen as a result of a power loss

during a repository update.

Error writing reports file.

There was a system error writing the saved reports file. The requested report cannot

be saved.

Event labeled ‘x’ must be of the same type as the other events at this level.

All symbols hanging from a single node must be of the same type, or be a structure

box that is used as a place holder. To resolve the error, change the symbol type of

the indicated event using the Change Item function.

Event labeled ‘x’ has more than one input connection.

The above error message is the result of connecting the indicated event to more than

one superior event/structure boxes. To resolve the error, move or delete all but one

of the lines to connect the event to one and only one superior event/structure box.

Export failed - Could not create export files.

The files necessary to store exported data could not be created. It could be that there

is not enough disk space, that you do not have rights to the destination directory, or

some system failure. You must rectify the situation before the export can be done.

Error Messages

518

Fatal error splitting view(s).

A global view could not be split into pages to print. There is probably insufficient

disk space.

File not found.

The file specified for import could not be found in the specified directory.

Files damaged, must rebuild.

The repository for the current project has been corrupted. To correct this condition,

execute the project Rebuild tool. If the problem persists, contact Visible Systems.

First character of repository name not a letter.

All repository entries must start with a letter.

Flow selected is not attached to the parent process of this diagram.

Only a net input or output flow can be Split. A flow attached to a process specified

as the target of a Nest (decompose) operation is considered a net input/output flow.

Function must be decomposed directly to processes before a Spawn operation.
Only a function, all of whose descendants on the FDD are processes, can be

spawned. If some descendants are subsidiary functions, the Spawn function cannot

proceed.

Functional decomposition error(s) encountered - Try analyze.

A Spawn Verify operation could not be performed because the structure of the

functional decomposition diagram does not match the data flow diagram set. Run the

Analyze function to determine the cause.

Illegal character - Used as a delimiter in database.

The label of an entry type such as a data flow, data store or couple, which can appear

in the composition field of another data repository entry, may contain up to 128

characters. Each can consist of any upper/lower case letter, numbers, spaces, periods,

underlines and hyphens. The first character must always be a letter. All other

characters are considered delimiter characters.

Import can not open log file, ‘x’.

The listed file cannot be opened for reading and writing.

Import cannot create an invocation

The Import function cannot create an invocation described in the import file. This

could be because the source and/or destination module names were not present or

because the module names were present in the import file but they couldn't be found

Error Messages

519

in the repository and Visible Analyst couldn't create them (perhaps they were of

incompatible types or violated some naming uniqueness rule).

Import DLL error in ‘x’: #y Import file format incorrect.

The import file specified does not conform to the format required. See specifications

for import files from other systems and make sure that the file was created correctly.

Import DLL error in ‘x’: #y Internal - exit and restart Visible Analyst.

The Import DLL (Dynamic Link Library) failed and its state is invalid. You may

have to close and restart Microsoft Windows in order to run the import again. Please

contact Visible Systems.

Import DLL error in ‘x’: #y Unable to open import file(s).

One or more of the import files was not found or cannot be opened.

Import DLL error in ‘x’: #y Undefined - Contact Visible Systems.

An internal error has occurred. Please contact Visible Systems.

Import file not found.

The VSC format import file was not found.

Import object type conflicts with existing object, item not imported.

The object in the import file has a type that cannot coexist with an object already in

the repository of a different type.

Import procedure aborted, x records have been imported.

If Import is canceled after the actual import has begun, the number of records

imported at the time of the cancellation is displayed.

Initialization failure - Contact Visible Systems.

The network version of Visible Analyst was not able to access the network. If the

network shell is loaded and you are logged on, contact Visible Systems.

Integer constant expected.

An integer constant is required in a ‘where’ clause restriction.

Invalid Alias Owner.

The alias owner information for an alias record is not valid or compatible with the

project in use.

Invalid condition.

There is an invalid restriction condition in a custom report ‘where’ clause.

Error Messages

520

Invalid construct name.

The name you specified for a construct contains illegal characters. Please correct and

try again.

Invalid construct name, reserved DOS device.

The entered construct name is a reserved DOS device name.

Invalid entry types list.

There is an invalid entry types list in a custom report ‘where’ clause.

Invalid format value ‘x’.

The format value indicated in a custom report ‘format’ clause is invalid.

Invalid label to use in split. - Label used elsewhere in project.

Data flow labels can be the same as data store labels, but they must be different from

process and external entity labels.

Invalid Location entry.

The entry you made in a Location field does not correspond to a repository item.

Please enter a correct value, or use the Search function to locate it and enter it that

way.

Invalid ‘order by’ value ‘x’.

The value you entered in a custom report ‘order by’ field is not a valid repository

entry label or entry type. Please enter a correct value.

Invalid path specified.

The path specified could not be created. Correct and try again.

Invalid placement of ‘|’ in Composition of ‘x’.

The logical OR operator ‘|’ is not placed in a syntactically correct position in the

field. Correct and try again.

Invalid project name.

The project name you entered contains invalid characters. Please enter a correct

value.

Invalid report name.

The report name you entered contains invalid characters. Please enter a correct value.

Invalid ‘select’ value ‘x’.

The value you entered in a custom report ‘select’ field is not “*”, “detail,” or

“summary.” Please enter a correct value.

Error Messages

521

Invalid SQL dialect format in SQLDIAL.TBL file - Reload from master disk.

The format of information in the file SQLDIAL.TBL is incorrect. Perhaps an attempt

to customize the file was done incorrectly. Inspect the file customizations for

correctness or reload the original file from the master media.

Invalid storage types list.

There is an invalid storage types list in a custom report ‘where’ clause.

Invalid VA construct file format.

The format of the file containing the construct you requested is invalid. Please

restore a correct file from a backup or delete the construct and re-create it.

Invalid ‘where’ expression.

The restriction entered in the ‘where’ clause of a custom report does not evaluate to a

valid restriction expression. Please consult the manual and correct.

Invocation(s) from Macro ‘x’ cannot be generated — not a recommended type of

connection.

A Macro should not invoke another module. Change it to a normal module.

Item named ‘x’ altered to name ‘x’ to meet COBOL rules.

Item named ‘x’ altered to program name ‘x’ to meet COBOL rules.

The naming rules for Visible Analyst and COBOL are different. When generating

COBOL shell code, the names of some repository objects may be transformed to

conform to COBOL specifications.

Item not decomposed beyond the 01 level: ‘x’.

A non-element repository item has been named but has not been decomposed at all.

A correct COBOL data declaration cannot be generated.

Item not fully decomposed to data elements: ‘x’.

A non-element repository item has not been fully decomposed to data elements. A

correct COBOL data declaration cannot be generated.

Iteration event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated selection event

box to an entity or a structure box on an entity life history diagram. To resolve the

error, draw a line connecting the event to an entity or structure box using the

Connect function.

Key already exists.

Error Messages

522

You attempted to save a new repository item with the same name as one that is

already in the repository of your project.

Key does not exist.

The label you entered in the Define dialog box does not exist in the repository. In the

education version of Visible Analyst, items cannot be created directly. They must be

created on a diagram or in the composition field of another object, such as an entity

or data store.

Labels must be unique - Label used elsewhere in project.

If you are labeling a process, all names must be unique. If labeling a data flow, data

store, or external entity, the name of one type cannot be the same as another type.

However, files and data flows can have the same name.

Last record in file is not complete.

The VSC import file ended in the middle of a record.

Loading this construct would exceed diagram limits.

A construct could not be added to a diagram due to size constraints.

Location(s) exist, cannot delete this entry.

An item cannot be deleted from the data repository if it exists on a diagram or as an

entry in the composition field of another data repository entry. To delete this item, it

must be deleted from any diagram it appears on, and its label must be removed from

the composition field of entries that reference it.

Location(s) exist to which you do not have Modify rights!

The object you are trying to rename or delete, appears in the composition or

attributes field of another object to which you do not have the right to make changes.

User rights are restricted by including objects in divisions. If you have not been

assigned Modify rights to the division, you cannot alter objects that belong to the

division.

Local data element is already used with a different class type.

When defining role names for a relationship, the name selected for the role already

appears as a member of the opposite class but with a different class type than that of

the current class. Because local data elements must be unique within a class, you

must choose a different name for the role. For example, if you have a class named

Window with a relationship to Item, and you defined the role for Window as

pWindow, there must be a member called pWindow of type Window in the member

list of Item.

Error Messages

523

Low memory warning: Approaching limit of diagram complexity. Save work

The amount of space allocated for this diagram is almost depleted. To avoid loss of

work, execute the Save function. We suggest you either partition the diagram into

multiple diagrams or not add more objects to it.

Matrix report is empty.

There were no repository objects that met the requirements you specified for a matrix

report.

Maximum number of projects reached, can’t create.

The completion of a New Project operation would have exceeded the maximum

project count restriction. The maximum project count for each configuration is:

 Education – 2

 Corporate - limited to the available disk space.

To determine your product’s configuration, select About Visible Analyst from the

Help menu.

Maximum number of levels in decomposition hierarchy has been reached.

You have already nested to the maximum level allowed by Visible Analyst (20

levels). The current Nest operation would exceed that maximum and is not allowed.

Maximum number of symbols for this diagram.

You have already reached the maximum number of symbols on a diagram allowed

by Visible Analyst (500). The current operation would exceed that maximum and is

not allowed.

Maximum number of users already logged on.

The maximum number of users (or nodes) allowed for the tool you purchased are

already logged on. You cannot log on until someone logs off.

Member ‘x’ is used more than once.

Local data elements must be unique within a class.

Message ‘x’ refers to a method that does not exist in the derivation tree of class ‘y’.

The indicated message is based on a method that does not exist in the indicated class,

or one of its base classes. To correct the problem, select the item and use the Change

Item function.

Message ‘x’ uses a pure virtual method.

Error Messages

524

A message used on a sequence or collaboration diagram is based on a pure virtual

method. Since pure virtual methods cannot be executed, a derived class should be

used instead.

Message ‘x’ uses a virtual method.

A message used on a sequence or collaboration diagram is based on a virtual method.

Since virtual methods are meant to be overridden, a method in a derived class should

probably be used instead.

Missing ‘format’ value.

There is no value entered in a custom report ‘format’ field. It should be “multiple” or

“single.” Please enter a correct value.

Missing ‘order by’ value.

There is no value entered in a custom report ‘order by’ field. It should be a valid

repository entry label or entry type. Please enter a correct value.

Missing ‘restriction’ condition.

There is no restriction entered in the ‘where’ clause of a custom report. Please

consult the manual and correct.

Missing select value.

There is no value entered in a custom report ‘select’ field. It should be “*”, “detail”

or “summary”. Please enter a correct value.

Modify rights to the project directory are required to perform this operation.

The creator of this project or a supervisor has given you view-only rights. One of

those people must upgrade your rights before you can make any changes to this

project.

More than one returned couple in call between ‘x’ and ‘y’.

More than one couple appears on an invocation line between modules ‘x’ and ‘y’ in

the return direction. This causes a function with more than one return value in

generated C code and is not allowed.

Multiple associator elements on a relationship.

A relationship may have only one associator element.

Multiple Data Only Modules specified in an Information Cluster.

One of the standard modules you specified for the information cluster is in fact a data

only module. An information cluster can have only one data only module.

Multiple invocations of ‘x’ have different number of parameters.

Error Messages

525

You invoked module “X” in different places on your structure chart with different

numbers of couples along the invocation line. The code generator cannot produce

proper C code in this situation.

Multiple invocations of ‘x’ have parameter of different type.

You invoked module “X” in different places on your structure chart, with couples

corresponding to repository items of different types. The code generator cannot

produce proper C code in this situation. Note that it is possible that these couples

could exist as components of ITRs attached to the invocations. In this case, the

variations are not obvious from looking at the diagrams.

Multiple invocations of ‘x’ have return values of different type.

You invoked module “X” in different places on your structure chart with one couple

appearing on invocation lines to module “X” in the return direction corresponding to

repository items of different types in different instances. The code generator cannot

produce proper C code in this situation.

Multiple Related To items specified.

More than one Related To item was specified in a field in an import file.

Name exceeds 128 characters.

The name you entered exceeds the Visible Analyst maximum of 128 characters.

Name not specified where required.

You have not entered the name of a repository item where one is required.

Name of connected item is not a valid VSC name.

A name you entered contains invalid characters. Please reenter.

Nested braces in composition of ‘x’.

Curly braces cannot be nested in a composition field to show array structure.

NetWare shell is not loaded.

You have attempted to run the LAN version of Visible Analyst when both of the

NetWare shell programs IPX.COM and NETx.COM are not memory resident. Load

them into memory and then restart Visible Analyst.

No complete clusters exist on this view.

A cluster view replaces a group of entities with a cluster on a cluster diagram only

when all of the entities composing the cluster appear on the current view. Partial

clusters are ignored. Either none of the entities appearing in the current view is a

member of a cluster or there is no cluster for which all of the composing entities

exist on this view. In either case, the cluster view is the same as the existing view.

Error Messages

526

No entities are available for inclusion in cluster.

Either there are no entities in the project or all of the entities are currently members

of clusters and the free entity pool is empty. An entity can be a member of only one

cluster.

No entries in repository.

A view can be created by the selection process only when there are already entities

and relationships in the repository from which to select. You must either create your

view manually, by adding entities and relationships to blank diagrams, or you must

enter the repository using the Define function from the Repository menu and create

entity entries. Then you can add them to a diagram and draw relationships between

them.

No length specified for item ‘x’. Using ‘y’.

Item ‘x’ has no length specified in its repository entry. Shell code is generated using

the default value y.

No more entries.

While searching for the next/prior item in the repository, the end/beginning of list

has been reached.

No reports found in reports file.

The report saver file is empty.

No space left on drive.

The target drive is full or there is not enough space to copy all of the files.

No valid programs in the project ‘x’. Using the entire project.

There is no program item in your project repository referring to a module for which

to generate shell code. The code generator assumes that you want a code for a

program corresponding to your entire project structure chart.

Not enough memory to execute this function.

While printing a report, Windows could not allocate the memory space required to

process the report.

Object type is not supported by this version of Visible Analyst.

The item you are attempting to open is of a type that is not supported by this version

of Visible Analyst. For example, if your tool set does not support object modeling,

you cannot access class and member objects that were created by other Visible

Analyst tool sets. Contact Visible Systems to upgrade your product configuration.

Error Messages

527

Object ‘x’ is based on an abstract class.

An object used on a sequence or collaboration diagram is based on an abstract class.

Since abstract classes cannot be directly instantiated, a derived class should probably

be used instead.

Object ‘x’ is not used. There are no messages attached.

This error is the result of not having messages attached to either an object lifeline on

a sequence diagram, or an object link on a collaboration diagram. To correct the

error on a sequence diagram, connect two object lifelines with a message line. To

correct the error on a collaboration diagram, add a message to an object link line.

One or more of the selected tables have columns that are either members of the view or

are used in an expression. Remove?

When removing a base table from a view, if columns from the table are specified in

the column list or are used in an expression (Filter, Having, Group By, etc.), the user

is prompted before the table is removed. After confirming the delete, any expression

that references the table will have the table name replaced by the work DELETED.

Only one processes allowed on a context diagram.

Because the context diagram defines the scope of the project, only one process is

allowed. It is numbered as process 0.

Only two projects allowed in the Education Version.

The education configurations of the product limit you to editing two projects at a

time. However, you may maintain other projects on backup disks created by the

Visible Analyst Backup tool. When these projects are needed, you should Backup

and Delete the current project then Restore the required project.

Only someone logged in as supervisor can turn off security.

To disable security for the single user version of Visible Analyst, the user must be

named supervisor or be assigned as system manager.

Operation labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated operation to an event

on an entity life history diagram. To resolve the error, draw a line connecting the

operation to an event using the Connect function.

Operation labeled ‘x’ cannot be connected to an entity.

This error message is the result of connecting the indicated operation to an entity.

Operations can only be connected to events. To resolve the error, connect the

Error Messages

528

operation to an event using the Connect function, or remove the connection to the

entity.

Operation labeled ‘x’ has more than one input connection.

This error message is the result of connecting the indicated operation to more than

one event. To resolve the error, move or delete all but one of the lines to connect the

operation to one and only one event.

Parameters missing.

There is one (or more) missing parameter in the ‘params’ clause of a custom report

specification.

Parent already has 40 children.

Each diagram in a project can have a maximum of 40 diagrams on the level

immediately below it. The New Diagram, Nest or Page operation cannot continue.

Parent missing. Must restore before editing children.

The parent diagram of the selected child cannot be located in the directory containing

the project. A DOS delete or rename command could have caused this condition. To

correct this condition, Restore the project data files from the backup disk(s)

generated by a Visible Analyst Backup operation.

Problem accessing database files. - Operation canceled.

An unexpected error status was returned from the record manager. To correct this

condition, execute the project Rebuild function. If the problem persists, contact

Visible Systems.

Problem accessing security file.

The VASECUR.VAW file is missing or damaged. Please contact Visible Systems.

Problem creating directory - Cannot proceed with operation.

When creating a new project, there was a problem creating the needed subdirectory.

Either you have insufficient rights to perform the operation, or there was a problem

with the drive.

Problem creating network transaction file - Cannot proceed with create.

Critical error; contact Visible Systems.

Problem creating project repository - Cannot proceed with operation.

Error Messages

529

When creating a new project, there was a problem creating the needed files. Either

you have insufficient rights to perform the operation, there is insufficient disk space,

or there was a problem with the drive.

Problem opening tree file - Cannot proceed with operation.

Problem reading project tree file - Cannot perform save.

Problem reading project tree file - Cannot print.

Critical error; contact Visible Systems.

Problem sending message.

A message could not be sent to the selected user. It could be that the user is not

logged in on the network. Otherwise, try reloading the network shell.

Problem with current device.

Windows had a problem accessing the output device you specified.

Problem with transaction log - Cannot proceed.

The transaction file for this project has been corrupted. To correct this condition,

contact Visible Systems for instructions.

Process number already in use.

The specified process number is already used. A process number must be of the form

‘Parent-number + “.” + Child-number’ where child-number is a unique number

between one and one hundred.

Process view is empty.

You have attempted to create a process view and indicated a process that does not

use data elements listed in the composition field of any existing entity. There must be

data flows either entering or leaving the process that are composed directly or

indirectly of data elements which one or more entities list in their composition fields.

Program ‘x’ has invalid root module.

The specified program repository item does not have a module listed in its

composition field.

Project already exists.

The project specified for creation already exists.

Project already has maximum number of diagrams.

The diagram count for the current project involved in a New Diagram operation or

the Copy or Copy Diagram operation exceeds the maximum allowable diagram

count if the operation were to complete. The following table describes the maximum

diagram count per diagram type for the each configuration:

Error Messages

530

 Education – 10

Corporate –limited to the available disk space

To determine your product configuration, select About Visible Analyst from the

Help menu.

Project does not exist.

The project root that was entered could not be found in the project master list. Try

restoring the project from a set of backup disks.

Project files damaged or not convertible.

A project created with an earlier version of Visible Analyst is damaged or not

complete and cannot be converted to the current release.

Project is currently being created by another user - Cannot proceed.

The project specified is being created by another user. Either select another project

root name or wait until the other user saves his or her work.

Project master file cannot be opened - May be damaged.

There was a problem accessing the project master file. Contact Visible Systems.

Project not found in master file.

The selected project could not be found in the list of projects.

Project version (X.Y) not supported.

This project was created with a prior version of Visible Analyst. It must be converted

to version 6.0 before being used. To convert a 3.1 or later project to version 6.0,

execute the Rebuild tool. If the project was created by a version prior to 3.1, then

contact Visible Systems. We can convert it for you.

Project ‘x’ not found. Enter new location:

This project could not be found in the directory path where other projects reside.

Perhaps it is on another drive or in another directory, or perhaps it is on a server or a

local drive.

Project’s database files not found.

The database files for this project could not be found in the directory where the

project resides. Either the files have been deleted or moved with DOS functions.

They need to be restored to the proper directory before Visible Analyst can proceed.

You also have the option of restoring the most recently backed up version of the

project.

Error Messages

531

Query definition error: ‘x’.

The specified error occurred when you defined a custom report query. Please correct

and try again.

Rebuild failed. Cannot create data store list.

Rebuild could not access or update the temporary project.

Rebuild failed. Cannot create work files for project ‘x’.

Your system may be low on memory or disk space.

Record header format is not correct.

The header for an import record is not properly formed.

Recursive definition for ‘x’ is not permitted. Set Reference type to Address.

A class cannot be used in its own definition unless the reference type of the member

indicates it is a pointer to the class.

Recursive views are not allowed.
When defining the base tables for a view, the list cannot contain the view itself. Any

other view or table is allowed.

Relationship already exists with different cardinality.

A relationship actually consists of the relationship itself and the two entities to which

it is attached. An entity/relationship combination can appear on multiple views, but

only once per view. However, each occurrence must specify the same cardinality.

You are attempting to specify a cardinality for a relationship different from how it

appears on another view.

Relationship already exists with different set of names.

A relationship actually consists of the relationship itself and the two entities to which

it is attached. An entity/relationship combination can appear on multiple views, but

only once per view. However, on each occurrence, the relationship must have the

same names in both directions. You are attempting to specify a relationship with

mismatched names in the opposing directions of the relationship.

Report name missing.

The report name is missing in the ‘report’ clause of a custom report specification.

Report saver file is empty.

No report format files have been created. To create a saved report, define a report in

the Reports dialog box and click the Save Report button. In the subsequent dialog

box, give the report a name and click OK.

Error Messages

532

Report “x” not found.

The report you requested from the report saver file could not be found. The report

names contained in the file are listed in the dialog box. You can choose one from the

list.

Repository string exceeds the maximum length.

One of the strings in a VSC import file exceeds 254 characters in overall length.

Restriction too long.

The restriction entered in the custom report definition ‘where’ clause is too long.

Return value from “x” is sometimes ignored.

Some invocations of module “x” do not have a return couple and some do.

Invocations should be consistent.

Root module for C program “x” is not named ‘main’.

The module named in the repository Program item for which shell code is being

generated needs to be named “main” for C programs.

Security cannot be disabled for network version of Visible Analyst.

In order for Visible Analyst to work properly on a network, security must always be

turned on.

Selected SQL dialect is not defined in SQLDIAL.TBL - Reload from master media.

The information for the SQL dialect you have selected is not in the file

SQLDIAL.TBL. You should reload the file from the master media.

Sequence event labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated sequence event to an

entity or any events on an entity life history diagram. To resolve the error, draw a

line connecting the event to an entity or structure box using the Connect function.

Selection event labeled ‘x’ is dangling.

This error is the result of not connecting the indicated selection event box to an entity

or a structure box on an entity life history diagram. To resolve the error, draw a line

connecting the event to an entity or structure box using the Connect function.

Some components already exist - Conflicting information was not changed.

Error Messages

533

When defining components using the Add Components dialog, an item was defined

that already existed in the repository but with different physical characteristics. The

original characteristics were not modified.

Statement type ‘x’ is being used in the current project and cannot be removed.

You cannot delete a statement type from the current project if there are statements

that us it.

Stereotype not defined for relationship between the use cases ‘x’ and ‘y’.

For relationships between a pair of use case symbols, a stereotype must be specified,

indicating the type of relationship. A name is optional. To resolve the error, find the

relationship and set the stereotype using the Change Item function.

Storage type expected.

A storage type is required in a custom report specification.

String constant expected.

A string constant is required in a ‘where’ clause restriction.

Structure box labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated structure box to an

entity or any events on an entity life history diagram. To resolve the error, draw a

line connecting the structure box to an entity or event using the Connect function.

Subdirectory could not be created.

A default subdirectory could not be created for your new project because your disk is

full, there are no more available directory entries (a very rare occurrence), or because

you do not have rights to create subdirectories from the current directory. Check

your available disk space or check with your network administrator.

System boundary labeled ‘x’ has no components.
The above error message indicates the named system boundary does not have any

use case object defined in its composition. A system boundary is used to group

objects. To resolve the error, either delete the system boundary, or add components

using Define.

Template files missing - Reload from master media.

One of the symbol template files (TEMPLATE, TEMPLATE.SC, TEMPLATE.ER,

TEMPLATE.US, TEMPLATE.FD, TEMPLATE.CL, or TEMPLATE.ST) is

missing. Reload from master media.

Text string is not in the proper format.

All strings in the import file must be enclosed in quotes.

Error Messages

534

The first character of a label must be a letter when rules are enabled.

All entries in the project repository must begin with a letter when rules are enabled.

The item “x” is not valid when combined with the other line parameters you have

previously chosen.

Not all combinations of line elements are valid. If you select an invalid combination,

you cannot continue. Either reset to a valid setting or cancel the operation.

The Main Transaction Log could not be accessed

Visible Analyst could not open the Main Transaction Log for some reason. Please

call Technical Support so that we can assist you.

The maximum number of projects have already been created.

In the education version of Visible Analyst, only two projects can be created. If you

want to create another project, you must delete a project before continuing.

The requested scaling factor is too small for the selected page size.

The scaling factor you selected cannot be used with the selected page size because

the workspace required to represent the diagram would be too large. The minimum

valid scaling factor is set. As the page size increases, so does the minimum scaling

factor.

The requested diagram settings are too small to include all diagram objects. The scaling

factor has been changed.

The page settings you specified (workspace, orientation, page size, and scaling) are

not large enough to encompass the entire diagram. The scaling factor has been

changed to accommodate all the diagram objects.

The selected object cannot be used because of the way the current object is used on the

diagram

You cannot change the name of the current object to the name that was selected

using the Search function because some characteristic of the selected object conflicts

with the definition of the current object. For example, you may have chosen to

change the name of a gateway that was defined as data-based to one that has a

definition of complex.

The selection that you made requires the existence of objects that you have chosen to

delete. The selection will not be changed.

When resolving conflicts during enterprise copy, you cannot make your selections

such that a dependent object is retained while the parent object is deleted. For

example, if you choose to delete a class, all member functions (or modules)

associated with that class must also be deleted.

Error Messages

535

The settings are too small to include all diagram objects, but changing the scaling factor

conflicts with the page size.

The page settings you specified (workspace, orientation, page size, and scaling) are

not large enough to encompass the entire diagram. However, the scaling factor

cannot be changed because the workspace required to represent the diagram would

be too large. Change the workspace, orientation, or page size to accommodate all the

diagram objects.

There are more than two description lines.

An import file has more than two lines of description information.

There are no virtual methods defined for this class.

Only classes with virtual or pure virtual methods can be marked as abstract. Visible

Analyst automatically marks classes with pure virtual methods as abstract.

There are ‘x’ unnamed actor(s).

This error is the result of not labeling actors on your use case diagram. To resolve the

error, find and label them using the Change Item function.

There are ‘x’ unnamed iteration event(s).

This error is the result of not labeling iteration events on your entity life history

diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your sequence or collaboration

diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed note(s).

 This error is the result of not labeling note symbols on one of several types of UML

 diagrams. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your sequence or collaboration

diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed operation(s).

This error is the result of not labeling operations on your entity life history diagram.

To resolve the error, find and label them using the Change Item function. Note that

even though the name does not appear in the operation symbol, the name must exist

and will be displayed in the operation table.

There are ‘x’ unnamed relationship(s).

Error Messages

536

This warning is the result of not labeling relationships on your use case diagram. To

resolve the warning, find and label them using the Change Item function.

There are ‘x’ unnamed selection events.

This error is the result of not labeling selection events on your entity life history

diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed sequence events.

This error is the result of not labeling sequence events on your entity life history

diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed swimlane(s).

This error is the result of not labeling swimlanes on your activity diagram. To

resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed system boundary(s).

This error is the result of not labeling system boundaries on your use case diagram.

To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed use case(s).

This error is the result of not labeling use cases on your use case diagram. To

resolve the error, find and label them using the Change Item function.

There must be at least two event blocks defined on this diagram.

Every entity must have a creation event and a destruction event. In addition, there

may be other events that take place in between. This error indicates there are not at

least two connections from the defining entity to event symbols. To resolve the

error, connect the entity to at least two events using the Connect function.

There should be only one entity on this diagram.

An entity life history diagram describes the events and operations of a single entity.

Remove all but the desired entity for this diagram.

These columns are components of a relationship. Do you want to include all members of

the relationship?

When adding a join relationship by dragging and dropping columns, if the pair of

columns selected are part of a relationship based join, the user can choose to add all

the columns from the relationship. Note: the columns will not appear in the

Additional Join Restrictions control because they are part of a relationship definition.

These PERFORM statements are generated from invocation lines.

You specified that module description fields are to be interpreted as COBOL code

and placed into your generated shell code. Therefore, the PERFORM statements that

Error Messages

537

would otherwise be generated from module invocations appearing on structure chart

diagrams are not used as generated code. Rather, they are placed in the code as

comments for your reference, to compare against the code stored in the module

description field.

This class appears on an entity-relationship diagram.

If a class appears on an entity-relationship diagram, the persistent indicator cannot be

turned off. This is because an entity or table outlasts the execution of a program.

This couple exists on other diagrams, so it may not be changed.

Couples of different types cannot have the same name. You have tried to locally

change a couple to a different type when the original couple has locations on other

diagrams. Either choose a new name for the couple before attempting to change the

type, or make a global type change, throughout your project.

This division has been used in an Enterprise Copy. Delete Enterprise Tags before

removing.

If a division has been used in an Enterprise Copy operation, the link between the

enterprise project and the satellite project must be removed before a division can be

deleted. See Removing Enterprise Links for details.

This entry can only be associated with one ‘x’ planning statement type.

When this statement type was defined, the Cardinality was set to 1:1, so it cannot be

linked to more than one entry.

This entry has been deleted.

The item selected has been deleted by another user since the window was displayed.

Select another entry.

This file is currently locked by another user.

The file specified for import or export is being accessed by another user. Try again.

This is disk “x” of the backup. Please insert backup disk “y”.

The wrong disk was inserted during a Restore operation. The disks must be accessed

in the same sequence as when they were produced during Backup operation.

This is not a conditional invocation line. Reposition start point.

This message is issued when an attempt to specify an additional conditional

invocation line fails because the conditional terminator (the diamond shaped one)

was not chosen. To associate another conditional invocation line to a pre-existing

conditional terminator, select the conditional terminator with the Line Settings

function on the Options menu. Now point to the middle of a preexisting conditional

terminator and select it as the start point of the line. Next choose the appropriate

Error Messages

538

module as the endpoint of the line. A second conditional invocation line is drawn as

if it were emanating from the conditional terminator you selected as the start point.

In fact, there are two conditional-terminated invocation lines with the conditional

terminators exactly superimposed on each other. Either can be moved or deleted

separately from the other.

This item cannot be deleted or modified.

The text caption that appears on diagrams generated by the education version of

Visible Analyst cannot be altered or removed.

This page already contains the maximum of 2000 text items per page.

You are allowed up to 2000 blocks of text on a diagram.

This page already contains the maximum of 1000 lines per page.

You are allowed to have any combination of 1000 lines and line segments on a

diagram.

This page already contains the maximum of 500 symbols per page.

A diagram may contain up to 500 symbols. Once this maximum is reached, you can’t

add more. Try subdividing the diagram.

This PERFORM statement is generated from an invocation line.

You have specified that module description fields are to be interpreted as COBOL

code and placed into your generated shell code. Therefore, the PERFORM

statements that would otherwise be generated from module invocations appearing on

structure chart diagrams are not used as generated code. Rather, they are placed in

the code as comments for your reference, to compare against the code stored in the

module description field.

This planning statement is already associated with another entry.

When this statement type was defined, the Cardinality was set to 1:1, so it cannot be

linked to more than one entry.

This project is stored on a local drive to which you do not have access.

The selected project is stored on a local drive on another workstation. You must be

using that station in order to access the project, even if you have been given rights.

Too many flows to fit on diagram. - Remaining flows ignored.

This message is displayed by the Nest and Split operations. When splitting a data

flow, there was not enough space in the margin to draw all the subflows. Therefore,

only the subflows specified before this message appeared are drawn in the diagram’s

margin. If you wish to continue splitting the parent data flow, move the flows on the

margin (either individually or in a block) about two inches toward the middle of the

Error Messages

539

diagram and once again select Split. Now select one of the subflows as the object of

the Split. The split operation further decomposes the parent data flow, not the

subflow. Then enter or select the component subflows. Repeat this procedure until

you have fully decomposed the parent data flow.

The instructions for the Nest operation are similar. Follow the above instructions to

move the flows from the margin(s) of the child diagram. Then, Save the diagram and

return to the parent diagram using the Parent option of the Nest function. The parent

diagram containing the nested process should be the current diagram. Now locate the

nested process and re-nest this parent process using Nest Explode operation. Another

set of data flows is dragged down and drawn on the child diagram. Repeat this

procedure until the message is no longer displayed.

Too many parameters.

There are too many parameters in the ‘params’ clause of a custom report

specification.

Too many reports.

You have already saved the maximum number of custom reports. You cannot save

another.

Tree file already exists in this subdirectory - Select another path.

The subdirectory to which you are moving the project already contains the current

project tree file.

Trigger “x” already in repository. Add to Table?

You tried to add a trigger to the repository that already exists. If you want to attach it

to the current table (entity), click OK. Otherwise, click Cancel.

Type for couple “x” cannot be determined.

The element related to by couple “x” has no physical characteristics defined.

Unable to access path\file.

Problem accessing a file in the specified directory. You might not have rights to the

directory.

Unable to delete directory.

The directory containing the project you are deleting cannot be deleted. You might

not have rights to the directory or the directory might not be empty.

Unbalanced braces in composition of “x”.

The curly braces in the composition field of repository item “x” are not balanced.

Error Messages

540

Unbalanced parentheses.

The parentheses in an expression are not balanced.

Unexpected EOF.

An end-of-file was encountered in the REPORTS.TBL file where other report

definition statements were expected. Please correct the file and try again.

Unexpected error during VA operation.

Critical error, contact Visible Systems.

Unknown column “x”.

The column name you entered in a ‘where’ clause restriction is invalid. Please

consult the manual and enter a correct value.

Unknown parameter “x”.

The parameter you entered in a ‘where’ clause restriction is does not match any

parameter expression you entered in the ‘params’ clause. Please enter a correct

value.

Use case labeled ‘x’ is dangling.

The above warning message is the result of not connecting the indicated use case to

another use case on the use case diagram. To resolve the error, draw a line from the

use case to any use case using the Connect function.

User file cannot be accessed if security is disabled.

The Users option on the Tools menu cannot be selected if security is not enabled. To

enable security in the single user version of Visible Analyst, select the Security

option from the Options menu and enter a user ID of “SUPERVISOR.” This enables

security and prevents unauthorized users from entering Visible Analyst. After

enabling security, the supervisor can assign a password for the Supervisor User ID.

To disable security, sign on as SUPERVISOR and deselect Security.

User not logged on.

When security is enabled, a list of valid user IDs is checked. The one you used is not

among them. Check with the supervisor.

VR Repository Access Error (Error Displays as a Dialog Box)

This error is issued by the BTRIEVE data base manager employed by the repository.

The message usually occurs because the data repository and diagram parameter files

are unsynchronized due to a latent problem or power loss during a Visible Analyst

operation. It could also happen because one or more repository files have become

unavailable due to deletion. There are other possible causes as well.

Error Messages

541

Because it indicates a serious problem, we recommend that you call Visible Systems

so that we can help you correct the situation. It is important that you record the other

information that appears in the dialog box. A simple way to do this is to press

ALT+PrintScreen and capture the dialog box to the Windows Clipboard. You can

then open Windows Write program (or another software package that can deal with

bitmaps). Once in Write (or whatever other software you choose), select Paste from

the program Edit menu and the image from the Clipboard appears. Then you can

select Print from the File menu and print it, so that you can refer to it when you talk

to Visible Systems technical support personnel.

Warning: A pure virtual method should not have a definition. Continue?

If a class method is defined as pure virtual, or abstract, the Module Description field

should be empty because pure virtual methods are never executed. They are meant to

be defined by derived classes.

Warning: Both Related To and Values & Meanings contain information.

It may be redundant to specify information in the Values & Meanings field when a

couple is related to an element, data structure, data flow, data store or file. We

suggest you specify information in the Related To field when a couple represents a

data flow diagram element, data structure, etc., and remove any information from the

Values & Meanings field.

In other instances, when the couple only exists within the context of the structure

chart diagram and bears no meaning in terms of project data flow diagrams, then the

Values & Meanings field should describe this couple. For example, a control couple

that signals an end of file condition would likely contain information in its Values &

Meanings field because a condition or signal should not be defined in a data flow

diagram.

Warning: Entity life history diagram ‘x’ is not associated with an entity.

This warning is the result of not exploding an entity on an entity relationship

diagram to the indicated entity life history diagram. To resolve the warning, open an

entity relationship diagram on which the entity appears, select the entity, and use the

Explode feature to attach to the indicated ELH diagram.

Warning: Related to entry “x” does not exist in the repository.

A label was entered into the Related To field which does not reference a dictionary

entry. Correct the spelling of the label. To determine the correct spelling of the label,

execute a repository search.

Warning: Relationship “XrY” omitted from schema because it doesn’t appear on the

included view(s).

Error Messages

542

The named relationship either joins two entities (somewhere in this project) or is

attached to an entity included in the current schema but does not appear on any of the

views you chose to include in this schema. Therefore, it is omitted from the schema

you are generating. If this is not what you want, add one of the views containing it to

the list for the schema generation.

Warning: Relationship “XY” omitted from schema because Entity “Z” doesn’t appear

on the included view(s).

The named relationship is attached to Entity “Z”, that is included in the current

schema but does not appear on any of the views you chose to include in this schema.

Therefore, it is omitted from the schema you are generating. If this is not what you

want, add one of the views containing it to the list for the schema generation.

Warning: There are ‘x’ unnamed structure box(es).

This warning is the result of not labeling structure boxes on your entity life history

diagram. To resolve the warning, find and label them using the Change Item

function. However, since structure boxes are simply place holders, it is not

necessary to label them.

Warning: This entry type is normally related to a data element.

A label was entered into the Related To field of a control couple that does not refer

to a data element. A control couple represents an item used to coordinate the

processing between procedures. In most instances, it is a single conditional signal.

The Related To field should only contain an element reference due to the data flow

diagramming restriction that prevents the definition of conditionals and the

elementary nature of a control couple.

Warning: This entry type is normally related to a process.

A label was entered into the Related To field of a structure chart module entry that

does not refer to a data flow process. A structure chart module represents the

encoding of one or more data flow processes. Therefore, the Related To field should

contain a label that references a process.

Warning: This entry type is normally related to an element, data structure, data flow, or

file.

A label was entered into the Related To field of a data or generic couple that does not

refer to a data element, data structure, data flow or file. A data or generic couple

represents the data items passed between structure chart modules. These data items

are inputs furnished to and the outputs produced by the modules. A high correlation

exists between the data flow diagram entry types such as an element, data structure,

etc., and a data or generic couple because the structure chart is derived from the data

flow diagrams of the project.

Error Messages

543

Warning: “x” in composition field has an invalid type for this object.

You entered a name in the composition field of “x” whose type cannot be used for

object “X.”

Warning: “x” in composition field is referenced by another cluster.

You entered an entity into the composition field of a cluster that is already in the

composition of another entity. No entity may be referenced by more than one cluster.

To select from the free entity pool (entities not referenced by any cluster), position

the cursor in the composition field of the cluster and click the repository Search

button. Multiple entities can be selected from the repository search dialog box.

You do not have rights to change this object.

The selected object belongs to a Division to which you do not have Modify rights.

Division rights are inherited from a user’s project rights, but can be further restricted

within the division.

You do not have rights to this directory.

Either you have not been assigned as a trustee to the directory selected or you have

insufficient rights in the directory. There are two other ways this error can be caused.

First, the network drive mappings changed since directory rights were assigned.

Second, some users are attempting to access this network volume with different

drive mappings than other users.

Trustee assignment is accomplished through NetWare functions, normally performed

by the supervisor. The following trustee rights must be granted for the user to gain

access to the project: Read, Write, Open, Create and Search.

You do not have rights to this diagram.

The selected diagram belongs to a division to which you do not have access rights.

Division rights are inherited from user project rights, but can be further restricted

within the division.

You do not have rights to this object.

The selected object belongs to a division to which you do not have access rights.

Division rights are inherited from user project rights, but can be further restricted

within the division.

You do not have rights to update the VAW.INI file.

In order to change user-defined attributes or objects, you must have write access to

the system VAW.INI file that is stored in the directory where VA32.EXE was

loaded.

You do not have the required rights to perform the enterprise update requested.

Error Messages

544

In order to complete an Enterprise Copy operation, you may need modify rights on

the selected division in either the enterprise project, the satellite project, or both

depending on the selections you made in the Update Actions dialog box. Division

rights are inherited from user project rights, but can be further restricted within the

division.

You do not have view rights for all objects in the specified division.

In order to perform an Enterprise Copy operation, you must have view rights for the

division being copied. Division rights are inherited from user project rights, but can

be further restricted within the division.

You have insufficient rights to the directory where the Visible Analyst is installed.

In order to use Visible Analyst, you must have read, write, create, and erase rights to

the directory where the Visible Analyst system data files are stored. If the System

Data Path was set to be different from the program directory during the install

procedure, you only need to assign read rights to the program directory. Establishing

a separate directory for programs and data gives you the most flexibility in assigning

rights to control access.

You have not been assigned access rights to this project.

In order to access this project, the user who created the project or a user with

supervisor equivalent privileges must include your user ID in the access list

maintained by the project. Furthermore, you must be defined as a trustee of the

directory containing the project either implicitly, through the cascading effect of

parental privileges, or by an explicit directory entry.

To include the user ID in the access list maintained by the project, select Users from

the Tools menu. Trustee assignment is accomplished through NetWare functions,

normally performed by the supervisor. The following trustee rights must be granted

for the user to gain access to the project: Read, Write, Open, Create and Search.

You have not been assigned modify rights to this project.

The creator of this project or a supervisor has given you view-only rights. One of

those people must upgrade your rights before you can make any changes to this

project.

You may not use arcs and elbows for invocation lines that have couples.

Because of the way couples are drawn, you cannot add couples to invocation lines

of these types and you cannot change an invocation line with existing couples into

one of these line types.

You must have exclusive rights to branch - Another user is editing a child diagram.

Error Messages

545

When a diagram is inserted into the tree, all diagrams below it in the same branch

could be affected. Someone is editing a diagram within the branch. Therefore, the

create cannot be performed.

You must have exclusive rights to project to perform this operation.

The selected function can only be performed if you are the only user accessing the

current project.

You must have rules & repository support to access this project.

The project you are attempting to open was created with a repository, and the version

of Visible Analyst that you are using does not have repository support. Contact

Visible Systems to upgrade your product configuration.

You must install printers from Windows Control Panel before this function can be used.

You cannot change printers until at least one is installed. You must do this from the

Windows Control Panel.

You must select an invocation line before pasting unassociated couples.

If a couple is copied to the Windows Clipboard without an associated invocation

line, you must select an invocation line before performing a Paste operation so that

Visible Analyst knows where to place the couple.

You must Undo changes to the current line-in-progress to change modes.

If a line is being drawn, but has not yet been completed, you must either complete

the line or select Undo from the edit menu to cancel the line before you can switch to

another drawing mode.

‘X’ statement types cannot have children.

When this statement type was defined, the Composite Type option was not enabled.

‘X’ statement types cannot be linked to other objects.

When this statement type was defined, the Allow Linkage option was not enabled.

‘X’ statement types cannot be linked to this type of object.

When this statement type was defined, the Link To type was different than the object

type to which you are attempting to link.

Customizing an SQL Dialect

546

Appendix B

Customizing an SQL Dialect

After selecting the Options function SQL Dialect, you see a dialect named User-Defined.

Selecting this and then choosing Generate SQL from the Repository menu generates SQL

DDL that includes all possible options. There is no existing SQL dialect that includes all of

them; however, you can customize this dialect if you need an SQL dialect that Visible Analyst

does not yet support.

To customize the dialect:

Keep a Backup of the 1 Make a copy of the file \VA\SQLDIAL.TBL so that you

Original File: can restore it and start over in case you make a serious

 error.

Edit the Dialect 2 With an ASCII text editor, edit the file SQLDIAL.TBL.

Description Table: Each dialect is described in a section beginning with the

name of the dialect in brackets. Search for [sql user] at the

beginning of the section describing User Defined SQL.

 3 You see the various options listed followed by a colon,

and then Yes or No (indicating whether or not the option

applies) or a numeric value describing a length constraint.

Change these values to reflect the requirements of your

SQL dialect. If ‘Semicolons:’ is set to yes, each DDL

statement is appended with a ‘;’.

Select Applicable Data 4 This is followed by a section defining the available data

Types: types for the customized dialect. For any data type that is

not supported by your dialect, the text following the colon

should be deleted. Alternatively, the entire line can be

deleted. For data types available in your dialect, you must

also indicate how many parameters are to be passed to

SQL when indicating a certain data type. Examine how it

is done in other dialects if you have questions.

For example, examine the definition for the data type

“decimal”. You see three possible syntaxes:

Customizing an SQL Dialect

547

DECIMAL(,), DECIMAL(), and DECIMAL. The first

indicates that SQL would expect a definition of a decimal

data type to include both the field length and the number

of decimal places (DECIMAL(6,2)). Similarly,

DECIMAL() would describe a declaration with just one

length value, and DECIMAL would contain no length

value. Consult the documentation for your SQL dialect to

find out how it expects data types to be defined and what

the numbers mean to that specific dialect.

If the list of data types begins with a single colon (:), this

indicates the logical-to-physical mapping wastes storage

space. If the list starts with a pair of colons (::), the SQL

dialect does not have a native type that corresponds to the

logical type.

Note

 In the LAN version, this file is Read Only. A user with network supervisor

privileges must change the file to Read/Write before editing can be done.

Customizing the Trigger Wizard

549

Appendix C

Customizing the Trigger Wizard

When performing SQL schema generation, you can enforce referential integrity either

declaratively or through the use of the Trigger Wizard. The Trigger Wizard automatically

generates the triggers that are necessary to enforce the referential integrity constraints

specified by the relationships defined in your data model. If you want to customize the trigger

code that is produced by the Trigger Wizard, you must follow the guidelines outlined in this

section.

Create a Supplemental 1 When generating triggers, the Trigger Wizard uses the

Trigger Definition File: TRIGSYS.TBL file to create the necessary SQL code.

 This file contains macro definitions for all triggers that

can be generated for each SQL dialect. This file should

never be modified. Instead, create a file named

TRIGUSER.TBL to use to redefine macros that you wish

to change. (You can simply copy the TRIGSYS.TBL.)

Determine the Scope 2 The trigger definition file is divided into sections. In the

of the Changes: first section, [Template global], define macros that are

used by all other sections in the file. For each SQL dialect

that you use, there should be a section named [Template

dialect], where dialect is the name of the target RDBMS.

Valid dialect names include Server System 10, Oracle,

and Watcom.

Create New Macros: 3 There are two types of modifications that you can

perform: modify the code of an existing macro or create a

new macro that is to be called by one or more of the

standard macros. To create a new macro, a C-style

convention is used:

 #define identifier {substitution-text}

 OR

 #define identfier (parameter-list) {substitution-text}

where all occurrences of identifier are replaced with

substitution-text. The substitution-text can contain zero,

Customizing the Trigger Wizard

550

one, or more statements. Note that the opening and

closing braces ({ }) are required.

There are two operators that can be used for token

passing:

token##parameter, parameter##token

AND

token#^parameter, parameter#^token

If ## precedes or follows a formal parameter in the

definition of a macro, the actual argument is concatenated

with the token on the other side of the ## before the

macro is expanded. If #^ is used, the expansion is

performed before the passing.

To remove a macro definition, use the directive #undef

identifier.

To define a single-line comment, use the #— directive.

Anything after the directive is ignored by the Trigger

Wizard. To define a multi-line comment use #/* to start

the comment and */ to end it. Macro comments do not

appear in the generated trigger.

Modify the Trigger 4 The Trigger preamble is a special macro that gets

Preamble Macro: expanded at the beginning of every trigger generated by

the Trigger Wizard. It can be used to store code that is

common to all triggers.

Modify the Referential 5 The Trigger Wizard uses a set of pre-defined macros to

Integrity Macros: enforce the referential integrity constraint defined by a

relationship. The names of the macros cannot be altered.

However, you are free to make any changes you wish to

the body of the macro.

 OnDeleteCascadeChild

 Delete dependent rows when the parent is deleted.

 OnDeleteRestrictParent

 Don’t allow parent to be deleted if dependent rows exist

in the child.

Customizing the Trigger Wizard

551

OnDeleteSetDfltChild

Set dependent foreign key columns to a default value

when the parent is deleted.

OnDeleteSetNullChild

Set dependent foreign key columns to NULL when the

parent is deleted.

OnUpdateCascadeChild

Change dependent foreign key columns when the primary

key (or any unique constraint) columns in the parent are

modified.

OnUpdateRestrictParent
Don’t allow primary key columns in the parent to be

modified if dependent rows exist in the child.

OnUpdateSetDfltChild

Set dependent foreign key columns to a default value

when the primary key columns in the parent are modified.

OnUpdateSetNullChild

Set dependent foreign key columns to NULL when the

primary key columns in the parent are modified.

OnInsertChildRestrictParent

Don’t allow an insert to be performed on a dependent

table if the foreign key does not exist as a primary key in

the parent.

OnUpdateChildRestrictParent
Don’t allow an update to be performed on a dependent

table is the foreign key does not exist as a primary key in

the parent.

Use Built-in Macros: 6 The Trigger Wizard has several built-in macros to ease

the construction of a trigger. Except where noted, these

macros can only be used in the body of one of the

referential integrity macros described above.

ChildTableName

The name of the dependent table in a relationship.

Customizing the Trigger Wizard

552

ColumnUpdateTest(Conjunction)

Creates a test condition comparing column values before

and after the table is modified. This should only be used

for SQLServer dialects.

Parameter Description
Conjunction If a multi-column key is used,

this parameter determines how

the column comparisons are

grouped. Acceptable values are

and or or.

ColumnValueTest (CorrelationNameOld,

RelationalOperator, CorrelationNameNew, Conjunction)

Creates a test condition comparing a pair of columns in

either the parent or dependent table.

 Parameter Description
 CorrelationNameOld The name of the table.

Depending on which table is

being examined, either the

ParentTableName or

ChildTableName macro or a

correlation name should be

used.

 RelationalOperator The operator used to compare

the columns. Any relational

operators are acceptable.

 CorrelationNameNew The name of the table.

Depending on which table is

being examined, either the

ParentTableName or

ChildTableName macro or a

correlation name should be

used.

 Conjunction If a multi-column key is used,

this parameter determines how

the column comparisons are

grouped. Acceptable values are

and or or.

Customizing the Trigger Wizard

553

 ForeignKeyColumnNameList(CorrelationName)

Comma delimited list of foreign key column names in key

order.

Parameter Description
 CorrelationName The name of the dependent

table. Either the

ChildTableName macro or a

correlation name should be

used.

JoinParentChild (ParentTableName,

RelationalOperator, ChildTableName, Conjunction)

Creates a join condition that is used to compare the

unique columns in the parent table against the foreign key

columns in the child.

 Parameter Description
 ParentTableName The name of the owner table.

Either the ParentTableName

macro or a correlation name

should be used.

 RelationalOperator The operator used to compare

the columns. Any relational

operators are acceptable.

 ChildTableName The name of the dependent

table. Either the

ChildTableName macro or a

correlation name should be

used.

 Conjunction If a multi-column key is used,

this parameter determines how

the column comparisons are

grouped. Acceptable values are

and or or.

JoinParentParent (CorrelationName1,

RelationalOperator,CorrelationName2, Conjunction)

Customizing the Trigger Wizard

554

Creates a join condition that is used to compare the parent

table against itself.

 Parameter Description
 CorrelationName1 The name of the parent table.

Either the ParentTableName

macro or a correlation name

should be used.

 RelationalOperator The operator used to compare

the columns. Any relational

operators are acceptable.

 CorrelationName2 The name of the parent table.

Either the ParentTableName

macro or a correlation name

should be used.

 Conjunction If a multi-column key is used,

this parameter determines how

the column comparisons are

grouped. Acceptable values are

and or or.

 ParentRelationshipName

Foreign key relationship name from the parent

perspective.

ParentTableName

The name of the owner table in a relationship. This table

has a primary key that is used as a foreign key in the

dependent table.

SetForeignKeyDefaultValueList (ChildTableName)

Comma delimited list of assignment statements required

to set foreign key columns in the dependent table to

default values.

 Parameter Description

 ChildTableName The name of the dependent

table. Either the

ChildTableName macro or a

Customizing the Trigger Wizard

555

correlation name should be

used.

SetForeignKeyNullList (ChildTableName)

Comma delimited list of assignment statements required

to set foreign key columns in the dependent table to

NULL.

 Parameter Description
 ChildTableName The name of the dependent

table. Either the

ChildTableName macro or a

correlation name should be

used.

SetForeignKeyCascadePkey(ChildTableName,

ParentTableName)

Cascades primary key column values from the parent into

foreign key columns in the child.

 Parameter Description

 ChildTableName The name of the dependent

table. Either the

ChildTableName macro or a

correlation name should be

used.

 ParentTableName The name of the owner table.

Either the ParentTableName

macro or a correlation name

should be used.

TriggerName

The name of the trigger being created. This macro is

available throughout the body of a trigger.

TriggerTableName

The name of the table for which the current trigger is

being created. This macro is available throughout the

body of a trigger.

Customizing the Trigger Wizard

556

UniqueKeyColumnNameList(CorrelationName)

Comma delimited list of the unique constraint column

names in key order.

 Parameter Description
CorrelationName The name of the owner table.

Either the ParentTableName

macro or a correlation name

should be used.

Combine Generated 7 If you have defined triggers in the repository for any

Trigger Code with User entities that are used with the Trigger Wizard, you must

Triggers: insert the following directive into the body of the trigger:

 —VA_Extension InsertTrigger

This indicates to the Trigger Wizard where the generated

referential integrity code should be placed. If this

directive is not used, an error message is issued during

SQL generation and no referential integrity code is

produced.

When a trigger is produced by the Trigger Wizard, it has

the following form:

CREATE TRIGGER trigger-name

Begin

Trigger Preamble code

—VA_Extension InsertTrigger

—VA_Extension begin

referential integrity constraint code

—VA_Extension end

End

Note

 The macro facility of the Trigger Wizard is available to all trigger bodies, even

those that are stored in the repository. A macro defined within the body of an

existing trigger is visible only within the given macro body. To extend the

visibility of a macro to all trigger bodies, place the definition of the macro in the

[Template global] section of the TRIGUSER.TBL file, or if you want to limit it

to particular an SQL dialect, place it in the [Template dialect] section.

Index

557

Index

—

—, 389

!

!, 389

$

$CDATE, 67

$CTIME, 67

$CUSER, 67

$DIAGRAM, 67

$EDATE, 67

$ETIME, 67

$EUSER, 67

$PARENT, 67

$PROJECT, 67

%

%, 294

*

*/, 389

/

/*, 389

:

:, 456

::, 456

;

;, 455

?

?, 408

[

[], 293

{

{ }, 293

|

|, 293, 303

<

<<extends>>., 225

<<includes>>, 225

<drive>\SETUP, 11

…

… button, 268

4

4K pages, 326

A

a non-inheritance relationship exists between

‘x’ and ‘y’, 215

a non-supertype/subtype relationship exists

between ‘x’ and ‘y’, 210

a parameter value cannot be changed, 258

abandon preview report, 289

about dialog box, 98

about Visible Analyst, 17, 32

absolute file name, 326

Index

558

abstract, 399

abstract class, 256

access, 331, 332

Access 97, 26

access control rights, 402, 405

access control user rights, 406

access its properties, 40

access private data members of a class, 258

access the index search function, 32

accessible to class itself, 257

accessible to derived classes, 257

accessible to friends, 257

accessible to member functions, 257

accessing a class, 256

accessing DFD symbols, 177

accessing the repository, 233

accessing Visible Analyst, 13

action state, 231

actions to fire a trigger, 322

activation, 227

active object, 256

activity diagram, 230

activity diagram analysis, 231

activity diagram graphics, 231

actor, 224

actor name, 224

add a view specification, 262

add an external link, 259

add arguments, 258

add ascending information, 320

add boilerplate to existing diagram, 67

add branch, 35

add button, 238, 404

add check constraints, 319

add child diagram, 35

add component to a key, 320

add descending information, 320

add detail to planning statement, 53

add diagram text, 29

add diagram to print queue, 20

add diagram to queue, 41

add enhancements, 29

add entity to cluster, 287

add external link, 259

add fields, 27

add line to diagram, 15

add lines to a diagram, 29, 55

add new planning statement, 52

add non-relationship-based joins, 273

add physical storage information, 320

add planning statement dialog box, 52

add planning statements, 50

add relationship to a view twice, 275

add relationship-based joins, 274

add rights, 337

add statements, 48, 49

add symbols to a diagram, 29, 55

add text to diagram, 15

add user dialog box, 336

add user ID, 18

add user-defined attributes, 13

added boilerplate, 64

adding a couple, 99

adding a join, 268

adding a line, 79

adding a new division, 404

adding a new method, 256

adding classes, 130

adding columns to the list of columns, 265

adding entities, 130

adding expressions, 265

adding foreign key information for a table, 320

adding friends, 258

adding items to a division, 403

adding key information for a table, 319

adding key reference information, 321

adding labels, 103

adding line segments, 98

adding lines, 96

adding relationships, 130

adding repository fields to a project, 281

adding SQL schema generation information for

entities, 317

adding SQL schema generation information for

relationships, 317

adding SQL schema generation tablespace

information, 322

adding symbols to a diagram, 90

adding trigger information for a table, 321

adding users to a division, 405

additional information, 358

additional join restrictions, 268

address, 253, 256, 258

address reference type, 106

ADM DATA, 359

adornments, 227

Index

559

advise action, 408

aggregation, 60, 214

aggregation relationship, 106

AK, 196, 252

alias, 264, 295, 354

ALIAS, 359

alias field, 248, 249, 264

ALIAS(), 27

aligned in horizontal or vertical row, 30

all data only modules, 307

all fundamental elements must be used on a

DFD, 26, 196

allow duplicate rows, 325

allow FK references outside of this schema

box, 317

allow null, 295

allow null field, 277

alphadesignator, 351

alphanumeric report order, 288

ALT+R, 15

ALTER TABLE, 312

alter table statements, 315, 389

alternate key, 72, 196, 252, 321

alternate keys, 312, 391

analysis, 1, 177

analysis error message box, 153

analysis errors, 32

analysis for entity life history diagrams, 221

analysis statistics, 192

analyze, 13, 15, 30, 121, 146, 152, 165, 166,

167, 168, 169, 175, 185, 186, 194, 195, 213,

217, 252, 313

Analyze, 192

analyze function, 1

analyze function checks, 152

analyze project diagrams, 146

analyzing class diagrams, 214

analyzing data flow diagrams, 152

analyzing diagrams, 75

analyzing FDDs, 169

analyzing state transition diagrams, 218

analyzing structure charts, 185

and, 272

AND, 294

and internal assessment, 45

ANSI 92, 26

ANSI character set, 103

Application Browser, 329

Application Browser format, 378

Application Browser names, 395

apply button, 117

arc line, 229

arch line, 227

argument list, 73, 256, 257

arguments, 257, 258, 399

arguments button, 258

arrange diagram window, 73

arrange icons, 32

arrange open diagram windows as cascaded

windows, 32

arrange open diagram windows as tiled

windows, 32

arrayspecifier, 399

arrow notation, 58

arrowhead, 179, 180

arrowhead endpoint, 183, 184

AS/400 DDS format, 348, 378

AS/400 DDS import, 392

AS400 DDS generation, 27

AS400 DDS generation mapping schemes, 27

ascending information, 315

ASCII file, 293, 384, 397

ASCII format file, 355

ASCII formatted data files, 347

ASCII text editor, 98, 308, 455

assign colors, 24

assign priorities to statements, 49

assign trustees, 334

assign user access privileges, 337

assigning access rights, 335

assigning user access privileges, 336

assigning user rights, 405

assigning users to a division, 404

assigning users to divisioins, 405

associatedid, 352

associatednumber, 350

association, 60

association matrices, 291

associationname, 399

associations, 46

associative class symbol, 213

associative entity, 196, 200, 203, 256, 389

associative entity ‘x’ has less than two foreign

keys as primary key, 203

associative entity ‘x’ has less than two

identifying relationships in this view, 200

Index

560

associative entity ‘x’ has less than two

identifying relationships attached, 200

associative entity type, 195

associator, 196

ASSOCIATOR, 359

associator element, 295, 354

associator element field, 249

associator element name, 194, 203

assumption, 46

asynchronous stimulus, 227, 229

atrributes details, 237

attach check constraint to a table, 319

attached classes, 255, 285

attached entities, 255

attaching check constraint to a table, 319

ATTR, 359

attribute display mode, 118

attribute initial value, 73

attribute level, 23, 71

attribute limit, 253

attribute name, 73

attribute physical characteristics, 253

attribute qualification, 253

attribute reference, 253

attribute type, 73, 106, 253, 256

attribute type fields, 352

attribute visibility, 73, 253

attributedescription, 399

attributeline, 350

attributes, 4, 46, 59, 71, 114, 194, 213, 248,

399

attributes details button, 251, 256

attributes field, 253

attributes file, 349

attributescope, 399

attributetype, 350, 351, 352

attributevisibility, 399

attributive class symbol, 213

attributive entity, 196, 201, 202, 256, 389

attributive entity ‘x’ has no identifying

relationship in this view, 201

attributive entity ‘x’ has no foreign key as

primary key, 204

attributive entity ‘x’ has no identifying

relationship attached, 200

attributive entity ‘x’ has no unique primary

key, 202

attributive entity type, 195

authorization ID, 9, 312

auto connect, 24, 78, 97

auto label, 104

auto label lines, 24, 96, 100, 104, 195, 213

auto label symbols, 24, 90, 91, 104, 108

auto position text, 25

auto save, 137

AUTOEXEC.BAT, 9, 12

autoinc, 310

automated repository maintenance, 146

automatic data flow balancing, 146

automatic process numbering, 4

automatic repositioning of text, 25

automatically attaches the line, 24

available columns box, 265

available columns list, 266, 321

available objects list, 403

available objects list incremental update, 403

available tables box, 264

available users list, 405

average module fan-out, 192

B

Bachman notation, 3, 58

back, 237

backing up a project, 344

backup, 10, 15, 30, 343, 344

backup destination, 344

balance a data model against a process model,

194

balance data model against a process model, 28

balance data model against process model, 2,

196

balance ERDs against DFDs, 26

balance net flows, 166

balancing errors against DFDs, 169

base class, 106

base classes/entities, 114

basic operating principles, 13

basic operation aspects, 55

BEGIN PBLIST, 280

bfloat, 310

bi-directional control couple, 184

bi-directional couple, 311

bi-directional couples, 101

bi-directional data couples, 183

bi-directional data flows, 101

Index

561

bi-directional generic couples, 184

binary, 276, 310

bit, 276, 310

black bar, 231

blank diagram, 133

boilerplate box, 64

boilerplate diagrams, 39, 60

boilerplate keywords, 67

bold, 26, 117

bold face, 293

bounding boxes, 367

bounding rectangle, 77

box containing action states, 231

box with a tab, 225

branch, 146, 168

branched elbow line drawing technique, 102

break link between DFDs, 127

break spawn link, 168

Btrieve, 6

Btrieve client-server, 6

Btrieve local version, 6

Btrieve requester, 6

bufferpool, 327

BUFFERS=, 12

building a planning outline, 50

built-in macros, 322, 459

business event, 46

business function, 81

business functions, 166

business language, 45

business plan, 46

Business Planning Analysis Methods, 166

business rules, 45

business vision, 45

by, 256

by qualifier, 256

BYTES value, 309

C

C, 301, 303, 305, 308, 311

C, 300

C array example, 304

C typedef statements, 308

CA Datacom 8x, 26

cache, 325

CACHE, 325

call an external source module, 394

CALL statement, 394

called function, 311

called module, 191

called page, 191

called-by information, 290

calling function, 311

calling module, 179, 191

calling page, 191

calling parameters, 305

calls information, 290

capabilities, 17

caption text, 103

capture business vision, 45

capture changes, 324

Card’s intrinsic complexity algorithm, 186

cardinality, 105, 225, 321, 399

cardinality between any linked objects, 48

cardinality information, 321

cardinality notation, 58

caret, 273

carriage return, 350

cascade, 32, 73, 271

CASE, 1

CASE import, 397

case insensitive, 67

CASE interface format, 397

CASETool, 396

category notation, 58

Centura SQL Base 5x, 26

Centura SQLBase, 6, 7

chain of associative entities, 203

change, 404, 405

change a line, 117

change a project owner, 118

change alias, 264

change argument list, 255

change arguments, 258

change class, 255

change current SQL dialect, 235

change data store number, 29

change decomposition level, 148

change diagram text, 29

change item, 29, 104, 105, 108, 116, 148, 160,

161, 167, 168, 169, 171, 172, 186, 190, 208,

211, 212, 215, 218

change item dialog box, 217

change join expressions, 267

change join type, 267

Index

562

change label, 29

change line orientation, 97

change line type, 97

change name used by view, 266

change order of columns, 266

change orientation, 30

change page orientation, 289, 300

change position of a key column, 320

change printer, 20

change printer driver settings, 289, 300

change process, 29

change project name, 344

change scaling, 30

change size, 30

change size of symbol, 118

change sort order, 239

change terminator type, 97

change the size of the description window, 47

change type button, 97, 117

change type dialog box, 117

change user ID, 12

changing a membership list, 404

changing an existing division, 402

changing detail level, 71

changing FDD connectors, 102

changing labels, 103

changing lines, 96

changing repository fields, 282

changing rights of selected users, 406

changing the name of a division, 404

changing the size of a symbol, 118

changing user rights, 405

char, 276

character, 310

CHARACTER, 309

character fields, 349

check, 354

CHECK, 355, 360

check balance conditions, 152

check button, 297

check condition, 178

check constraint tab, 319

check constraints, 313, 389

check data flow balance, 153

check for dangling objects, 152

check for errors, 146

check for input and output, 153

check objects for labels, 152

check options, 271

check processes for numbers, 152

checks the syntax of custom report file, 293

child diagram, 35

child of the new diagram, 63

child processes of a function, 102

child project, 413

child statement, 47

child symbol, 102

childtablename, 459

choose a planning statement branch to display,

51

choose link field name, 284

choose type of referential integrity generated,

315

choosing the page to connect, 133

CIF, 397

CIF file, 397

CITRs, 180

class, 23, 62, 72, 256, 258, 399

class ‘x’ has no aggregation attributes defined.,

216

class ‘x’ has no attributes defined., 214

class ‘x’ has no methods defined, 214

class ‘x’ is involved in cyclic inheritance

relationship, 214

class attribute, 72

class attributes, 72, 254

class characteristics field, 256

CLASS COMPOSITION, 355, 360

CLASS DATA, 360

class diagram, 62

class diagram errors, 214

class diagram line terminators, 92

class diagram notation, 72

class diagram symbol, 85

class diagram symbols, 79

class diagrams, 59, 62, 104, 212, 400

class information, 353

class methods, 257

class name, 72

class relationship notation, 94

class symbol, 213

class symbol levels of detail, 213

class symbol subtypes, 213

class tree file, 34, 35

class[element] ‘x’ is undefined, 215

classattribute, 399

Index

563

classdescription, 399

classes, 4, 59

classes of errors, 169

classformat, 398

classformat attribute, 399

classic user interface, 25

classic user interface off, 238

classid, 350

classtype, 399

cld_classassociations, 398

cld_generalization_links, 398

CLDs, 59, 80

clean option, 315

clear, 21, 42, 76, 114, 116, 236

clear current criteria controls, 272

clear diagram object, 15

clears display, 236

clears repository entry changes, 236

close active diagram, 19

close diagram, 19

cluster, 136

cluster diagram, 136

cluster diagram scope, 137

cluster diagram, 19

cluster diagrams, 3, 60, 136

cluster names, 136

cluster subfunctions, 137

clustered, 324

clusters, 286

COBOL, 301, 302, 303, 305, 309, 311, 394

COBOL, 300

COBOL copy libraries, 395

COBOL data division, 394

COBOL data division data definition, 395

COBOL data division hierarchy, 395

COBOL file data structure location, 308

COBOL file external name, 395

COBOL module, 394

COBOL OCCURS clause, 303

COBOL OCCURS example, 304

COBOL paragraph comments, 395

COBOL paragraph source code, 395

COBOL REDEFINES clause, 303

COBOL SELECT statement, 304

COBOL source module name, 394

COBOL USAGE types, 309

COBOL-85 USAGE types, 309

COBOL-specific configuration items, 308

COBOLTYP.TBL, 301, 309

code button, 396

code generation options, 27, 301, 306

code generation options dialog box, 306

code generation output, 305

code generation process, 303

code generation requirements, 302

code generation speed, 301

code size, 301

COLHDR(), 27

collaboration diagram, 229

collaboration diagram analysis, 229

collaboration diagrams, 229

collapse child, 106, 212

collapse object browser folder, 113

collapse planning outline, 50

colon, 456

colors, 24

column ‘x’ in entity ‘y’ has been added to the

foreign key of relationship ‘z’, 207

column ‘x’ in entity ‘y’ is used by overlapping

foreign keys with conflicting types.

Relationship ‘z’ should no longer use this

column, 206

column ‘x’ in entity ‘y’ is used by overlapping

foreign keys with conflicting types.

Relationship ‘z’ will no longer use this

column, 206

column characteristics, 312

column check constraints, 318

column comments, 391

column name, 272

column name quotes, 315

column name storage type, 297

column type, 295

column type date allowed conditions, 295

column type integer allowed conditions, 296

column type location allowed conditions, 297

column type set allowed conditions, 296

column type string allowed conditions, 295

columns, 312

columns for table ‘x’ cannot be identified, 209

columns in key list, 320

columns in table list, 320

columnupdatetest, 460

columnvaluetest, 460

COMMENT ON, 312

Communicates, 225

Index

564

communicates lines, 224

compare field against value, 272

compare objects dialog box, 410, 411

compiler-ready ASCII file, 305

completeness checks, 4

completeness of design, 185

completion of actions, 231

completion of subactivities, 231

complex OCCURS clauses, 394

complexity of interface, 185

complexity ratings for structure charts, 4

composite type, 47, 48

composition, 294, 352

COMPOSITION, 355, 361

composition field, 205, 251, 319

composition matrices, 291

composition/attributes field, 237

compound symbol, 83

comprehensive strategic business plan, 45

computer aided software engineering, 1

concatenated entities, 195

concurrency, 256

concurrent access by a user, 332

conditional, 179, 180

conditional connector, 181

conditionally invalid connection, 185

CONFIG.SYS, 12

configuration options, 306

confirm file deletion dialog box, 12

conflict resolution options, 411

conflicting names dialog box, 412

conflicting names list, 411

conflicting objects dialog box, 412

conflicting objects list, 408

connect, 30, 97, 102, 130, 132, 218

connect a class to a state transition diagram,

122

connect a function, 30

connect action states, 231

connect by clause, 269

connect by control, 266, 272

connect object lifelines, 227

connect objects, 229

connect selected symbols, 15

connect string, 9

connected location file, 349

connectedid, 351

connectedlocnum, 351

connecting symbols, 97

connection errors, 169, 214, 218, 221, 225,

227, 229

connection type between module ‘x’ and

module ‘y’ cannot be accurately determined,

188

connectionstyle, 351

connector, 177

connector junction, 173

connectors, 101

consistency checks, 4

constant, 258, 399

constant qualification, 253

constraint name, 313

CONSTRAINTS, 313

construct, 29, 64, 120, 173

construct dialog box, 120

constructs, 67, 119

container name, 326

container type, 326

content selection for report types, 292

contents, 32

context diagram, 36, 63

context diagrams, 146

context-sensitive help, 14, 15

context-sensitive repository help, 237

contiguous sequence of program statements,

177

contract, 236

control, 179

control bar, 16, 25, 69, 76, 90, 103, 112, 177

control bar options, 69

control bar, 147

control connection, 180

control connections, 70, 179

control couple, 247, 249

control couples, 180

control how individual windows appear, 68

control interface table row, 184

control parameters, 184

controls, 184

convert a project from an earlier Visible

Analyst version format, 344

convert Btrieve database project to relational, 7

convert data repository files into ASCII, 344

convert data repository files into ASCII

formatted data files, 347

convert relational database project to Btrieve, 7

Index

565

converting earlier version files, 347

copy, 15, 21, 114, 237

COPY, 345

copy a branch, 31, 344

copy a diagram, 31, 344

copy a division between an enterprise project

and a satellite project, 344

copy branch, 35

copy child diagram, 35

copy current object, 237

copy diagram, 31, 35, 38, 344

copy diagram dialog box, 38

copy existing diagram, 38

copy fields to a DOS ASCII file, 240

copy highlighted text to a DOS file, 237

copy object to Clipboard, 21

copy of parameter is passed, 258

copy project, 31, 344, 346

copy statements, 49

copy to, 21

copy to Clipboard, 15

copying a project, 346

copying boilerplate diagrams, 39

copying data from DOS files, 240

copying data from Windows Clipboard, 241

copying data to DOS files, 240

copying data to Windows Clipboard, 241

corporate edition of Visible Analyst, 49

correctness of connection, 185

correlation name for a table, 264

correlation names, 264

correlation tables, 195

couple cursor, 77, 100

couple entry mode, 75

couples, 178, 179, 300

create a Btrieve project, 6

create a clustered index, 324

create a lower level diagram, 121

create a multiple page diagram, 20

create a new diagram, 19, 112

create a new project, 18

create a planning statement type, 47

create boilerplate diagram, 63

create constructs, 29

create date, 285

create division rights, 404

CREATE INDEX, 312

create indexes, 391

create macros, 322

create new diagram, 35, 61

create new fields, 379

create new macro, 457

create new project dialog box, 56

create new records, 379

create password, 336

create project, 56

create rights, 9

CREATE SCHEMA, 312

CREATE STORED PROCEDURE, 312

CREATE SYNONYM, 312

CREATE TABLE, 312, 327

create table statement, 315

CREATE TABLESPACE, 312

CREATE TABLESPACE statement, 325

create tablespace statements, 391

CREATE TRIGGER, 312

create user ID, 336

CREATE VIEW, 313

create view even if base tables do not exist,

272

create view of data model, 19

creating a cluster diagram, 136

creating a construct, 120

creating a division, 414

creating a link, 259

creating a new division, 402

creating a new project, 414

creating a new view, 128

creating a process view, 130

creating a user-defined object, 283

creating clusters, 287

creating divisions, 402

creating expressions, 266, 268, 270, 272

creating new diagram, 123

creating projects on a network, 337

creation date, 294

creation dates, 347

creationdate, 350, 351

creationuserid, 350, 351

critical success factor, 46

cross reference report, 288, 290

crowsfoot notation, 3, 58

CTRL+A, 15

CTRL+C, 15

CTRL+D, 15

CTRL+E, 15

Index

566

CTRL+F, 15

CTRL+L, 15

CTRL+N, 15

CTRL+O, 15

CTRL+P, 15

CTRL+Q, 15

CTRL+R, 15

CTRL+S, 15

CTRL+T, 15

CTRL+V, 15

CTRL+X, 15

CTRL+Z, 15

curly braces, 293, 303

current activity, 18, 332, 340

current attribute, 254

current diagram, 169

current entity view level, 71

current menu function, 69

current object, 69, 76

current project, 33, 47, 69, 281, 282, 283

current project field, 260

current SQL dialect, 72

current view, 137

current zoom level, 69

currently active diagram name, 74

custom, 137

custom installation, 8, 11

custom report definition syntax, 293

custom report definitions, 293

custom report file format, 293

custom report file syntax, 294

custom report specifications, 297, 298

custom reports, 292

custom reports dialog box, 29

custom symbol generator, 3

customize code generated, 301

customize control bar dialog box, 69

customize display format, 277

customize import, 384

customize the import, 379

customized import characteristics, 381

customizing an SQL dialect, 455

customizing COBOL code, 309

customizing SQL dialect, 277

customizing the trigger wizard, 457

cut, 15, 21, 114

cut to Clipboard, 15

cyclic connections, 165

D

D prefix, 149

dangling connector line, 172

dangling project, 346

dashed line, 99, 227

dashed line with a stick arrowhead, 225

dashed line with stick arrowhead, 227, 229

dashes, 389

data and control connections, 178

data capture, 323

data collisions, 379

data connection, 180

data connection lines, 183

data connections, 70, 179

data couple, 247, 249

data couples, 180, 183

data decomposition, 4

data definition, 233

data definition language, 26, 312

data element, 213, 247, 256, 258, 399

data element ‘x’ is not used on data flow

diagram, 208

data element naming convention, 390

data element physical information, 276

data elements, 59, 178, 194, 302

data flow attached to file labeled ‘x’ is

unnamed, 160

data flow balancing, 146

data flow balancing examples, 153

data flow diagram pages, 131

data flow diagrams, 2, 4, 57, 59, 80, 194

data flow labeled ‘x’ is dangling, 160

data flow labeled ‘x’ is not attached to a

process, 162

data flow splits, 152

data flow splitting, 146

data flows, 103

data flows ignored by Analyze, 157

data import, 383

data interface table row, 183

data mod(s) field, 250

data model, 7, 45, 167

data model error messages, 197

data model objects links, 46

data modeler, 3, 4

data modeling, 1, 46

data modeling graphics, 194

Index

567

data modeling tool, 2

data only module, 178, 187, 249, 354

DATA ONLY MODULE, 361

data only module usage, 307

data only modules, 177, 251

data only-modules, 179

data parameters, 183, 184

data repository considerations, 57

data storage type, 276

data store, 209

data store guidelines, 165

data store labeled ‘x’ is dangling, 160

data store number, 81, 91, 295

data store numbering, 146, 149

data store numbering versus process

numbering, 149

data store numbers, 104

data stores, 104, 165

data structure, 247

data type, 312

data, control and generic interface table rows,

178

data, control, and generic couples, 178

database, 9

database alias, 9

database file, 353

database management, 233

database manager, 6

database phys inf, 354

database synchronization, 413

datafile name(s), 325

datafile size, 325

datawindow object, 280

date, 276, 310

date constant formats, 296

date created, 290

date diagram created, 67

date diagram last edited, 67

date last altered, 290

datetime, 276, 310

DB2, 8

DB2 2 properties, 323

DB2 5 properties, 324

DB2 5 tablespace properties, 326

DB2/2 2x, 5x, 26

DBA privileges, 391, 392

DBFILES, 361

DBMS location, 9

DBPHYSINFO, 361

dbspace, 327

DDS, 329

DDS example, 393

DDS generation errors, 13

DDS import, 392

DDS name translation, 27

DDS scource file format, 392

debug statements, 305

decide the format of the imported data, 378

decimal, 276, 310

DECIMAL, 309, 456

decimal digits, 277

decimal point alignment, 350

DECIMAL(), 456

DECIMAL(,), 456

decision, 231

declarative, 315

decompose, 122, 123

decompose a symbol, 121

default, 295, 399

default action, 408

default bufferpool, 327

default data path for project data, 334

default data path=, 334

default font, 24

default paths, 13

default settings, 12

default supervisor name, 12

default value, 302, 312

default value field, 277

define, 28, 146, 167, 233, 319, 408

define a name space, 312

define a new project name, 346

define boilerplate, 63

define connect by clauses, 262

define dialog box, 262, 319, 408

define dialog box SQL schema generation, 318

define dialog box, 217

define display values, 280

define ERD notation, 57

define group by clauses, 262

define having clauses, 262

define join relationships, 262

define minimum line length, 13

define passwords, 31

define report content, 288

define report format, 288

Index

568

define repository attributes dialog box, 281,

282

define repository object, 15

define repository objects dialog box, 283

define site-specific objects, 27

define start with clauses, 262

define user attributes, 27, 281, 282

define user names, 31

define user objects, 27, 283

define user security, 31

define user security information, 344

define where clauses, 262

defined report button, 289

defining a primary key, 252

defining default path settings, 333

defining instance, 165

defining methods, 258

defining planning statement types, 47

defining relationship, 195

definition errors, 214

definition for column ‘x’ in entity ‘y’ conflicts

with the definition of the matching column

on relationship ‘z’, 208

definition for column ‘x’ in entity ‘y’ has been

updated for relationship ‘z’, 207

definition for column ‘x’ in entity ‘y’ should

be updated for relationship ‘z’, 205

definitions of key terms, 32

DEL, 15

delete, 21, 114, 116, 235

delete a branch, 344

delete a diagram, 37, 344

delete boilerplate diagrams, 37

delete branch, 31, 35

delete button, 121, 322

delete check constraints, 319

delete child diagram, 35

delete constructs, 29

delete current parameter, 258

delete currently displayed entry, 235

delete data store, 149

delete diagram, 31, 37, 344

delete diagram and all children, 37

delete diagram from queue, 41

delete diagram only, 37

delete diagrams user rights, 406

delete entity from cluster, 287

delete fields, 27

delete from DOS, 346

delete items user rights, 406

delete joined column pair, 274

delete object from diagram, 15

delete project, 31, 344, 346, 414

delete project with no project files, 15

delete reports button, 290

delete repository entry, 235

delete rights, 9, 337

delete statements, 48, 49

delete user, 338

delete user groups, 338

delete user ID, 18

delete view and dependent views, 271

deleted data store number, 149

deleting a construct, 121

deleting a join, 268

deleting a line segment, 99

deleting a project, 346

deleting clusters, 287

deleting divisions, 404

deleting line segments, 98

deleting predefined report, 290

deleting projects with no project files, 346

deleting temporary project, 414

deletion, 227

delimited ASCII format, 349

demo version, 11

demote planning statement, 51

denormalization, 106, 211, 212, 315

denormalization information, 104

derived class, 106

derived classes, 73

descending button, 320

descending information, 315

describe construct, 120

description, 283, 294, 352

DESCRIPTION, 362

description field, 248, 303, 307

description field in module comment, 307

descriptive comments, 300

descriptive overview of current project, 18

descriptive text, 303

deselect, 21

deselect a page, 42

deselect all pages, 42

deselect current block, 116

deselect current object, 76, 116

Index

569

deselect highlighted fields, 289

deselect item selected into a block, 77

design, 1

design completeness, 185

design complexity, 185

designate subflows, 151

destination information, 290

destination parent diagram, 38

destination project, 40

detach, 122, 123

detach a constraint from an entity, 319

detach child diagram, 19

detail field, 105

detail report type, 294

detailed listing report, 288, 290

detailed report for a single repository entry.,

290

details button, 340

develops a comprehensive strategic business

plan, 45

df file extension, 398

DFD, 147

DFD symbols, 79, 81

DFD tree file, 34

DFDs, 2, 59, 60, 102, 123, 124, 167, 251

diagram, 29

diagram area, 16

diagram box, 64

diagram creator, 67

diagram file, 349

diagram grid, 22

diagram icon, 68

diagram insertions, 64

diagram label, 67, 255

diagram labels, 138

DIAGRAM LINES, 362

diagram location matrices, 291

diagram menu, 75, 112

diagram named ‘x’ has no parent diagram, 162

diagram number, 255

diagram opened as read only, 69

diagram process, 55

diagram project root, 67

DIAGRAM SYMBOLS, 362

diagram trees, 118

diagram type, 118

diagram type box, 101

diagram window icon, 74

diagram workspace, 68

diagramid, 351

diagramming tool, 1

diagramname, 351

diagramprocnum, 351

diagramtype, 351

dialect, 235

dialect button, 317

diamond, 231

diamond shaped terminator, 181

differentiate entity types, 114

digits, 277

disable methodology, 57

disable repository, 57

disabling boilerplate, 64

disconnect, 130, 134

disconnect pages, 130

discrepancy between specified cardinality of x

and prefix/suffix count of y. Collapsing

parent table z according to prefix/suffix, 211

discriminator, 106, 400

discriminator element ‘x’ targeted for entity ‘y’

is simultaneously used by more than one

subtype group, 211

discriminator values & meanings, 250

disk cache, 12

display action expression, 73

display areas of help, 32

display argument types, 73

display current activity, 340

display data type, 72

display entity attributes, 71

display field, 277

display guard condition, 73

display length, 302

display line labels, 70

display logical names, 71

display message arguments, 73

display next sequential repository entry, 236

display null option, 72

display object browser, 113

display physical names, 71

display physical schema, 71

display previous sequential repository entry,

236

display project history, 340

display relationships, 73

display repository entry, 234

Index

570

display repository object menu for field

options, 15

display statement description, 51

display statement priority, 51

display statement types, 51

display symbol labels, 70

display the define dialog box, 113

displaying all objects in the repository, 403

displaying enterprise links, 413

displaying repository specific class objects,

403

DITRs, 180

divide into subflows, 30, 149

division, 28, 401

division box, 402

divisionid, 350

divisions, 402, 404, 405

DLL, 6, 7, 8

dm information, 352

DMS, 326

DMS tablespace, 323

do not generate drop, 271

dock window, 264

document business vision, 45

domain, 295, 391

domain data type, 72

domain label, 280

domain name, 72

domain name edit box, 279

domains, 278

domains option, 315

DOS file locking, 4, 331

DOS path, 18

DOS-based backup, 10

double precision, 310

double quotes, 349

downward-pointing couples, 311

drag down input and output data flows, 146

drag unbalanced flow down to child diagram,

162

dragging a block, 77

dragging statement, 53

draw in horizontal or vertical plane, 30

draw page link symbol, 132

draw virtual chart, 19

draw VIRTUAL chart, 329

drawing connectors, 102

drawing diagrams, 74

drawing information clusters, 83

drawing lines, 91

drawing modes, 75

drawing objects, 75

drawing operation errors, 13

drawing relationships, 101

drawing symbols, 79

drop behavior, 271

drop view statement, 271

duplicate a Visible Analyst project, 344

duplicate appearance of page connector ‘x’,

172

duplicate constraint names, 389

duplicate foreign key ‘x’ for entity ‘y’, 203

duplicate module entries in the repository, 257

duplicate page connector, 172

duplicate parent, 106

duplicate parent and retain, 106

duplicate process numbers, 148

duplicate project name, 346

duplicate rows check, 325

duplicate rows not returned, 266

dynamic link library, 6

dynamic model, 60

dynamic modeling error messages, 218

dynamic modeling graphics, 217

dynamic modeling overview, 217

E

E format, 384

each entity must correspond to a data store, 26

edit, 21

edit boxes, 15

edit check constraint information, 319

edit check constraints, 319

edit codes, 396

edit diagram, 55

edit dialect description table, 455

edit menu, 114

edit menu functions, 15

edit statements, 48, 49

edit style field, 280

edit style types supported, 280

editing, 111

editing a diagram, 111

editing existing labels, 110

editing existing text, 110

Index

571

editing mode, 75, 77

editing objects, 75

editing procedures, 55

elbow connector, 171

elbow line mode, 92

element subtype, 213

elemental class, 213, 248, 258

elements, 307

ELH, 2, 220

ELH symbols, 83

ellipse, 224

enable boilerplate, 60

enable data repository function, 57

enable repository, 57, 61

enable rules, 57, 61

enable security, 24

enabling boilerplate, 64

end of file, 294

END PBLIST, 280

enforce referential integrity, 457

enter help mode, 15

enter subflows, 150

enter text, 55

entering text, 103

enterprise access, 401

enterprise copy, 31, 344, 401, 406, 407, 414

enterprise copy dialog box, 407

enterprise definition, 410

enterprise links, 241

enterprise modeling, 401

enterprise project, 31, 241, 401

enterprise synchronized date, 413

enterprise tag maintenance, 31, 413, 414

enterprise tag naintenance, 344

entire project, 169

entire project report, 288

entire repository, 403

entities, 46

entities link, 46

entities not in a cluster, 287

entity, 59, 221

entity ‘x’ has cyclic definition - primary key

cannot be determined, 203

entity ‘x’ has multiple identifying

relationships. This requires relationship ‘y’

to have a maximum cardinality greater than

one, 208

entity ‘x’ has no composition defined, 208

entity ‘x’ has no corresponding data store, 209

entity ‘x’ has no corresponding file, 209

entity ‘x’ has no primary key defined, 200

entity ‘x’ is involved in a cyclic

supertype/subtype relationship, 210

entity class symbol, 213

entity display options, 23, 71

entity level, 23, 71

entity life history diagram, 220

entity life history diagrams, 2, 83

entity life history graphics, 220

entity name, 71

entity names, 71

entity notation, 58

entity relationship, 59

entity relationship diagrams, 2, 3, 4, 59, 62,

194

entity relationship tree file, 34, 35

entity subtype, 214

entity sub-type, 62

entity symbols, 195

entity types, 195

entity/attributes detailed listing report, 291

entity/attributes summary listing report, 291

entry characteristics, 240

entry key, 356

entry type, 357

entry type box, 319

entry type field, 247

entry type list, 294

entry type report order, 288

EOF, 391

ER1 file, 400

erase, 21

erase changes, 19, 78, 119

ERD analysis, 195

ERD balancing rules, 26, 196

ERD levels of detail, 195

ERD line terminators, 92

ERD notation, 58

ERD relationship line terminators, 93

ERD symbols, 79, 84

ERDs, 2, 59, 60, 80, 104, 251

error checking, 301

error details window, 332, 340

error message lists, 415

error messages, 13

ERwin format, 348, 378

Index

572

ERwin Interface, 400

ESF, 300, 301, 302, 303, 309

ESF BYTES value, 309

ESF format, 348

ESF type HEX, 309

establish links, 284

event, 249

event boxes, 220

event labeled ‘x’ is a dangling event, 218

event labeled ‘x’ is an input only event, 219

event labeled ‘x’ is an output only event, 219

event signature [guard condition]/action

expression, 231

events, 60, 73, 217

every entity must correspond to a data store,

197

Excel format, 378

Excelerator entry types, 385

Excelerator input picture, 385

Excelerator name limit, 384

Excelerator output picture, 385

Excelerator uniqueness rules, 384

exclamation mark, 389

executable modules, 305

execute repository functions, 28

exit, 21, 236

exit repository, 236

expand, 236

expand associators, 23, 71

expand displayed size, 236

expand domains, 72

expand object browser folder, 113

expand planning outline, 50

expandable fields, 236

explode, 19, 122, 123, 162, 220

explode a symbol, 121

export, 31, 300, 303, 344, 347, 349, 355, 396,

397, 398

export a panel file, 306

export dialog box, 311

export errors, 13

export file, 355

export file names, 349

export formats, 348

export repository information, 31

export to ERwin, 400

export to Visible product, 398

exporting prototyper panels, 311

exporting repository data, 347

expression builder, 266, 268, 269, 270, 272

expression builder button, 272

Expression control, 272

expression-in-progress, 273

extend lines, 224

extended attribute screen, 280

extended attributes, 280

extends relationship, 225

extensibility of the repository, 7

extent, 327

extentsize, 326

external assessment, 45

external entity, 163, 164

external entity labeled ‘x’ is dangling, 160

external name for a COBOL file, 395

extra primary key column ‘x’ in entity ‘y’ has

been removed from the primary key because

of singular relationship ‘z’, 207

extra primary key column ‘x’ in entity ‘y’

should be removed from the primary key

because of singular relationship ‘z’, 205

extract database location information dialog

box, 392

F

f(x) button, 265

F1, 14, 15

FALLTHRU statements, 394

fan-in, 185

fan-in/fan-out analysis, 186

fan-out, 185

FD statement, 303

FD statements, 308

FDD, 102, 124

FDD balancing errors against DFDs, 170

FDD connection errors, 171

FDD connection lines, 101

FDD connector lines, 103

FDD error messages, 169

FDD page connector error messages, 172

FDD symbols, 79

FDD syntax error messages, 169

FDDs, 2, 59, 102, 124, 166, 167, 175

features of SQL schema generation, 314

field blocks, 355

field length, 276

Index

573

fields button, 289

file, 18, 237

file extenstion c, 306

file extenstion cbl, 306

file extenstion esf, 306

file group, 322

file header section, 355

file labeled ‘x’ is dangling, 160

file locking mechanisms, 331

file menu, 34, 112

file repository objects section, 355

FILE SECTION, 304, 308

file server, 6, 10

file user attributes section, 355

file user objects section, 355

FILES=, 12

fill factor, 325, 327

filled arrowhead, 227

filled circle, 180

filled circle endpoint, 184

filled circle inside a hollow circle, 231

FILLER, 308

filter, 51

filter control, 266, 272

filtering condition, 269

find, 21

find an object, 112

find diagram object, 15

find information about the menus in Visible

Analyst, 32

find satellite, 407

first DFD, 36

FK, 196, 252

flags, 256

flat flow of control, 227, 229

float, 276, 310

FLOAT, 309

foreign key, 71, 196, 252

foreign key ‘x’ for entity ‘y’ already exists as

associator element, 202

foreign key ‘x’ for entity ‘y’ does not have

corresponding relationship, 204

foreign key ‘x’ for entity ‘y’ has associator

element defined, 203

foreign key button, 320

foreign key clause, 315, 389

foreign key created for relationship ‘x’, 206

foreign key does not exist for relationship ‘x’,

202

foreign key errors, 196

foreign key for relationship ‘x’ is wholly

dependent on the foreign key of relationship

‘y’ in entity ‘z’, 207

foreign key for relationship ‘x’ shares

column(s) with the foreign key of

relationship ‘y’ in entity ‘z’, 207

foreign key for relationship ‘x’ should not be a

component of the primary key of entity ‘y’,

207

foreign keys, 114, 312, 313

foreign keys tab, 252

foreignkeycolumnnamelist, 461

format clause, 294

forward engineering. See Export

FoxPro 6x, 26

free entity pool, 287

free-form composition field, 25

freelist groups, 323, 325

freelists, 323, 325

free-standing diagrams, 60

friend, 354

FRIEND, 362

frienddefinition, 399

friends, 4, 253, 257

friends field, 258, 259

from class, 106

from entity, 295

from repository clause, 294

full decomposition, 302

full outer join type, 268

function, 81, 177

function name, 272

function call, 305, 307

function calls statement, 300

function description, 295, 352

FUNCTION DESCRIPTION, 362

FUNCTION DESCRIPTION KEYS, 362

function labeled ‘x’ has more than one input

connection, 169

function labeled ‘x’ is a dangling function, 169

function labeled ‘x’ is placed illegally in the

hierarchy structure – its parent is a process,

171

function names, 168

function overloading, 257

Index

574

function prototypes, 305

function return types, 305

functional decomposition, 122

functional decomposition diagram, 124

functional decomposition diagram symbols, 80

functional decomposition diagram versus

process decomposition diagram, 167

functional decomposition diagrams, 2, 4, 59,

80, 166

functional decomposition tree file, 35

functional tasks, 59

fundamental entity, 200, 205, 389

fundamental entity type, 195

fundamental entity, 202

G

Gane & Sarson, 2, 4, 57, 81, 91, 104, 145, 146,

147, 157, 167, 209

GDPro format, 348, 378

GDPro interface, 398

general configuration options, 306

generalization lines, 224

generalization relationship, 225

generate a process decomposition diagram, 123

generate code, 29, 303

generate code dialog box, 301

generate custom reports, 29

generate data description specifications, 329

generate database schema, 112

generate DDS, 29, 329

generate debug, 308

generate decomposition diagram, 19

generate IDENTITY clause, 315

generate key constraint names, 315

generate name box, 320

generate parent, 106

generate referential integrity constraints, 321

generate schema for portion of data model, 315

generate SQL, 28, 313, 316

Generate SQL, 455

generate SQL DDL statement file schema, 28

generate SQL triggers, 312

generate structure chart, 19

generate tablespace references, 315

generate tablespaces, 315

generate UNIQUE constraint, 315

generated C example, 305

generated COBOL example, 305

generated SQL for view window, 235

generated SQL schema example, 314

generating a Uniface schema, 315

generating structure charts from repository,

329

generating subset of complete schema, 316

generating Uniface schema options, 315

generation of views in DDS syntax, 329

generic couple, 247, 249

generic couples, 184

generic DOS LAN version, 4, 331

generic format, 378

gerunds, 195

global, 137

global analysis, 185

global change, 110

global data definitions, 300

global file, 163

global model view, 127

global object, 238

global view, 19, 127, 130

global view drawing method, 130

global visibility, 73, 253, 257

glossary, 32

goal, 46

goal analysis, 45

granting access to a division, 404

granularity used for locking a table, 327

graph of actors and use cases, 224

graphic, 310

GRAPHIC, 309

grid, 22, 41, 70

grid lines, 70

grid settings, 25

group attributes, 58

group by clause, 269

group by control, 272

group by having control, 266

group objects by type, 114

group of couples, 311

group of entities, 136

groups of projects, 3

guarded object, 256

H

hardware configuration requirements, 5

Index

575

hat-shaped terminator, 182

having clause, 269

having control, 272

header field, 280

header record, 356

help, 32, 98, 237

help bar, 16, 26, 69

help cursor, 14

help menu, 14, 17

help mode, 14

help screens, 14

hex characters, 352

hierarchical relationship, 46, 47, 59

hierarchical relationships, 167, 168

hierarchical structure, 33

hierarchical view of planning statements, 49

hierarchically subordinate statements, 50

hierarchy/description border, 47

high fan-out for module ‘x’, 191

higher-order symbols, 102

high-level planning, 59

high-level project planning, 4

history, 237

history dialog box, 237

how control is passed, 180

how full each data page is, 325, 327

how import data/existing data collisions are

handled, 379

how objects collaborate, 227

how parameter is passed, 258

how the return value is passed, 256

how to assemble pages, 42

HTML report, 289

hyperlinks, 235

Hypersoft Application Browser, 19

I

I/O controller overhead, 327

IBM AS/400, 329

IBM Cross System Product, 300

IBM External Source Format, 300

IBMDEFAULTBP, 327

IBMDEFAULTGROUP, 326

IBMTEMPGROUP, 326

IC data module, 295

IC modules, 295

IDEF1X, 58

IDEF1X category symbol, 106

IDEF1X diagram line terminators, 92

IDEF1X notation, 23, 58, 71

IDEF1X relationship line terminators, 95

identified mission, 45

identify errors in primary and foreign key

specifications, 28

identifying entity, 203

identifying relationship, 105, 195, 202, 204

identifying relationships, 200, 205, 207

identity clause support, 392

IDs of network user groups, 337

IDs of network users, 337

IEW attributes, 387

IEW definition field, 387

IEW local data types, 387

IEW/ADW, 348

IEW/ADW association file, 386

IEW/ADW export, 386, 387

IEW/ADW export formats, 386

IEW/ADW format, 378

IEW/ADW import, 386

IEW/ADW import formats, 386

IEW/ADW issues in moving data, 388

IEW/ADW object file, 386

IEW/ADW property file, 386

IEW/ADW text file, 386

ignore all editing changes, 119

ignore denormalization settings, 315

ignore duplicate keys, 324

illegal actions, 15

illegal connection between module ‘x’ and

module ‘y’, 187

illegal connection(s) using off-page connector

‘x’, 187

illegal drawing operation, 13

image, 310

implementation methods, 257

implementation visiblity, 253

implementing lower level NetWare security,

334

implementing second level NetWare security,

335

import, 31, 344, 378, 383, 388, 392, 396, 397,

399, 414

Import, 400

import action list, 383, 392

import an XMI document, 400

Index

576

import box, 380

import button, 392

import customization, 379

import database, 414

import dialog box, 379, 381, 383

import errors, 13

import file error list, 381

import file overlap list, 382

import formats, 384

import from an XMI document, 400

import from Application Browser, 394

import from ERwin, 400

import from Excelerator, 384

import from SQL, 388

import From Visible product, 398

import in Application Browser format, 378

import in AS/400 DDS format, 378

import in Excel format, 378

import in GDPro format, 378

import in IEW/ADW format, 378

import in SQL format, 378

import in VSC format, 378

import preparation, 378

import procedure, 383

import RDBMS database definitions, 112

import repository information, 31

import verification, 381

import XML classes and relationships, 400

importance of the statement to the business

plan, 46

importing data into the repository, 378

importing database definitions from

UNIFACE, 397

importing from GDPro, 398

importing RDBMS database definitions, 392

importing validation rules from PowerBuilder,

396

IN clause, 323

inactive object, 256

include, 77

include connections, 25, 78, 79, 115, 116

include entities, 62

include lines, 224

includes relationship, 225

Incomplete, 106

index information, 323

index name boxes, 320

index of diagram complexity, 186

index tablespace, 323

INDEXED BY, 394

individual change, 110

information about your version of Visible

Analyst, 32

information cluster, 107, 177, 178

information cluster labeled ‘x’ has unnamed

modules, 191

information cluster symbol, 83

information clusters, 177

information requirements, 45

Informix, 8, 312

Informix 7x, 26

Informix end procedure statement, 391

informix tablespace properties, 327

inheritance, 60, 214, 216

inheritance relationship, 106, 255, 285

inheritance relationship characteristics, 285

inheritancemethod, 400

inherited class, 286

initial, 323, 325

initial number of transaction entries, 323

initial phase in an enterprise-engineering

project, 45

initialvalue, 399

initiate search of the repository, 236

initrans, 323

in-line code, 303, 305

inner join type, 268

in-out data coupling, 183

input connector, 185, 191

input connectors, 185

input data flow ‘x’ on parent is not shown, 162

input data flows, 290

input event, 219

input page connector symbol, 173

input/output data flow ‘x’ on parent is not

shown, 166

insert a new planning statement, 51

insert button, 322

insert level, 35, 36

insert new attribute, 254

insert new diagram, 35

insert new parameter, 258

insert rights, 9

insert text from a DOS file, 237

inserting a line segment, 99

insertion location for a newly added row, 324

Index

577

install to Novell server, 11

installation, 11

installation procedure, 11

installing the demo version, 11

installing to a LAN, 10

installing Visible Analyst, 9

install-to drive, 10, 11

install-to path, 10

instance name, 9

integer, 276, 310

IntelliViews, 261

interaction between users and a system, 224

InterBase 4x, 26

InterBase 5x, 26

interface table row, 183, 184, 251

interface table rows, 185

internal modules, 178

interval, 276

invalid connection, 185

invalid page size, 63

invert, 42, 403, 405

invert arc, 97

invert button, 289

invert elbow, 97

invert selections, 405

inverting selections, 403

invocation line, 99, 100, 181

invocation line terminators, 180

invocation lines, 70, 103, 178, 180, 300

Invocation Lines, 179

invocation type, 352

invoke by name, 177

ISQL, 8

issue for resolution, 46

issues involved in importing Excelerator

repository items, 384

italics, 294

item id record, 356

item1, 352

item2, 352

iteration diagram, 227, 229

iteration event, 221

ITR, 311

ITRs, 178, 179, 185, 300

J

Jackson structure diagram, 220

join expression, 268

join expression control, 266, 272

join relationships dialog box, 268, 273

join relationships dialog box columnar tab, 273

join relationships dialog box relationship-based

tab, 274

join tables dialog box, 275

join types, 268

joined columns, 274

joined columns pair, 274

joinparentchild, 461

joinparentparent, 461

joins in view, 274

JPEG, 289

JPEG file, 21

jump, 236

jump button, 255, 319, 322

jump to another repository entry, 236

junction entities, 195

K

key analysis, 3, 13, 28, 194, 196

key information button, 319

key migration, 195

key number box, 319

key synchronization, 13, 28, 59, 196, 202, 203

keyboard shortcuts, 14, 15

key-driven joins, 267

KEYS, 355

keys tab, 252

KnowledgeWare format, 348

L

label Class relationship dialog box, 107

label ERD relationship dialog box, 105

label field, 246, 280

label object dialog box, 91, 97, 100

label page link symbol, 132

labeling a relationship, 104

labeling an information cluster, 107

labeling an object, 104

labeling information cluster, 107

LAN help, 340

LAN operating characteristics, 331

LAN version, 3, 4, 6

landscape orientation, 62

Index

578

language-specific customizations, 308

large X at the end of an object lifeline, 227

largeinteger, 276

last-altered dates, 347

layout page, 42

left mouse button, 14

left out join type, 268

left padding, 350

left-handed mouse users, 14

length, 295, 302, 399

length field, 277

length for each subsequent extent, 327

length of relationship lines, 129

length of the first table extent, 327

level of detail, 71

levels are collapsed, 50

levels are expanded, 50

levels of decomposition, 147

levels of project security, 334

level-to-level data flow balancing, 4

lexical inclusion, 179, 180, 182

lexical inclusion line, 188

lexical inclusion terminator, 182

library macro, 177, 178, 187, 249

library module, 177, 187, 249

lifeline, 227

limit, 256, 258

limit searches by diagram type, 240

limited diagram access, 332

limited repository entry access, 332

limiting the scope of available objects, 403

line, 177

line cursor, 77, 97

line entry mode, 75

line feed, 350

line handle, 76

line handles, 79

line orientation, 100

line settings, 60, 99, 195

line settings dialog box, 101, 181

line terminator, 58

line terminators, 91, 179

line type, 100

line types, 60, 91, 92

lines, 29, 70, 91, 97, 99, 224

lines between states, 217

lines connected to moved symbol, 77

lines cursor, 29

linestyle, 351

LINK, 362

link between planning statement and repository

objects, 48

link model element to a file under source code

control, 259

link option, 48

link planning statements, 48

link planning statements to model objects, 259

link statements, 49

link to box, 284

link to diagrams, 130

link to field, 48

link to user-defined objects, 48

link your model elements to source code, 259

linkage rules, 259

linked repository object, 48

linking multiple page diagrams, 130

Linking planning statements, 45

linking projects, 401

linking structure chart pages, 185

links tab, 259

links to field, 259

list of all diagrams for current diagram type, 41

list of all objects in the repository, 26, 69, 113

list of available columns, 320

list of available statement types, 47

list of classes, 258

list of column names, 261

list of columns, 265, 266

list of conflicting objects, 411

list of correlation names, 264

list of custom reports, 292

list of data members, 253

list of dates, 18

list of diagrams, 133

list of diagrams and users, 340

list of eight most recently opened diagrams, 20

list of enterprise links, 241, 413

list of entry types, 240, 283

list of error causing activities, 13

list of existing clusters, 137

list of fields to include in report, 289

list of flows, 151

list of friend classes, 258

list of friend methods, 258

list of functions, 18

list of functions for a class, 256

Index

579

list of IEW objects for export, 388

list of join relationships, 267

list of joins in view, 274, 275

list of member functions, 258

list of modules previously defined, 256

list of most recently opened projects., 20

list of objects that are valid for a diagram type,

69

list of objects valid for a diagram, 26

list of objects valid for a diagram type, 113

list of open diagrams, 32

list of parameters, 257

list of parent flows, 149

list of project diagrams, 18

list of repository entries, 259

list of satellite projects, 407, 413

list of state transition diagrams, 123

list of statement types, 47

list of supported types, 281

list of tables, 264, 265

list of the Excelerator entry types, 385

list of the IEW objects for import, 388

list of the objects in the repository, 16

list of types, 284

list of users who currently have a project

selected, 340

list of valid column names, 272

list of valid logical types, 277

list of valid types, 256, 258

list of values, 280

list of values to identify subtype entities, 250

load a construct dialog box, 120, 121

load button, 120

load construct, 67

load constructs, 29

load data into a project data, 344

load DFD, 126

loading a construct, 120

LOB, 323

local area networks, 331

local change, 110

local data flow, 165

local data store, 166

local element, 238

local operation, 333

local physical characteristics, 280

local setting, 6

location, 294

LOCATION, 362

location field, 256

location file, 349

location of linked project, 413

location reference, 47

locationnumber, 351

locationnumer, 351

locations field, 48, 255

locations-diagrams field, 289

lock mode, 327

logging, 325

LOGGING, 325

logic, balance, and completeness Verification,

146

logical, 310

logical conditions, 294

logical conditions for a column, 295

logical device name, 326

logical group of repository diagrams, 401

logical group of repository objects, 401

logical model, 71

logical names, 71

logical operators, 294

logical OR, 293

logical to alias., 27

logical to colhdr., 27

logical to text, 27

logical type, 277

logical-to-physical mapping is wasteful, 277

long column tablespace, 323

long file names, 56

long name field, 255

long raw, 310

long varchar, 276, 310

LONG VARCHAR, 323

long vargraphic, 310

LONG VARGRAPHIC, 323

loop, 180

loop line, 181

loop line type, 179

low fan-in for module ‘x’, 191

lower level NetWare security, 334, 337

lower-order symbols, 102

lowerrightx, 351

lowerrighty, 351

lowest-level module, 178

LRU list, 325

lstring, 310

Index

580

lvar, 310

M

macro, 177, 249

macro definitions, 457

macro description field, 251

major concepts of structured analysis, 145

managed by, 326

mandatory foreign key, 72

manual process, 62

manually enter subflow labels, 150

many-to-one page connections, 175

MAP ROOT, 333

mark branch, 38

mask representation, 277

match option, 412

matching page connector cannot be found for

‘x’, 190

matrix report formats, 292

matrix reports, 288, 291

maxextents, 323, 325

maximize diagram, 68

maximize diagram window, 74

maximum number of concurrent transactions,

323

maximum number of extents, 323, 325

maxtrans, 323

member functions, 60, 253, 256, 258

members, 213, 248

menu bar, 16

menu functions, 32

menu item help topic, 14

merge, 380

message box, 339

message boxes, 15

message passing, 227, 229

messages, 73

messaging, 339

messaging system, 332

metafile, 21

Method, 399

method definition dialog box, 257, 258

methodology errors, 13

methodology rules for data flow diagrams, 2

methodology symbols, 70, 147

methods, 4, 72, 114, 256, 399

methods field, 256

Métrica, 2, 4, 81, 145, 146, 220

micro kernel database engine setup program, 6

Microsoft, 6

Microsoft Windows NT, 5

migrate button, 321

migrate primary keys, 196

migration, 3

minextents, 323, 325

minimize diagram, 68

minimize diagram window, 74

minimum installation, 11

minimum line length, 13

minimum percentage of used space, 323

miscellaneous errors, 32

mission, 46

MKDE, 6

MKDE interface, 6

model balancing, 13, 28, 196

modeling tool set, 2

modification date, 294

modificationdate, 350, 351

modificationuserid, 350, 351

modify all users, 406

modify date, 285

modify diagrams user rights, 406

modify fields, 27

modify items user rights, 406

modify list of prefixes/suffixes, 321

modify list of statement types, 47

modify queue, 41

modify referential integrity macros, 458

modify rights, 337

modify statement definition, 53

modify the new project defaults list, 48

modify type list button, 384

modify user, 337

modify user list, 18

modify user rights, 338

modify user rights dialog box, 337

modify view, 30, 127

modifying a project tree, 35

modifying clusters, 287

modifying divisions, 402

modifying the current view, 130

modifying user list, 405

module, 177, 249

module description, 295, 352

MODULE DESCRIPTION, 363

Index

581

module description field, 250, 307, 319, 395

module description in module comment, 307

module fescription field, 322

module labeled ‘x’ is a dangling module., 186

module subtype, 248

modules contained, 352

MODULES CONTAINED, 363

modules contained field, 251

module-to-module analysis, 185

money, 276, 310

move, 31

move between diagrams, 74

move data from Clipboard, 114

move data to Clipboard, 114

move planning statement down, 51

move planning statement up, 51

move project files, 344

move selected statement down, 53

move selected statement up, 53

move statement, 49, 53

move to parent diagram, 19

move to the previous repository entry, 237

moving a block, 77, 78

moving a line, 78

moving a project, 346

moving a symbol, 78

moving selected objects, 77

multi line comments, 389

multi-diagram charts, 185

multi-page diagram, 30, 62, 63

multi-page workspace, 62

multiple active databases, 9

multiple constraints, 389

multiple page structure chart, 135

multiple partition nodegroup, 324

multiple selection technique, 38

multi-segment line, 77, 97

multi-user access, 331

multi-user version restore, 345

N

name, 294

name construct, 120

name inside box, 23, 71

name of attribute, 253

name of child class, 105

name of child entity, 105

name of cluster, 287

name of datafile, 325

name of diagram, 74

name of domain, 278

name of new statement type, 47

name of parent class, 105

name of parent entity, 105

name of select clause, 263

name of the actor, 224

name of the bufferpool, 327

name of the child class, 105

name of the child entity, 105

name of the data-only module, 108

name of the discriminator, 106

name of the information cluster, 108

name of the project linked, 413

name of the relationship, 225

name of the segment, 324

name of the symbol, 91

name of the system, 225

name of the tablespace, 323

name of use case, 224

name transformations, 395

names of macros, 458

names of the contained modules, 108

naming considerations, 395

naming rules, 303

naming rules for FDDs, 168

national char, 276

national varchar, 276

native data type, 277, 302

nest, 19, 35, 38, 60, 121, 122, 123, 146, 149,

157, 162, 164, 165, 167, 185, 217, 220

nest dialog box, 123

nest function, 64

nest relationship, 35, 38

nested constructs, 303

nested decomposition, 121, 146, 152

nested relationships, 35

nesting considerations, 122

net data flow, 164

net data flow labeled ‘x’ is attached to a local

file, 163

net input data flow ‘x’ is not shown attached to

parent process, 162

net input data flow labeled ‘x’ is attached to a

different object on parent, 163

net input flows, 166

Index

582

net output data flow ‘x’ is not shown attached

to parent process, 162

net output data flow labeled ‘x’ is attached to a

different object on parent, 163

net output flows, 166

NetWare, 11

Netware 1x, 26

NetWare security, 333

NetWare versions 3.0 or later, 335

NetWare versions earlier than 3.0, 335

network, 17

network help details window, 341

network login name, 17

network version of Visible Analyst, 48

network versions, 331

new boilerplate diagram, 64

new DFD set, 126

new diagram, 15, 19, 35, 61, 62, 128

new diagram dialog box, 61, 127

new entry type name, 283

new model view, 127

new project, 18, 56

new project default, 281, 282

new project defaults, 47, 283

new project root, 346

new repository entries, 40

new root name, 346

new view, 19

NewWare security system, 11

next, 236, 323, 325, 327

no check, 315, 320

no good match between logical type and

physical type, 277

no levels, 50

no recompute statistics, 325

NOCACHE, 325

node, 332

node user number, 12

nodegroup, 326

NODEGROUP keyword, 326

NOLOGGING, 325

non-local data store, 164, 166

non-relationship-based joins, 273

non-transitory storage device, 256

non-unique indexes, 391

normal class, 213

normal relationship, 106

normalization, 195

normalization analysis, 196

normalization errors, 3, 195

nosort, 323

NOT, 294

not all subtype group members for entity ‘x’

are shown in this view, 210

not exists, 272

not initially logged, 324

note, 310

notes, 294, 352

NOTES, 363

notes field, 255, 303, 307, 394

notes field in module comment, 307

no-update columns box, 322

Novell Advanced NetWare, 4, 332

Novell LAN version, 331

Novell NetWare compatibility, 332

number, 310

number by level, 147

number of 4K pages, 326

number of calls a module makes, 186

number of calls to a module, 186

number of copies to print, 41

number of decimal places, 302

number of digits to right of decimal point, 281

number of enterprise projects that can be

maintained, 401

number of free lists, 323, 325

number of groups of free lists, 323, 325

number of modules, 192

number of names for relationships, 58

number of network nodes, 17

number of nodes, 3

number of occurrences of the attribute, 253

number of overlays, 117

number of parameter, 256, 258

number of rows returned, 269

number of satellite projects that can be

connected to an enterprise project, 401

number the network assigns to a node, 334

numeric, 310

numeric value, 53

NWPOPUP.EXE, 340

O

object, 227

object block, 355

Index

583

object browser, 16, 26, 69, 91, 113

object browser cursor, 91

object browser list, 91

object browser properties, 114

object definition, 237

object fields, 359

object footer, 359

object header, 355

object label, 39, 121

object label conflicts, 121

object label line break, 116

object link line, 229

object menu, 123, 126

object model, 59

object modeler, 4

object modeling, 1

object modeling error messages, 214

object modeling graphics, 213

object modeling overview, 212

object modeling tool set, 2, 3, 4

object name, 227, 229

object pointer, 253

object property mappings, 399

object significance, 46

objectid, 350, 351, 352

objective, 46

objective formulation, 45

objectives, 46

objectname, 350

ObjectName:ClassName, 229

objectnamelc, 350

objectowner, 351

objectownerid, 350

objectsubtype, 350

objecttype, 350

OCCURS clauses, 394

OCCURS value, 303

ociw32.dll, 8

ODBC, 8

ODBC compliant, 8

ODBC driver manager, 8

ODBC entry compliant, 8

offline, 325

off-page connector, 81, 133, 135, 177

off-page connector rules, 185

off-page connectors, 133, 185, 285

off-page labeled ‘x’ appears as both input and

output, 191

old foreign key column ‘x’ in entity ‘y’ has

been removed, 206

old foreign key column ‘x’ in entity ‘y’ has

been removed from the primary key, 206

old foreign key column ‘x’ in entity ‘y’ should

be removed, 205

old foreign key column ‘x’ in entity ‘y’ should

be removed from the primary key, 205

on delete button, 320

ON DELETE CASCADE, 8

on insert of child button, 321

on update button, 320

on update of child button, 321

ondeletecascadechild, 458

ondeleterestrictparent, 458

ondeletesetdfltchild, 459

ondeletesetnullchild, 459

one-directional paging, 133

one-page wide matrix, 292

oninsertchildrestrictparent, 459

only pass control, 180

only pass data, 180

on-page connector, 133, 134, 177

on-page connectors, 185, 285

onupdatecascadechild, 459

onupdatechildrestrictparent, 459

onupdaterestrictparent, 459

onupdatesetdfltchild, 459

onupdatesetnullchild, 459

open an existing diagram, 19, 112

open an existing project, 18

open circle, 179, 180

open circle endpoint, 183

open database connectivity driver, 8

open diagram, 15, 19, 64

open diagram in read-only mode, 19

open diagrams, 32

open ellipse line, 181

open existing project, 64

open parent diagram, 123

open read only, 19

operating environment, 177

operating environment symbols, 177

operation symbol, 221

operationdescription, 399

operations, 399

operationtype, 399

operationvisibility, 399

Index

584

opportunity, 46

optional report items, 293

options, 24

options button, 301

options menu, 16, 112

or, 272

OR, 294

or LOB columns, 326

Oracle server, 8

Oracle Server, 6, 8, 9, 312

Oracle Server balanced block, 391

Oracle Server driver, 8

Oracle tablespace properties, 325

OracleServer, 6

order by clause, 294

ordered association, 106

ordering, 106

organize responsibilities for actions, 231

organize statements, 48

ORI_EXE, 396

orientation, 62

output connector, 185, 191

output data flow ‘x’ on parent is not shown,

162

output data flows, 290

output event, 219

output page connector, 134

output report to file, 287

output report to printer, 287

overhead, 327

overlay, 117

overlay count, 117

override diagram scaling, 41

overwrite all, 379

overwrite existing data, 379

overwrite none, 379

overwrite option, 315

owner, 295

owner field, 277

P

pad index, 325

page, 20, 81, 130, 132, 167, 175, 185, 187, 191

page connection errors, 169

page connector labeled ‘x’ appears as output

more than once, 189

page connector labeled ‘x’ has mismatched

connection types, 190

page connector labeled ‘x’ has both input and

output connections, 186

page connector labeled ‘x’ has more than one

connection, 173

page connector labeled ‘x’ has more than one

output connection, 189

page connector labeled ‘x’ is dangling, 172,

186

page connector labeled ‘x’ is placed on wrong

diagram, 172

page connector symbol, 81

page connectors, 81

page dialog box, 132

page link, 131

page link considerations, 131

page link data flow diagrams, 132

page link symbol, 131

page linking FDDs, 136

page linking structure chart diagrams, 133

page orientation, 41

page size, 62

pages, 326

pages field, 42

pagesize, 351

pair of colons, 456

pairs of page connectors, 175

panel file button, 311

panel files, 306

Paradox 7x, 8x, 26

parallel activities, 231

parallel life symbol, 221

parameter, 353

PARAMETER, 363

parameter can be modified, 258

parameter name, 258, 294

parameter passing in generated code, 311

parameter type, 258

parameter value, 294

parameters, 258, 399

parameters passed to function, 311

parent, 122, 123

parent diagram, 19, 35

parent diagram label, 67

parent flow, 295

parent of the new diagram, 63

parent project, 413

Index

585

parent symbol, 102

parentrelationshipname, 462

parenttablename, 462

parse for correctness, 400

partitioning key, 324

pass by, 258

pass control couples, 180

pass control uni-directionally, 179

pass copy of parameter, 256

pass data couples, 180

pass entity alias to SQL engine, 312

passed couples, 290

passed parameters, 300

passing control, 179

password, 9, 336

paste, 15, 21, 114, 115, 241

paste from Clipboard, 15

path, 7, 9, 11

pathname, 327

pathological connections, 180

pctfree, 323

pctincrease, 323

pctused, 323

percent character, 294

percentage of space reserved for future

updates, 323

PERFORM, 305

PERFORM statement, 300, 394

PERFORM statements, 307

PERFORM THRU, 394

performance index, 252, 352, 354

performance indexes, 312, 391

performance keys, 324

performance of actions, 230

performance of subactions, 230

permitted but not recommended connection

between module x and module y, 189

permitted but not recommended connection(s)

using off-page connector x, 189

persistent, 399

persistent class, 256

persistentclass, 399

Pervasive Software, 6

Peter Chen, 3

physical attributes, 72

physical characteristics, 208, 258

physical characteristics for elemental types,

114

physical characteristics repository fields, 277

physical characteristics tab, 320

physical files, 165

physical information, 352

physical information for data element ‘x’ does

not specify length, 209

physical model, 71

physical name, 23

physical names, 71

physical schema, 23, 71

physical storage object, 324

physical tab, 323, 324

physically internal, 182

PHYSINFO, 364

PI, 252

pick repository items to appear in code, 306

picture, 295, 302

PICTURE clauses, 309

picture field, 277

PK, 196, 252

PK prefix, 389

planning and requirements identification, 45

planning outline window, 46, 49

planning phase, 45

planning statement description, 46

planning statement types, 46

planning statement types dialog box, 47

Planning statements, 46

planning statements description, 45

pointer, 256

pointer to object, 258

point-to-point line mode, 92

policies, 46

policy, 46

populating a composition field, 252

populating repository composition, 237

portrait orientation, 62

position diagrams in tree, 126

positioning a construct, 121

PowerBuilder, 11, 280

PowerBuilder format, 348, 378

PowerBuilder interface, 396

predefined reports, 289

predefined statement types, 45

prefetchsize, 326

prefix, 9

prefix operator, 272

prefix/suffix names, 321

Index

586

prevent docking, 264

preventing editing collisions, 333

preview a matrix report, 292

preview box, 289, 300

preview check box, 292

preview report on screen, 289

previous connector, 102

primary foreign key created for relationship

‘x’, 206

primary key, 71, 72, 114, 196, 237, 252, 321

primary key clause, 389

primary key errors, 196

primary key for fundamental entity ‘x’

contains foreign key, 204

primary key for table ‘x’ cannot be identified,

209

primary key level, 23, 71

primary keys, 312, 313

primary object file, 349

primary select, 263, 270

primary selection, 263

primary tablespace, 323

print, 20, 41, 124

print current diagram, 20

print current project tree, 20

print diagram, 15, 112

print diagram in active window, 40

print dialog box, 41, 42

print errors, 313

print global view, 40

print in black and white, 41

print in color, 41

print layout page, 42

print multiple entries per page, 294

print options, 40

print preview custom report, 300

print preview report, 289

print queue, 20, 40, 130

print range, 40

print setup, 20

print single entry per page, 294

print to file, 41, 289, 300

print to HTML, 289, 292

print tree structure, 40

printer defaults, 41

printer driver, 20

printer setup, 289, 300

printer setup for custom reports, 300

printing diagrams, 40

prior, 236

private attributes, 73

private derivation, 286

private method, 73, 257

private visibility, 253

procedure call, 227, 229

process, 81

process # field, 250

process decomposition, 122

process decomposition diagram, 4, 59, 60, 123,

124

process description, 295, 352

PROCESS DESCRIPTION, 364

process description field, 250

process labeled ‘x’ has a different parent on a

data flow diagram, 170

process labeled ‘x’ has more than one input

connection, 170

process labeled ‘x’ is a dangling process, 160,

169

process labeled ‘x’ is an input only process,

161

process labeled ‘x’ is an output only process,

161

process labeled ‘x’ is not used on a data flow

diagram, 171

process model, 7, 167, 194

process model view, 127

process modeling tool set, 4

process number, 81, 294, 352

PROCESS NUMBER, 364

process numbering, 146, 147

process numbers, 81, 104, 122

process occurrence, 168

process symbol, 81

process symbols, 122

process view, 19, 130

processes, 104

program, 177, 178

program item, 302

Progress 4GL, 398

Progress 7x, 26

Progress 8x, 26

Progress Native 7x, 26

Progress Native 8x, 26

project analysis functions, 13

project branch report, 288

Index

587

project creator, 18

project data files, 10

project database location information dialog

box, 7, 8

project database location Information dialog

box, 7

project description, 18, 56

project history, 18, 118, 340

project history box, 119

project level security, 337

project manager, 18, 31

project manager rights, 335

project name, 9, 18, 56

project name box, 346

project owner, 9

project path, 56

project root, 18, 34, 38

project scope box, 292

project tree, 33

promote planning statement, 51

properties button, 289

proposed change access, 401

protected attributes, 73

protected derivation, 286

protected method, 257

protected methods, 73

protected visibility, 106

protocol letter:servername, 9

protocol letter:servername:instance, 9

prototyper, 32, 306, 344

prototyping capabilities, 32, 344

pseudo SQL relationship joins, 267

public attributes, 73

public derivation, 286

public method, 73, 257

public visibility, 253

pure virtual method, 257

purge logs, 7

purpose, 45

purpose of structured design, 176

Q

qualification, 253, 257, 258, 399

qualifier names, 106

query optimization, 327

query report, 15

question mark, 408

R

RAM disk, 5, 9

RAM storage requirements, 5

Rational Rose, 400

raw, 310

Rdb, 312

Rdb end module statement, 391

Rdb import, 391

RDBMS catalog, 392

RDBMS catalog export format, 348

RDBMS catalog import, 392, 414

RDBMS connection information, 392

RDBMS engines, 6

RDBMS SQL dialect dialog box, 235, 317

README.DOC, 11

read-only access, 241, 332, 401

read-only indicator, 241

read-only mode, 19

real, 310

reanalyze, 412

rearrange project data flow diagrams, 35

rebuild, 7, 31, 199, 344, 347

rebuild projects, 31

rebuilding a project, 347

receive a message, 339

recent diagrams, 20

reconciliation utilities, 401

reconnect relationship, 71

record descriptions, 303

record item definitions, 367

record locking mechanisms, 331

recreate a project, 344

recreating project files, 347

rectangle, 81

rectangle with round corners, 231

rectangles, 217

redraw open structure chart diagram, 30

reduce display size, 22, 69

reference, 253, 256, 258

reference to object, 256, 258

reference type, 106

referential integrity constraint, 458

referential integrity information, 320

referential operation, 315

regenerate chart, 30, 329

regenerating existing structure charts, 329

REGULAR DMS tablespace, 323

Index

588

REGULAR tablespace, 323

relabel objects, 55

related list file, 349

related object file, 349

related to, 295, 354

RELATED TO, 364

related to field, 249

related to listing report, 288, 291

relatedid, 351, 352

relation, 349

relational database engine, 6

relational database repository exports, 349

relational export file layout, 349

relational export file structure, 350

relational format, 7, 348

relational operator, 272

relations field, 255

relationship, 267, 353, 354

RELATIONSHIP, 364

relationship (normal), 399

relationship (supertype), 400

recursive denormalizing cycle detected, 211

relationship ‘x’ is not normalized, 197

relationship ‘x’ is one to one mandatory, 198

relationship ‘x’ is optional in both directions,

198

relationship box, 320

relationship cardinality, 3, 104, 195

relationship cardinality notation, 58

relationship line, 78, 195, 213

relationship name, 59, 104, 225

relationship repository entries, 194

relationship type, 104

relationship-based joins, 274

relationships among the object roles, 229

relative filename, 326

relief, 117

remove, 404

remove items from the print queue, 41

remove a field from include in report list, 289

remove a friend, 259

remove a link, 259

remove a table, 264

remove an external link, 261

remove and place object in Clipboard, 21

remove arguments, 258

remove column, 266

remove link between an enterprise project and

a satellite project, 344

remove link between enterprise project and

satellite project, 31

removing a link, 413

removing enterprise links, 413, 414

removing members from a division, 403

removing repository fields, 282

removing users from a division, 405

rename, 31

rename project directory, 344

rename/move, 344, 346

RENAMES statement, 395

renaming a project, 346

reorder list, 258

replace attribute name with alias, 315

replace option, 315

report, 15, 255

report check function, 293

report definition, 288

report name, 294

report parameters, 294

report queries, 292

report query, 29

report query definition dialog box, 292

report query dialog box, 297, 300

report syntax errors, 299

report types, 288

reports, 29, 146

reports dialog box, 289, 300

REPORTS.TBL, 292, 297

reposition objects, 55

repository, 1, 28, 177, 233

repository column information, 294

repository custom report dialog box, 293

repository define dialog box, 242, 243, 244,

245, 318

repository dialog box, 6, 235

repository dialog box buttons, 235

repository disabled, 18

repository divisions dialog box, 402, 405

repository domain entry, 279

repository enabled, 18

repository entries, 27

repository entry, 251

repository entry dialog box, 317

repository entry types by diagram type, 247

repository export log, 386

Index

589

repository export VSC format, 355

repository functions, 233

repository information fields, 246

repository object menu, 241

repository report dialog box, 287, 288

repository report formats, 290

repository report preview, 289, 300

repository reports, 287

repository reports dialog box, 289

repository scan, 137

repository search, 238

repository search criteria, 239

repository search criteria default, 240

repository search dialog box, 238, 280

requester, 6

required report items, 293

reset, 117

resize entity symbols, 71

resize object browser, 114

resolving object name conflicts, 411

restore, 16, 30, 344, 345

restore log files, 7

restoring a project, 345

restrict, 271

restrict number of rows returned by select, 269

restriction, 294

restructure a project tree, 35

resynchronize diagram sets, 127

return, 227, 229

return control, 179

return entities to free entity pool, 287

return to the standard mouse cursor, 91, 98

return type, 256

return value, 256

return value from function, 311

returned couples, 290

returned-from information, 290

returned-to information, 290

returns, 399

returns field, 256

returntype, 399

reuse, 325

reuse existing file, 325

reuse process number, 148

reverse engineering. See Import

reverse relationship, 295

reverse relationship of ‘x’ is unnamed, 197

review foreign keys, 28

review primary keys, 28

review the activities of users, 332

revoke modify and parental rights, 335

right mouse button, 14

right out join type, 268

rights, 9

rights box, 405

RO, 241

role, 399

role names, 106

role names have not been assigned for

relationship ‘x’ between ‘A and ‘B’, 215

role/qualifier names, 104

rolemultiplicity, 399

root + .AD, 355

rounded-corner rectangle, 81

rowid, 276

rows are stored in sorted order, 325

ruler, 22, 41, 70

ruler lines, 70

rules, 1, 4, 145

rules considerations, 57

rules features, 146

rules methodology, 18

running on the network, 333

rxists, 272

S

salvaging corrupt files, 347

sample project, 11

satellite definition, 410

satellite project, 31, 241, 401

save, 15, 19, 123, 133, 149, 236

save comparison information to an HTML file,

328

save construct, 67, 120

save current diagram, 112

save errors to file, 313

save page link, 133

save preview custom report, 300

save preview report, 289

save report button, 289

save the planning statement type, 48

save with new name, 19

saves all changes to an entry, 236

saving a new diagram, 138

saving a predefined report, 289

Index

590

saving your work, 137

scale a diagram, 41

scale to page, 41

scaling factor, 62

scaling percentage, 41

SCC-compliant provider, 260

schema, 9

schema name, 9

scope, 240

scope box, 322

scope of trigger firing, 322

scrolling diagrams, 75

SCRULES.TBL, 9

SCs, 59

search, 21, 107, 236

search button, 91, 97, 100, 104, 105, 108, 116

search criteria, 237

search criteria dialog box, 240

search list box, 239

search repository dialog box, 291

searches affected, 240

searches to be implemented, 240

second connector, 102

second level NetWare security, 334, 337

security, 17, 24, 332

segment, 322, 324

segment database device location, 326

segmentation page, 40

segmentation page key, 40

select a block, 120

select a constructs, 120

select a page, 42

select all, 21, 42, 403, 405

select all descendant diagram branches, 38

select all pages, 42

select available print options, 42

select button, 259

select check constraints box, 319

select clause, 294

select columns, 262

select components, 150

select composition types, 284

select diagram, 64

select diagram type, 61, 64

select display options, 71

select distinct check box, 266

select drawing method, 62

select existing boilerplate, 64

select existing diagram, 123

select flows from diagram, 150

select format of import file, 383

select from list of custom reports, 292

select import options, 379, 384

select items into a block, 77

select list box, 280

select methodology, 57

select name of diagram, 74

select options, 40

select orientation, 62, 63

select page link symbol, 132

select page size, 62, 63

select pages to print, 42

select paper source, 40

select parent statement, 52

select project, 18, 34, 58

select project dialog box, 346

select project to open, 112

select scaling, 63

select scope of schema, 316

select spawn functions, 126

select SQL dialect, 397

select statement, 261

SELECT statement, 303, 308

select subflow components, 150

select symbol, 122

select tables, 262

select target printer, 40

select the files to link, 260

select the sort order, 294

select the user type, 337

select tree position, 64

select unhighlighted fields, 289

select update actions dialog box, 409

select workspace, 62, 63

select zoom level, 69

selected columns, 266

selected columns list, 266

selected object, 76

selected tables box, 264

selecting a line segment, 98

selecting a predefined report to print, 289

selecting a satellite project, 413

selecting all items in the current list, 403, 405

selecting all newer objects, 409

selecting all source objects, 409

selecting all target objects, 409

Index

591

selecting an existing project, 58

selecting blocks, 77

selecting conflict resolution method, 411

selecting diagram object, 76

selecting diagram type, 403

selecting division link to remove, 413

selecting domain, 279

selecting model type, 403

selecting object type, 403

selecting page link symbols, 131

selecting predefined report to print, 289

selecting repository report fields, 289

selecting the division to delete, 404

selecting update actions, 408

selecting views, 316

selection field, 263

self-delegation, 227, 229

semicolon, 294, 455

send a message, 339

send a message dialog box, 339

sequence, 350, 351, 352

sequence diagram, 227

sequence diagram analysis, 227

sequence diagram graphics, 227

sequence event, 221

sequence numbers, 229

sequence of functions, 300

sequential object, 256

serial, 276, 311

serial number, 11

servername, 9

set composite type, 284

set default paths, 13

set default size button, 118

set field length, 281

set field name, 281, 283

set field type, 281

set flags, 262

set link cardinality, 285

set link to, 285

set object name, 283

set of generation options, 328

set of leveled data flow diagrams, 20

set of planning statements, 45

set of relationships for class ‘x’ is incorrect,

216

set report formats, 29

set selection mode, 98

set zoom level, 410

setforeignkeycascadepkey, 463

setforeignkeydefaultvaluelist, 462

setforeignkeynulllist, 463

setting default line selections, 100

setting options for events, 73

setting options for messages, 73

settings, 30, 62

setup button, 20, 41, 300

shared projects, 3

shell code errors, 13

shell code generation, 300

shell code generation error message box, 153

shell code generation options dialog box, 395

shell code generation scope, 300

SHIFT+F1, 14, 15

SHIFT+F10, 15, 241

shore line, 229

shortcut key, 14

show all planning statement levels, 51

show discriminators, 22

show line names, 22

show symbol names, 22

sid, 9

simulation capabilities, 32, 344

single diagram report, 288

single entry listing report, 288, 290

single line comments, 389

single page drawing area, 62

single-user security, 12

single-user version, 3

single-user version restore, 345

sizable diagram windows, 68

size, 117

size of data file, 325

size of next extent, 323, 325

size of objects on a diagram, 63

size of parameter, 256, 258

size of tablespace’s first extent, 323

size of the container, 326

size of the tablespace’s first extent, 325

smalldatetime, 276

smallfloat, 276, 311

smallint, 310

smallinteger, 276

smallmoney, 276

SMS, 326

snap line mode, 92

Index

592

snap lines, 30

snap symbols, 15, 30, 118

solid circle, 179

solid line with a stick arrowhead, 231

solid line with an open arrowhead, 225

solid line with filled arrowhead, 229

solid line with half stick arrowhead, 229

solid line with heal-stick arrowhead, 227

solid line with no arrowhead, 225

solid line with stick arrowhead, 227, 229

sort by name, 294

sort by type, 294

sort in ascending order, 320

sort in descending order, 320

sorted data, 325

source code, 300

source definition, 410

source information, 290

source project, 406

source/sink labeled ‘x’ is dangling, 160

SP_ADDSEGMENT statement, 326

SP_EXTENDSEGMENT statement, 326

sp_space command, 8

spacing of symbols, 129

spawn, 20, 102, 122, 124, 125, 167, 168, 169,

170, 171

spawn dialog box, 126

spawn procedure, 126

spawn verify, 102

spawning a function, 126

special line type, 180

special terminator types, 180

specific diagram, 403

specific type, 403

specify action that causes the trigger to fire,

322

specify at least x denormalizing prefix/suffix

names to conform to cardinality of

relationship y, 212

specify connect by column, 269

specify grouping criteria, 269

specify repository search, 237

specify starting column, 269

specify the report type, 294

specifying physical storage characteristics of a

table, 323

specifying report entries, 288

split data flow, 30, 146, 149, 150, 163, 164,

185, 251

split data flow procedure, 149

split dialog box, 150

split flow listing generation report, 291

split flows listing, 149

split flows listing report, 288

split line, 182

splitting data flows, 4, 149

SQL, 235

SQL DDL, 7, 312

SQL DDL statements, 388, 396

SQL dialect, 313, 397

SQL dialect for schema generation, 26

SQL format, 348, 378

SQL generation, 106

SQL import, 414

SQL keywords, 389

SQL procedure code, 178

SQL schema generation, 71, 312

SQL schema generation dialog box, 316

SQL schema generation error message box,

153

SQL schema generation information dialog

box, 319

SQL schemas, 178

SQL source file, 389

SQL view, 261

SQL view support, 261

SQL*Net driver, 8

SQL*Net SPX, 9

SQL*Net TCP/IP, 9

SQLBase, 6, 9

SQLDIAL.TBL, 9, 455

SQLServer, 6, 7, 9, 312

SQLServer 7 Go 7 statement, 391

SQLServer driver, 7

SQLServer import, 391

SQLServer log files, 7

SQLServer segment properties, 326

SQLServer storage options for idexes, 324

SQLWindows, 396

SQLWindows interface, 396

square brackets, 293

SSADM, 2, 4, 82, 145, 146, 220

stacked symbol, 117

stages to the import, 378

standard class, 213, 248

Index

593

standard subtype, 214

standard workspace, 62

start, 231

start with clause, 269

start with control, 266, 272

state diagram, 230

state diagram ‘x’ is not associated with a class,

219

state labeled ‘x’ is a dangling state, 218

state labeled ‘x’ is an input only state, 218

state labeled ‘x’ is an output only state, 219

state machine, 231

state symbol, 217

state transition diagram errors, 218

state transition diagram symbols, 79, 86

state transition diagrams, 2, 217

state transition tree file, 34, 35

statement description, 50, 53

statement icon, 50

statement name, 52

statement priority, 46, 50, 53

statement title, 50

statement type, 45, 50, 52

states, 60, 217

static, 257

static qualification, 253

Static structure models, 400

STD, 219

STDs, 2, 60, 80, 217

stereotype name, 225

stick man figure, 224

storage type, 277, 295, 302

store as metafile, 21

store check constraints, 315

store enhanced referential integrity

information, 315

store in encrypted format, 272

store key constraint names, 315

store stored procedures, 315

store triggers, 315

stored procedure, 178

stored procedures, 391

storing check constraints, 319

storing temporary tables, 326

straightening a line segment, 99

straightening line segments, 98

strategic planning, 49

strategic planning control bar, 51

strategic planning icon, 49

strategic planning window, 48

strategy, 46

strategy formulation, 45

strength, 46

struct, 398

STRUCTUR.DBF file structure, 355

structural complexity, 192

structure, 307

structure box, 221

structure boxes, 220

structure chart, 181, 302

structure chart graphics, 177

structure chart line types, 178

structure chart lines, 182

structure chart page connectors, 134

structure chart symbols, 79, 83, 177

structure chart tree file, 34, 35

structure charts, 2, 4, 20, 57, 59, 70, 80, 175,

176, 194

structure class, 213, 248

structure class subtype, 398

Structure errors., 221

structure model, 7

structure subtype, 214

structured analysis, 176

structured analysis diagrams, 4

structured analysis error messages, 159

structured analysis methods overview, 145

structured design, 176

structured design diagrams, 4

structured design error messages, 186

structured design overview, 176

structured methodology, 145

structured systems analysis, 145

structured systems design, 145

structures of data elements, 178

stylize, 29, 117

stylize diagram, 55

subexpression criteria, 272

subflows, 146, 149, 165

subordinate processes, 123

subprocesses, 147

subquery field, 272

subquery name, 272

subroutine, 177

sub-select, 263

subsequent connector, 102

Index

594

subsequent records object header, 356

subtree, 168

subtype, 358

subtype classification, 178

subtype entity, 210

subtype object, 106

suffix instead of prefix, 321

summary description of the project, 118

summary listing report, 288, 290

summary of import characteristics, 383

summary of objects to be imported, 392

summary report type, 294

superior process, 171

superior symbol, 170

supertype, 106

supertype /subtype relationship, 106

supertype entity, 210

supertype relationship, 207

supertype relationships, 205, 210

supertype/inheritance relationships, 70

supertype/subtype relationship, 106

supertype/subtype relationships, 106

supervisor, 337

supervisor equivalence, 337

supported dialects, 312

supported SQL dialects, 277

supported statements, 312

suppress external reference warning messages

box, 317

swimlane, 231

swimlane name, 231

Sybase SQL Server, 6

symbol, 177

symbol cursor, 77, 91

symbol cursor button, 90

symbol entry mode, 75

symbol name, 91

symbol restrictions, 80

symbol set modifications, 10

symbol shadow effect, 117

symbol template, 3

symbols, 29, 84, 85, 86, 90, 91, 103, 112, 147,

191

synchronization bar, 231

synchronize an enterprise project with one of

its satellites, 407

synchronize satellite project with enterprise

project, 401

synchronizing an entity-relationship model

with a generated database, 413

syntax analysis, 195, 196

syntax check, 28

syntax check of current report, 297

syntax error checking, 297

syntax error in cardinality detail string

(position ‘n’) for relationship ‘x’ between

classes ‘y’ and ‘z’, 216

syntax error in cardinality detail string

(position ‘n’) for relationship ‘x’ between

entities ‘y’ and ‘z’, 211

syntax error in cardinality detail string

(position ‘n’) for reverse relationship ‘x’

between classes ‘y’ and ‘z’, 216

syntax error in cardinality detail string

(position ‘n’) for reverse relationship ‘x’

between entities ‘y’ and ‘z’, 211

syntax errors, 3, 4, 169, 214, 218, 225, 227,

229, 231

Syntax errors, 221

sysname, 276, 310

System 10/11, 7

system boundary, 224, 225

system codes, 396

system design objective, 46

system event, 46

system files, 119

system functions, 59

system manager, 31

system manager rights, 335

system requirement, 46

T

table check constraints, 318

table check constraints box, 319

table comments, 391

table information, 323

table name quotes, 315

tables, 312

tables/relationships box, 263, 266, 268

tables/relationships window, 266

tablespace, 312, 323, 324, 325, 391

tablespace type, 326

tactic, 46

target class, 229

target definition, 410

Index

595

target languages, 301

target project, 406

target RDBMS, 272

target SQL RDBMS, 72

task, 46

TeamWindows, 396

TeamWindows repository manager, 396

technical support, 9

template option, 315

TEMPORARY tablespace, 326

terminator, 217

terminator type, 100

terminator types, 60, 180

terminators, 195, 213

text, 29, 103, 114, 310

text cursor, 29, 77, 103

text default settings, 110

text entry mode, 75

text settings, 24, 100, 110, 129

text settings dialog box, 111

TEXT(), 27

the external links, 259

there are ‘x’ incorrectly placed looping

structure(s), 187

there are ‘x’ invocation line(s) without source

and/or destination, 186

there are ‘x’ lines only connected at one end to

a methodology symbol., 171

there are ‘x’ unnamed classes, 215

there are ‘x’ unnamed couple(s), 186

there are ‘x’ unnamed data flow(s), 159

there are ‘x’ unnamed data store(s), 159

there are ‘x’ unnamed entity(s), 199

there are ‘x’ unnamed external entity(s), 159

there are ‘x’ unnamed file(s), 159

there are ‘x’ unnamed function(s), 169

there are ‘x’ unnamed information cluster(s),

186

there are ‘x’ unnamed module(s), 186

there are ‘x’ unnamed page connector(s), 186

there are ‘x’ unnamed page connectors, 172

there are ‘x’ unnamed process(es), 159

there are ‘x’ unnamed process(es), 169

there are ‘x’ unnamed relationship(s), 199

there are ‘x’ unnamed source/sink(s), 159

there are ‘x’ unnumbered process(es), 161

there are x unnamed event(s), 218

there are x unnamed state(s), 218

thin rectangle, 227

third-party report writer, 287

third-party report writers, 7

threat, 46

tile, 32

tiled, 73

time, 276, 310

time diagram created, 67

time diagram last edited, 67

time stamp, 359

time to read one 4K page, 327

timestamp, 310

tinyint, 310

tinyinteger, 276

to class, 106

to entity, 295

toggle display of line labels, 70

toggle display of symbol labels, 70

tokens, 293, 389

tools, 30, 343

top down arrangement, 51

top level diagram, 63, 162

top-down decomposition, 4

top-down design, 59

top-down functional decomposition, 33

top-level data flow diagram, 34

top-level diagram, 36, 125

top-level diagrams, 146

top-level select clauses, 269

total number of extents allocated, 323, 325

track the software development process, 45

trailing spaces, 349

TRANS directory, 305

transfer data between enterprise project and

satellite project, 401

transfer data information between an enterprise

and satellite project, 28

transfering data to PowerBuilder, 396

transfering data to UNIFACE, 397

transferrate, 327

transient data path=, 334

transient file directory, 305

transition, 217, 231

transition string, 231

tree file, 33, 123

tree position, 63

tree structure, 4

tree-link format, 49

Index

596

trigger, 178, 354

TRIGGER, 355, 366

Trigger preamble, 458

trigger text box, 322

trigger wizard, 315, 321

triggername, 463

triggers, 321, 391

triggertablename, 463

TRIGSYS.TBL, 457

truncate names, 72

trustee, 334, 335, 337

trustee rights, 335

turn line labels off, 70

turn symbol labels off, 70

TWX_VAW, 396

type, 294, 399

type box, 279

type field, 280

type list, 379

type list box, 280

type of edit style, 280

type of entries presented during search, 240

type of link., 413

type of relationship, 105

type of relationships to include, 73

typedef, 302

types of FDD analysis, 169

types of entities, 389

types of errors, 301

types of imports, 378

types of join relationships, 267

types of matrix reports, 291

types of messages, 227, 229

types to import dialog box, 381

typical installation, 8, 11

U

UML, 224, 227, 229, 230

UML diagram line terminators, 92

UML relationship notation, 96

unattached relationship ‘x’, 199

unbalanced data flow, 162

UNC path, 235

undefined, 310

undo, 15, 21, 78, 114

undo all editing changes, 19

undock window, 264

unexpected appearance of page connector

labeled ‘x’, 175

unicode char, 276

unicode long varchar, 276

unicode varchar, 276

Uniface CASE Bridge Cookbook, 315

UNIFACE CASE interface format, 397

UNIFACE CASE load feature, 397

UNIFACE CASE unload, 397

UNIFACE interface, 397

Unified Modeling Language, 224, 227, 229,

230

Unify 2000, 26

Unify VISION, 397

Unify VISION format, 378

uninstall, 12

uninstalling Visible Analyst, 12

union, 213, 248, 398

union all check box, 270

union all relationship, 270

union class subtype, 398

union clause, 269

union outer join type, 268

union select, 263, 270

union subtype, 214

unique discriminator, 211

unique index, 352

unique indexes, 391

unique key, 354

UNIQUE option, 312

uniquekeycolumnnamelist, 464

uniqueness, 312

unlabeled data flows, 160

unlabeled symbols, 160

unlimited program access, 332

unlimited project file access, 332

unlink, 127

un-nests relationship, 123

unordered association, 106

unstructured diagram, 4, 59, 167

unstructured diagram default values box, 101

unstructured diagram symbols, 79, 90

unstructured diagram tree file, 35

unstructured diagrams, 60, 137

unstructured process decomposition diagram,

124

unstructured tree file, 34

update, 407

Index

597

update button, 322

update columns box, 322

update diagram sets, 127

update options, 409

update rights, 9

updatestamp, 276

updating the repository, 405

updating Visible Analyst, 10

upperleftx, 351

upperlefty, 351

upward-pointing couples, 311

upwards balance, 158, 159

URL, 235

USAGE, 302

use alias name, 72, 249

use browser for preview, 289, 292

use case, 224

use case analysis, 225

use case diagram, 224

use case graphics, 224

use case name, 224

use errors, 214, 218

user, 31, 344

user attribute, 353

user attribute definition, 353

user attribute information, 356

user defined, 26

user defined name, 358

user entry type information, 356

user errors, 4

user ID, 9

user levels of security, 335

user name, 17, 336

user number, 17

user object definition, 353

user object line, 353

user rights, 9, 335, 406

user type, 31

user who last edited diagram, 67

user-defined attributes, 13

user-defined attributes list, 282

user-defined data types, 72

user-defined field, 281

user-defined object types, 114

user-defined objects, 283

user-defined SQL, 26

username, 9

users, 31, 336

users button, 405

users currently using Visible Analyst, 18

users list, 405

using a mouse, 13

using boilerplate diagram keywords, 67

using control connectors, 180

using data connectors, 180

using hashing, 324

using invocation lines, 179

utilities menu, 16

V

VA<ROOT>, 9

VA\DATA, 335

valid connection, 185

valid matching page connector cannot be found

for ‘x’, 175

valid page size, 63

valid storage types, 276

validating diagrams, 4

value, 253, 256, 258

value aggregation relationship, 106

values & meanings, 295, 352

values & meanings field, 250, 280, 395

values and meanings, 399

VALUES AND MEANINGS, 366

varbinary, 276, 310

varbit, 276

varchar, 276, 310

VARCHAR, 309

vargraphic, 310

VARGRAPHIC, 309

variable record length file, 355

VATYPES.H, 301, 308

VAW, 396

VAW#.INI, 12, 334

VAW.INI, 12, 98, 334

VAWBTR32.DLL, 6

Vax RDB 6x, 26

verify, 127, 170, 171

versionid, 351

versonid, 350

vertical bar, 303

vertical splitter, 47

view, 22, 127

view clauses tab, 262

view columns tab, 262

Index

598

view conflict, 411

view custom preview report on screen, 300

view diagram, 128

view diagrams user rights, 406

view differences, 409

view functions, 127

view items user rights, 406

view joins tab, 262, 267

view method, 62

view of data model, 19, 127, 128, 130, 137

view options tab, 262

view print queue, 40

VIEW SELECT, 366

VIEW SPECIFICATION, 366

view tables tab, 262, 263

views, 60

virtual, 394, 400

virtual base class, 286

virtual class, 256

virtual diagram, 19, 367, 394

virtual diagram positions, 367

virtual function, 73

virtual locations, 367

virtual method, 257

visibility, 73, 106, 253, 256, 257, 400

Visible Analyst data files, 11

Visible Analyst format, 114

Visible Analyst LAN features, 332

Visible Analyst program files, 11

Visible Analyst proprietary format, 115

Visible Analyst serial number, 17

Visible Analyst version, 17

Visible on the web, 32

Visible prototyper export format, 348

Visible Systems Corporation web site, 32

vision, 46

VISION, 280

VISION class editor, 398

VISION forms designer, 398

VISION repository, 397

Visual Basic, 280

void attribute type, 106

volatile, 258

volatile qualification, 253

volotile, 399

VSC format, 348, 378

VSC format imports, 384

VSC format repository exports, 355

W

w statement icon, 52

waiting for CASE Tool dialog box, 397

wall chart matrix, 292

warning messages, 159

warranty registration card, 5

Watcom 3x, 26

ways to add free form caption text, 103

weakness, 46

when to fire a trigger, 322

where clause, 263, 269

wildcard select, 239

WIN.INI, 12

window, 32

window menu, 73

Windows bitmap, 114, 115

Windows Clipboard, 21, 114

Windows meta file, 114, 115

Windows NT, 8

Windows start menu, 11

with check option, 271

with encryption, 272

WORKING STORAGE, 304

WORKING STORAGE SECTION, 308

workspace, 16, 68

www.pervasive.com, 6

X

x has more than one lexical inclusion, 188

x should be shown as a net input data flow,

163

x should be shown as a net output data flow,

163

xdb 1x, 26

XMI, 400

XMI format, 378

XMI Import, 400

XMI specification, 400

XML classes, 400

XML file, 400

XML relationships, 400

Y

Yourdon, 2, 81, 125

Yourdon, 81

Index

599

Yourdon context diagram, 147

Yourdon/Constantine, 2, 4, 57, 80, 83, 145,

176, 177

Yourdon/DeMarco, 4, 57, 63, 80, 145, 146,

167, 209

Yourdon-rules project, 36

Z

zoned decimial, 276

zoom, 22, 69

zoom box, 410

zoom level, 22, 69

zstring, 310

Index

600

