
  

  
 

 

Visible Analyst® 
Tutorial 

 

 
 
 

Zachman Framework Edition 
 
 
 

                                                                                                                               Systems Corporation 



 
 

 



  

  
 

 
 
 

Visible Analyst®  
 
 
 

Tutorial  
 
 
 
 

A Model Driven Approach 
To 

Enterprise Architecture  
Planning, Analysis, Design and Development 

 

 
 
 
 

 
 

                                                                                                                               Systems Corporation 



 
 

 

This tutorial was designed to work with the following versions of the Visible Analyst:  
 

• Visible Analyst – Zachman Framework Edition 
• Visible Analyst – Corporate Edition 
• Visible Analyst – Standard Edition 
• Visible Analyst - DB Engineer 
• Visible Analyst – University Edition 
• Visible Analyst – Zachman University Edition 
• Visible Analyst – Student Edition 

 



  

  
 

 
 
 
 
Information in this document is subject to change without notice and does not represent a commitment on the part of 
Visible Systems Corporation.  The software described in this document is furnished under a license agreement or 
non-disclosure agreement.  The software may be used or copied only in accordance with the terms of this agreement.  
It is against the law to copy the software onto any medium except as specifically allowed in the license or non-
disclosure agreement. 
 
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise, 
including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible 
Systems Corporation.  Visible Systems Corporation makes no representations or warranties with respect to the 
contents or use of this manual, and specifically disclaims any express or implied warranties of merchantability or 
fitness for any particular purpose.  Names, dates, and information used in examples in this manual are fictitious and 
only for examples.   
 
Copyright 2009 by Visible Systems Corporation, All rights reserved. 
 
Printed and bound in the United States of America. 
 
This manual was prepared using Microsoft Word for Windows. 
 
Visible Analyst  
Tutorial on Structured Methods, Repository Management and The Zachman Framework 
 
Visible Analyst® is a registered trademark of Visible Systems Corporation.   
 
The Zachman Framework illustration on the cover page of this tutorial was printed and used with the permission of 
the Intervista Institute © 2004 (www.intervista-institute.com).  Microsoft and Windows are registered trademarks of 
Microsoft Corporation.  Other product and company names are either trademarks or registered trademarks of their 
respective owners. 
 
 
Visible Systems Corporation 
63 Fountain Street 
Kenwood Centre Suite 301B 
Framingham, MA  01702 
Technical Support:  781-778-0200 
Fax:  508-628-151 
E-mail support@visible.com 
Internet:  http://www.visible.com 
E-mail:    sales@visible.com 
                             
 
 
 
 
 
 
 



 
 

 

Dear Colleagues: 
  
Thank you for your time in selecting our product, the Zachman Framework Edition of the Visible Analyst. 
At Visible, we take your time and effort seriously. To that end, we pride ourselves on delivering the most 
appropriate, value oriented solutions. And, we feel that we offer the very best in product support that 
often differentiates us from our competitors. 

As you read though the tutorial, please take the time to understand that our approach to software development is one 
of a model driven approach. Within the framework of this approach, Visible, in part, supports the Model Driven 
Architecture (MDA) as defined by the Object Management Group (OMG). This group, commonly referred to as the 
OMG, is an open membership, not-for-profit consortium that produces and maintains computer industry 
specifications for interoperable enterprise wide applications. For more information about the OMG and in particular 
their MDA specification, please reference their web site at http://www.omg.org/mda/. 

 In conjunction with a model driven approach, Visible has incorporated a framework to enable you to better plan and 
manage your Enterprise Architecture effort. In this edition, The Zachman Framework, is the framework of choice. 
However, you can customize the Visible Analyst to implement other frameworks like, for example, the US Federal 
Enterprise Architecture Framework (FEAF). 

 The following information outlines all you will need to know in order to get started in building your 
Enterprise Architecture. We hope that your first project will be a success. 
  
The project TEST is automatically installed and is used in conjunction with the tutorial file "tutor.pdf" written to 
the installation directory and this tutorial book. Use the File | Select Project menu item to select this project.  
Included is a backup file set of the Zachman project and a copy of the document "Visible Analyst 
framework.doc" describing the project. This project and document explain which diagram or repository 
entry is used as the cell artifact.  
 
Perform this procedure to restore the project to the Visible Analyst. 
 
*  Open the Visible Analyst and choose the Tools | Restore menu item. 
*  At the first restore screen, click the Browse button next to the "Backup File Name" field. 
* Point and click to the file "ZACHMANBACK.VSC" located in the VA\Zachman folder on the CD.  
* Click on the file so that it is highlighted and click OK. 
* The name of the project is displayed in the Name field on the restore dialog, so click the OK button. 
* The second screen displays the path to the VA\Zachman folder, so click OK again to perform the restore. 
* The project will be restored to the Visible Analyst. 
 
Use the File | Open Diagram menu item to access the diagrams directly, or use the File | Zachman 
Framework to display the framework. Click on a framework cell to view the artifact types associated 
with the cell. Double clicking on an item will open the diagram or display the artifact’s repository entry. 
 
Best Regards, 
  
Mike Cesino 
President 
Visible Systems Corporation 



Visible Analyst Tutorial 
 

 v 
 

 

 

Table of Contents 
 
 

GETTING TO KNOW VISIBLE ANALYST .......................................................................... 1 
INTRODUCTION ....................................................................................................................... 1 

FAST TRACK USERS ............................................................................................................. 2 
OVERVIEW OF MDA CONCEPTS ............................................................................................. 3 

The Basic MDA Models ..................................................................................................... 3 
Visible Analyst Choices ..................................................................................................... 5 

VISIBLE ANALYST OVERVIEW ................................................................................................ 5 
Visible Analyst Architecture .............................................................................................. 5 
Windows Version Features ................................................................................................ 7 

The Application Workspace ......................................................................................................... 7 
Windows Configuration ................................................................................................................ 7 
Multiple Document Interface ........................................................................................................ 7 
Selecting a Diagram Object .......................................................................................................... 8 
Shortcut Keys ............................................................................................................................. 10 
Control Bar ................................................................................................................................. 10 
Help Bar...................................................................................................................................... 12 
Object Browser ........................................................................................................................... 12 

Menus .............................................................................................................................. 12 
File Menu .................................................................................................................................... 12 
Edit Menu ................................................................................................................................... 13 
View Menu ................................................................................................................................. 13 
Options Menu ............................................................................................................................. 13 
Repository Menu ........................................................................................................................ 13 
Diagram Menu ............................................................................................................................ 13 
Tools Menu ................................................................................................................................. 14 
Window Menu ............................................................................................................................ 14 
Help Menu .................................................................................................................................. 15 

THE ZACHMAN FRAMEWORK ......................................................................................... 15 
INTRODUCTION ..................................................................................................................... 15 
ZACHMAN FRAMEWORK PROJECT AND CELL DEFINITIONS .................................................. 18 

Framework Rules ............................................................................................................. 19 
Accessing the Visible Analyst Project Artifacts ............................................................... 19 
Column 1 ......................................................................................................................... 21 
Column 2 ......................................................................................................................... 26 
Column 3 ......................................................................................................................... 30 
Column 4 ......................................................................................................................... 34 
Column 5 ......................................................................................................................... 38 



Visible Analyst Tutorial 
 

 vi 

Column 6 ......................................................................................................................... 41 
BUSINESS PLANNING TECHNIQUES .............................................................................. 45 

INTRODUCTION .................................................................................................................... 45 
VISIBLE BUSINESS RULES ................................................................................................... 46 
BUSINESS RULES IN BUSINESS MODELS .............................................................................. 46 

Business Statements ........................................................................................................ 47 
STRATEGIC PLANNING OVERVIEW ....................................................................................... 48 

Planning Window ............................................................................................................ 49 
Planning Statement Links ................................................................................................ 52 

STRUCTURED MODELING TECHNIQUES ...................................................................... 55 
OVERVIEW ........................................................................................................................... 55 
STRUCTURED PLANNING ...................................................................................................... 55 
ENTITY RELATIONSHIP MODELING ........................................................................................ 56 
PROCESS MODELING ............................................................................................................. 57 
WORKING WITH BOTH DATA AND PROCESS MODELS ............................................................ 59 
STRUCTURED DESIGN .......................................................................................................... 59 
OBJECT-ORIENTED MODELING .............................................................................................. 60 
OBJECT CONCEPTS ................................................................................................................ 60 
STATE TRANSITION (DYNAMIC) MODELING .......................................................................... 61 
OBJECT MODELING AND PROCESS MODELING ....................................................................... 61 
DATA AND OBJECT RELATIONSHIPS ...................................................................................... 62 
LIBRARY MODEL .................................................................................................................. 62 

DIAGRAMMING AND REPOSITORY BASICS ................................................................. 63 
INTRODUCTION .................................................................................................................... 63 
CREATING A NEW PROJECT ................................................................................................... 63 
CREATING A NEW DIAGRAM ................................................................................................. 66 
EDITING A DIAGRAM ............................................................................................................ 67 

Adding Symbols to a Diagram ........................................................................................ 67 
Stylizing a Symbol ........................................................................................................... 69 
Moving, Cutting, and Pasting a Symbol .......................................................................... 70 
Adding Lines to a Diagram ............................................................................................. 71 
Selecting and Adjusting Lines ......................................................................................... 72 
Adding Caption Text to a Diagram ................................................................................. 73 

OTHER DIAGRAMMING FUNCTIONS ...................................................................................... 75 
Colors .............................................................................................................................. 75 
Displaying and Hiding Symbol Labels ............................................................................ 76 
Changing Text Characteristics for a Block of Diagram Objects .................................... 76 

CLOSING A DIAGRAM ........................................................................................................... 77 
THE TUTORIAL PROJECT ...................................................................................................... 78 
CONCLUSION ....................................................................................................................... 78 



Visible Analyst Tutorial 
 

 vii 
 

 

PLANNING AND USING FUNCTIONAL DECOMPOSITION DIAGRAMS .................... 79 
OVERVIEW ............................................................................................................................ 79 
DEFINITIONS ........................................................................................................................ 81 
CREATING AN FDD ................................................................................................................ 82 

Adding Symbols to an FDD ............................................................................................. 82 
Adding Connection Lines to an FDD .............................................................................. 85 
Analyzing an FDD ........................................................................................................... 88 
Generating DFDs from an FDD (Spawning) .................................................................. 90 
What to do Next ............................................................................................................... 92 

ENTITY RELATIONSHIP DIAGRAMS ............................................................................... 93 
OVERVIEW ............................................................................................................................ 93 

Definitions ....................................................................................................................... 93 
Relationship Cardinality ............................................................................................................. 96 

DEVELOPING YOUR DATA MODEL ......................................................................................... 96 
Adding Entities to a View ................................................................................................ 96 
Changing a Symbol Type ................................................................................................. 97 
Adding Relationship Lines ............................................................................................... 99 
Analyzing the Diagram .................................................................................................. 101 
Automatically Generating a View of Your Data Model ................................................. 102 

DATA FLOW DIAGRAMS ................................................................................................. 107 
OVERVIEW .......................................................................................................................... 107 
CREATING AND POPULATING A TOP-LEVEL DIAGRAM ........................................................ 112 
NESTING A PROCESS ........................................................................................................... 112 
CREATING A NEW DIAGRAM ................................................................................................ 116 

Adding Processes to a Child Diagram .......................................................................... 118 
Attaching Data Flows to Symbols .................................................................................. 118 
Splitting Data Flows ...................................................................................................... 120 

ANALYZING FOR BALANCE AND COMPLETENESS ................................................................ 122 
Fixing the Errors ........................................................................................................... 123 

GENERATING A PROCESS DECOMPOSITION MODEL .............................................................. 124 
STRUCTURED DESIGN AND STRUCTURE CHARTS ................................................... 127 

OVERVIEW .......................................................................................................................... 127 
Definitions ..................................................................................................................... 127 

DRAWING A STRUCTURE CHART .......................................................................................... 131 
Adding Symbols ............................................................................................................. 131 
Adding Invocation Lines to a Structure Chart ............................................................... 132 
Drawing Couples ........................................................................................................... 134 

THE CLASS DIAGRAMS .................................................................................................... 137 
OVERVIEW .......................................................................................................................... 137 



Visible Analyst Tutorial 
 

 viii 

Definitions ......................................................................................................................137 
DEVELOPING YOUR CLASS MODEL .......................................................................................139 

Adding Classes to a View ...............................................................................................139 
Adding Relationships to a View .....................................................................................140 

ATTRIBUTES OF AN OBJECT .................................................................................................144 
Adding Attributes to a Class Diagram ...........................................................................145 

METHODS FOR AN OBJECT ...................................................................................................147 
Arguments for Methods ..................................................................................................148 
Adding Methods to a Class Diagram .............................................................................149 

ANALYZING THE CLASS DIAGRAM .......................................................................................151 
STATE TRANSITION DIAGRAMMING ............................................................................153 

OVERVIEW ..........................................................................................................................153 
Definitions ......................................................................................................................153 
Relationships ..................................................................................................................153 

DEVELOPING YOUR STATE TRANSITION MODEL ...................................................................154 
Adding States to a View ..................................................................................................154 
Adding Relationships to the State Model .......................................................................155 

ACTIVITY DIAGRAMMING ..............................................................................................157 
OVERVIEW ..........................................................................................................................157 
DEFINITIONS .......................................................................................................................157 
RELATIONSHIPS ..................................................................................................................158 
DEVELOPING YOUR ACTIVITY DIAGRAM .............................................................................159 

Designating the Starting Point .......................................................................................159 
Adding A Synchronization Bar .......................................................................................160 
Adding Activities ............................................................................................................161 
Adding Decisions to a View ...........................................................................................161 
Adding Stopping to a View .............................................................................................162 
Adding Transitions to a View .........................................................................................162 
Adding Labels to Transition Lines .................................................................................163 
Adding Swimlanes to a View ..........................................................................................163 

USE CASE DIAGRAMMING ..............................................................................................167 
OVERVIEW ..........................................................................................................................167 
DEFINITIONS .......................................................................................................................167 
RELATIONSHIPS ...................................................................................................................169 

Examples of Relationships .............................................................................................169 
DEVELOPING YOUR USE CASE DIAGRAM ..............................................................................171 
BUSINESS SCENARIO ...........................................................................................................171 

Adding System Boundaries, Actors, and Use Cases .......................................................172 
Adding Relationships .....................................................................................................173 

SEQUENCE DIAGRAMMING ............................................................................................175 



Visible Analyst Tutorial 
 

 ix 
 

 

OVERVIEW .......................................................................................................................... 175 
DEFINITIONS ....................................................................................................................... 175 
DEVELOPING YOUR SEQUENCE DIAGRAM ............................................................................ 177 

Adding Objects .............................................................................................................. 177 
Adding Activation Symbols ............................................................................................ 179 
Adding Procedure Calls to the Diagram ....................................................................... 183 
Adding Return to the Diagram ...................................................................................... 186 
Adding Text Notes to the Diagram ................................................................................ 186 

COLLABORATION DIAGRAMMING ............................................................................... 189 
OVERVIEW ......................................................................................................................... 189 
DEFINITIONS ...................................................................................................................... 189 
DEVELOPING YOUR COLLABORATION DIAGRAM ................................................................ 190 

Describing Scenarios using a Collaboration Diagram ................................................. 190 
Object Instances Versus Object Classes ........................................................................ 191 

DEPARTMENT OF MOTOR VEHICLES SCENARIO ................................................................. 192 
Adding Objects to a View .............................................................................................. 192 
Adding Relationships to a Collaboration Model ........................................................... 193 

COMPONENT DIAGRAMS ................................................................................................ 195 
OVERVIEW .......................................................................................................................... 195 
COMPONENT DIAGRAM SYMBOLS ....................................................................................... 195 
INTERFACE LINES ................................................................................................................ 196 
COMPONENT INTERNAL STRUCTURE ................................................................................... 199 
DMV COMPONENT SCENARIO .............................................................................................. 200 

BUSINESS PROCESS DIAGRAMMING ........................................................................... 205 
OVERVIEW .......................................................................................................................... 205 
BPMN MODEL TYPES ....................................................................................................... 205 
DEFINITIONS ....................................................................................................................... 206 

Flow Objects .................................................................................................................. 206 
Connecting Objects ....................................................................................................... 211 
Pools and Lanes ............................................................................................................ 213 
Artifacts ......................................................................................................................... 214 

BUSINESS PROCESS DIAGRAM ATTRIBUTES ....................................................................... 215 
DEVELOPING BPMN DIAGRAMS ........................................................................................ 215 

Designate the Starting Event ......................................................................................... 216 
Add a Process Symbol to the Diagram .......................................................................... 216 
Adding a Pool to the Diagram ....................................................................................... 217 
Adding Sequence Flows to the Diagram ....................................................................... 218 

WORKING WITH THE REPOSITORY FUNCTIONS ....................................................... 224 
OVERVIEW .......................................................................................................................... 224 



Visible Analyst Tutorial 
 

 x 

REPOSITORY BASICS ............................................................................................................225 
Repository Control Buttons ............................................................................................225 
Editing Keys ...................................................................................................................228 
Field Types .....................................................................................................................228 

Label Field ............................................................................................................................... 228 
Entry Type Field ...................................................................................................................... 228 
Description Field ...................................................................................................................... 228 
Alias Field ................................................................................................................................ 229 
Attributes Field ........................................................................................................................ 229 
Values & Meanings Field ......................................................................................................... 229 
Discriminator Values & Meanings Field .................................................................................. 229 
Notes Field ............................................................................................................................... 229 
Location Field .......................................................................................................................... 230 
Other Pages and Fields ............................................................................................................. 230 

Object Repository ...........................................................................................................230 
Attributes ................................................................................................................................. 230 
Attached Entities/Classes ......................................................................................................... 231 
Relations .................................................................................................................................. 232 
Long Names ............................................................................................................................. 232 
Class Characteristics ................................................................................................................ 232 
Methods ................................................................................................................................... 233 

Arguments for Methods ..................................................................................................235 
Friends ..................................................................................................................................... 236 

Navigation Capabilities .................................................................................................236 
Search Capabilities ........................................................................................................237 

Setting the Search Criteria ....................................................................................................... 238 
Using Search to Add Items to a Field ....................................................................................... 240 

ADVANCED REPOSITORY FEATURES ....................................................................................241 
Adding Information to the Repository ............................................................................241 
Key Analysis and Key Synchronization ..........................................................................245 
View Objects ..................................................................................................................248 
Generate SQL .................................................................................................................249 
Shell Code Generation ...................................................................................................250 
XML Generation ............................................................................................................251 
Repository Reports .........................................................................................................251 

WHERE TO GO FROM HERE .............................................................................................254 
OVERVIEW ..........................................................................................................................254 
REAL WORLD APPLICATION .................................................................................................254 
WHAT TO DO NEXT? ............................................................................................................255 
CONCLUSION ......................................................................................................................256 



Getting to Know Visible Analyst   
 

 1 
 

 

Lesson 1 

Getting to Know Visible Analyst 

 

INTRODUCTION 
The Visible Analyst Zachman Edition provides a Model Driven approach for defining, 
designing, building, testing, documenting and supporting Enterprise Architecture (EA), 
information systems and software products. Model Driven Architecture (MDA) tools are 
based on logical dissection of the real world into understandable models, processes and 
components. MDA tools provide mechanisms for evaluating current information activities, 
defining proposed changes, producing and validating new information processes and focusing 
on changes that will enhance the performance and operation of the organization. The 
successful use of MDA tools requires an understanding of the underlying concepts and logic 
and a comfortable knowledge of the operation and use of the MDA tool. 
 
Visible Analyst has been created to make the implementation of MDA techniques a logical, 
flexible, natural and easy-to-perform process. Visible Analyst is a seamless MDA tool that 
integrates all phases of planning, analysis, design, code generation, and reverse engineering. 
Visible Analyst provides facilities for the development of function, object/class, state 
transition, data, data flow (process), entity life history, activity, use case, sequence, 
collaboration, component and structure chart (product) models for an information system. The 
Business Process Modeling Notation (BPMN) in the Visible Analyst provides a modeling 
notation that can be communicated to and understood by all business users, from the business 
analysts developing the models, to the technical analysts implementing the model processes, 
to the business people who manage and monitor the processes. An integrated repository 
containing all defined model elements, extensive additional component definitions and free-
form notes and definition fields provides a continuous life-cycle library of the design and 
development process. The Visible Analyst repository is used for reports of project content and 
to generate various forms of schema and application software code. 
 
These lessons have been designed to lead you through the Visible Analyst mechanics and to 
demonstrate how easy Visible Analyst is to use.  These lessons cover the entire development 
process, from drawing functional diagrams to generating program code. You can follow the 
lessons in sequence or you can select just the ones of interest to you. Like Visible Analyst 
itself, you have the flexibility to use any piece of the tool in any order that is reasonable 
within the project.  
 



Getting to Know Visible Analyst 
 

 2 

The tutorial also provides you with some insight into MDA concepts and underlying logic. 
These concepts are basically simple and logical. They allow you to break the complex real 
world into smaller and more manageable chunks that can be defined quickly and then be used 
to build operational pieces that work in the complex real world. Each of the MDA models 
provides a different view of the real world. Visible Analyst ties these models together and 
provides a vehicle for using them to define and evaluate current information operations. 
Proposed changes in the information processes, procedures and sequences are reflected into 
the MDA models and then are used to build a new set for the proposed change operations. 
The analysts, designers, developers and users interact with the Visible Analyst models and 
data repository to verify and validate the information steps and procedures for their 
organization and operations. 
 
Once the architecture of the new information system is considered sound and solid, the 
software designer proceeds to defining and building the new product components and the 
software code. Visible Analyst supports the development of physical programming modules 
through the structure chart model. It also supports the definition and recording of pseudo code 
in the Visible Analyst repository.  From these definitions and the data model, Visible Analyst 
generates database schema, SQL code and application shell code. Test plans, sequences, test 
cases and scenarios can also be generated in the repository notes fields.  
 
One new feature of the Visible Analyst has been the additional support for the Business 
Process Modeling Notation based on the Business Process Modeling Initiative developed by 
the Object Management Group (omg.org). The complete specification can be downloaded 
from the OMG website, www.omg.org. The primary goal of BPMN is to provide a modeling 
notation that can be communicated to and understood by all business users, from the business 
analysts developing the models, to the technical analysts implementing the model processes, 
to the business people who manage and monitor the processes. The BPMN models describe 
the sequence of business processes with support for parallel and conditional behavior. 
 

FAST TRACK USERS 
Those who like to work on the Fast Track should read Lesson 5 - Diagramming Basics and 
follow the steps for creating a project, creating a diagram, and some optional settings that are 
available with Visible Analyst. Lesson 5 gives you the basic skills for working with Visible 
Analyst. We recommend that you work through the other lessons to discover the more 
advanced features that make Visible Analyst a powerful tool. Throughout the tutorial are 
references to features that are not demonstrated in the tutorial but that may be of interest to 
you.  You can find more information about these features in the Operation Manual, which can 
be downloaded from our Web site using this link 
http://www.visible.com/Products/Analyst/manual.pdf. The online help feature in Visible 
Analyst, accessed from the Help menu or by pressing F1, also provides you with more 
information on the referenced subjects. 
 



Getting to Know Visible Analyst   
 

 3 
 

 

 
Note 

 Since Visible Analyst is available in multiple configurations, the software you 
purchased may not include all of the diagram types or advanced features 
described in these lessons. The basic drawing techniques apply to all diagram 
types, and you are encouraged to work through the brief exercise in Lesson 5 - 
Diagramming Basics. Thereafter, you can skip chapters that do not apply to your 
Visible Analyst package. 

 

OVERVIEW OF MDA CONCEPTS 
MDA concepts involve creating and defining different models or views of the real world and 
then using these models to analyze and develop changes and modifications to the information 
processes of the organization. Some of the models provide definitions of factual items such as 
business functions, objects and data entities; others show how things flow, connect or relate to 
one another. Some of the models evolve and expand to match reality and others are done as 
snapshots, showing as-is and then as-proposed operations. The views are composed 
graphically using symbolic objects, line connectors and some rules of logic and structure. The 
objects are given names called labels that populate the data repository with entries that can be 
retrieved, expanded, detailed and used to define and document the contents of the project. 
There are logic rules for many parts of the models. The models can be tested and evaluated 
for completeness, consistency, rule compliance and other factors. All of the models and the 
repository are interrelated, and many share common components such as databases, objects 
and/or actions. The development of the models is iterative, often requiring several sessions 
before the models are complete and realistic. The ability to move from one model to another 
and to work on different ones at different times is critical to a successful MDA tool. 
 
The rules of MDA deal with the checking of consistency and logical structures such as 
naming and complete linkages. Errors found in models are reported during the Visible 
Analyst analyze process. These errors should be corrected to maintain consistency and 
accuracy of the models. However, Visible Analyst, unlike software compilers, allows you to 
continue with any reasonable MDA operation without waiting until you have corrected all 
errors. This allows you to continue progress on the project and its components. However, it 
also leaves you responsible for returning and correcting your errors. 

The Basic MDA Models 
The basic MDA models include: 
 
Functional Decomposition Model (also known as a Business Model) - Shows the business 
functions and the processes they support drawn in a hierarchical structure. 
 



Getting to Know Visible Analyst 
 

 4 

Entity Relationship Model (also known as a Data Model) - Shows the data entities of the 
application and the relationships between the entities. The entities are things and the 
relationships are actions. The data attributes can be defined for the entities via the repository 
and then shown on the diagram. Entities and relationships can be selected in subsets to 
produce views of the data model. 
 
Object Model (also known as an Object Class Model) - Shows classes of objects, subclasses, 
aggregations and inheritance. Defines structures and packaging of data for an application. 
 
State Transition Model (also known as the Real Time Model) - Shows how objects 
transition to and from various states or conditions and the events or triggers that cause them to 
change between the different states. 
 
Process Model (also known as the Data Flow Diagram) - Shows how things occur in the 
organization via a sequence of processes, actions, stores, inputs and outputs. Processes are 
decomposed into more detail, producing a layered hierarchical structure. 
 
Product Model (also known as a Structure Chart) - Shows a hierarchical, top-down design 
map of how the application will be programmed, built, integrated and tested. 
 
Use Case Model – Shows the relationship between a user and a computer system. 
 
Activity Model – Is a special form of state diagram where states represent the performance of 
actions or sub-activities.  Transitions are triggered by the completion of the actions or sub-
activities. 
 
Sequence Model – Shows how objects collaborate in some behavior. 
 
Component Model - Component diagrams allow you to show the structural relationships 
between system components. 
 
Entity Life History Model - The Entity Life History models show how events in a system 
affect data entities. 
 
Collaboration Model – Shows an interaction organized around the objects in the interaction 
and their links to each other. 
 
Business Process Modeling Notation- Provides a modeling notation that can be 
communicated to and understood by all business users, from the business analysts developing 
the models, to the technical analysts implementing the model processes, to the business 
people who manage and monitor the processes. 
 



Getting to Know Visible Analyst   
 

 5 
 

 

Repository or Library Model (also known as the Project Database) - Keeps the records of 
all recorded objects and relationships from the diagrams and allows for the definition of 
detailed specifics and extensions of the individual items. Used for evaluation, reporting and 
generation of details about the project and its products. 
 

Visible Analyst Choices 
Today systems designers have multiple choices. They can follow the Structured Analysis and 
Structured Design (SA/SD) approach and build on functions/processes, data models and 
product concepts; or they can follow the object-oriented approach and build class hierarchies, 
dynamic states and functional/process models. Both approaches can build better information 
systems and both cover similar aspects of information systems definition. However, both use 
different sequences of effort and focus on different aspects of the project. Visible Analyst 
allows you to choose either approach or to combine the approaches to develop a 
comprehensive product definition, design and development mechanism. 
 
There are five keys to using Visible Analyst, or any MDA tool.  The first key is to develop the 
discipline to apply and follow the steps and procedures of the technique. The second key is to 
develop skills in conceptualizing the MDA models to represent the real world requirements. 
The third key is to be consistent in how you define and describe the real world. The fourth key 
is to strive to be complete in the definition of all of the major parts of a real world application. 
The fifth key is to progress from the conceptual to the operational specifications and 
construction of a working information systems process. 
 

VISIBLE ANALYST OVERVIEW 
Visible Analyst is a Microsoft® Windows® application. Versions 7.1 and higher of Visible 
Analyst work with Windows NT, 2000, 2003 Server and XP while VA2008 and VA2009 are  
VISTA compatible. This section defines the overall structure of Visible Analyst and identifies 
some of its key operational characteristics. 

Visible Analyst Architecture 
The basic components of Visible Analyst are: a set of diagramming tools, a rules module, and 
a repository module. Diagramming tools are used to construct the “blueprints” of your target 
system. These lessons guide you in the creation of diagrams and provide you with basic 
information on the uses of the diagrams. 
 
A system is designed and constructed according to rules, and the rules module manages the 
methodologies of Visible Analyst tools for you. Visible Analyst allows you to choose the rule 
set you prefer to use as a guideline for the development of your system. These rules are 
important in determining the appearance of your diagrams, as well as the entire structure of 
your system. For the purposes of the tutorial, you are introduced to the supported techniques 



Getting to Know Visible Analyst 
 

 6 

and learn how to designate the rule set to use and the different symbol types used for each 
rules methodology. 
 
 
 
 

 
                 Figure 1-1 Visible Analyst Workspace 

 
The repository module controls the individual repositories of each of your projects. A 
project’s repository stores detailed information about objects that are used in developing a 
system. An object in the repository includes processes, entities, relationship lines, classes, etc. 
The type of information contained in the repository for each object includes description, 
composition, values and meanings, location references, and other very specific detail 
information (see Lesson 17 – Working with The Repository Functions for details). The 
repository makes Visible Analyst a very powerful systems development tool. Visible Analyst 
is much more than just a diagramming tool; its repository and rules sets provide definition, 
documentation, and consistency capabilities for the entire system. Visible Analyst has 
advanced features enabling you to generate reports and code for your target system, using the 
information contained in a project repository. 

Standard  
Tool Bar

View 
Tool Bar

Object 
Browser 

Help Bar 
Project Root 

Control 
BarFont Tool 

Bar

Diagram 
Tool Bar 

Diagram Workspace 



Getting to Know Visible Analyst   
 

 7 
 

 

Windows Version Features 
This section highlights some of the Windows-specific features of Visible Analyst. 

The Application Workspace 
All work in Visible Analyst is done either in the main application workspace, shown in Figure 
1-1, or in the repository, described in Lesson 16 - Repository Functions.  

Windows Configuration 
Visible Analyst configuration features controlled through Windows include the hardware 
configurations, desktop colors, available printer drivers, and available fonts. Changes or 
additions to these features can be made through Windows and are reflected in Visible Analyst. 

Multiple Document Interface 
The Windows Multiple Document Interface (MDI) allows multiple diagrams to be open at 
one time. Open diagrams can be of the same or different diagram types (data flow diagrams, 
entity relationship diagrams, etc.). Diagrams may be maximized, taking up the entire 
workspace, sized so that several diagram windows are visible, or minimized to icons 
appearing at the bottom of the application workspace. Any window larger than an icon is 
editable. You can cut, copy, and paste to and from the Windows Clipboard to move objects 
between diagrams and even between other Clipboard-aware applications. (See Figure 1-2.) 
 
               
 



Getting to Know Visible Analyst 
 

 8 

   
                           Figure 1-2 Visible Analyst Multiple Document Interface  
 

Note 
 Users not familiar with MDI Windows programs should take note:  there is a 

difference between the diagram Control menu button and the Visible Analyst 
Control menu button. The former is in the top left corner of the diagram 
window, or to the left of the File menu if the diagram is maximized. This 
Control menu contains functions that affect the diagram only, such Maximize, 
Close, etc. The latter is in the top left corner of the Visible Analyst window. The 
Visible Analyst Control menu affects the whole Visible Analyst window and 
program. 

 

Selecting a Diagram Object 
A diagram object is anything that appears on a diagram: symbol, line, text, or block. When 
you click on an object with a mouse button, it becomes the current or selected object and you 
can perform various operations on it. There are five different ways to select an object. The 
following paragraphs describe the effect of selecting an object with the left mouse button, the 



Getting to Know Visible Analyst   
 

 9 
 

 

right mouse button, a double-click with the left mouse button, the TAB key and selecting a 
Block. 
 
Left Mouse Button 
Clicking on an object with the left mouse button selects it. The object changes color to show 
that it has been selected allowing you to make changes to the object or to move the object. 
When a symbol or line is selected, text labels for that object are automatically highlighted. 
 
Right Mouse Button 
Clicking on an object with the right mouse button also selects it. In addition, the Object menu 
appears containing all of the functions that can be performed on that object. 

 
Notes 

 Unless stated to the contrary, instructions to click a mouse button refer to the left 
button. Instructions for the right button are explicitly mentioned. 

 
 Left-handed mouse users: if you use a mouse with the buttons reversed, you should 

reverse references to left and right mouse buttons in this text. 
 
Double-Click 
If you double-click on an object with the left mouse button, the repository entry for that object 
appears. If the object is unlabeled, a dialog box for labeling the object is displayed.  Double-
clicking is also used to indicate the end of a line. 
 
TAB Key 
To highlight only the text label for a selected symbol or line, press the TAB key until the 
appropriate item is highlighted. (If the label is located outside the symbol, you can click on it 
directly.) Continuing to press the TAB key sequentially selects each object on the diagram. 
 
Selecting a Block 
To select a block, meaning a group of objects, on a diagram, click and hold the left mouse 
button and drag the mouse to draw a box around the objects. All objects completely contained 
within that box change colors to show that they are selected. Once a block is selected, you can 
perform various functions on the block such as cut, paste, move, change text settings for 
contained objects, and other actions. 
 
Deselecting Objects 
To deselect any object or block, simply click the left mouse button on an empty area 
anywhere on the diagram workspace outside of the object or block. The items that had been 
selected return to their usual color. You can also use the Clear function on the Edit menu. 



Getting to Know Visible Analyst 
 

 10 

Shortcut Keys 
Shortcut keys provide fast access to functions without using the menus. Some of the active 
shortcut keys used in Visible Analyst are standard Windows shortcut control key sequences, 
such as CTRL+P, which is the command for Print; others are specific to Visible Analyst. All 
available shortcut keys are listed here. 
 
CTRL+A Analyze   Analyzes a diagram or entire project. 
CTRL+C Copy   Copies to clipboard. 
CTRL+D Define   Accesses the repository. 
CTRL+E Connect   Draws lines between selected symbols. 
CTRL+F Find   Accesses the search mode. 
CTRL+L Lines   Sets the cursor to line drawing mode. 
CTRL+N New Diagram  Creates a new diagram. 
CTRL+O Open Diagram  Opens an existing diagram. 
CTRL+P Print   Prints the current diagram or queue contents. 
CTRL+Q Report Query  Generates a custom repository report. 
CTRL+R Reports   Generates a standard repository report. 
CTRL+S Save   Saves the current diagram. 
CTRL+T Text   Sets the cursor to text adding mode. 
CTRL+U Clear   Deselects diagram object or block. 
CTRL+V Paste   Pastes from Clipboard. 
CTRL+Y Snap Symbols  Aligns selected symbols in a row. 
CTRL+X Cut   Cuts to Clipboard. 
CTRL+Z Undo   Erases partially drawn or undoes moved line. 
DEL  Delete   Deletes object from diagram. 
F1  Help   Displays context-sensitive help. 
ALT+R  Delete Project  Deletes a project with no project files. 
SHIFT+F1 Menu Help  Enters Help mode for menu items. 
SHIFT+F10 Object Menu  Displays repository object menu. 
  
Another standard Windows shortcut method for accessing a menu item without using the 
mouse is to press the ALT key followed by the underlined letter of the menu title or menu 
item that you would like to access. For example, to access the File menu, press the ALT key 
followed by the F key. It is not necessary to hold down the ALT key while pressing the F key.  

Control Bar 
The control bar, shown in Figure 1- 3, is located  above the diagram workspace and gives you 
quick access to commonly used functions and types of objects that can be added to a diagram. 
The control bar can contain up to four tool bars.   

 The standard tool bar contains basic buttons, such as Select Project, Open Diagram, etc., 
common to most Windows applications.   

 The diagram tools tool bar contains the symbol, line, and text buttons appropriate for the 
current diagram.   



Getting to Know Visible Analyst   
 

 11 
 

 

 The view tool bar contains controls that change the zoom level and entity/class view 
level.   

 The font tool bar contains controls that allow changing the current font characteristics, 
such as font type, font size, etc.  

 
You can customize the control bar by selecting Control Bar from the Options menu to 
display the Customize Control Bar dialog box.  Using this dialog box, you can select the tool 
bars to be displayed and select control bar options such as Show Tooltips, Large Buttons, Flat 
Buttons, and Hot Buttons.  You can also right-click the control bar itself to display a 
properties menu that allows you to toggle the individual tool bars on or off or to select the 
Customize option.  To change the size and position of the tool bars, click the left mouse 
button on the “gripper” (the two vertical bars at the beginning of each tool bar) and drag the 
tool bar to the desired position. From the Customize Control Bar dialog box, you can also 
“undock” the diagram tools tool bar so that it appears in its own floating window. 
 
The  button (shown in Figure 1-3) is used to change into selection mode (also called editing 
mode). In selection mode, objects can be selected on the diagram to be changed or moved, or 
a box can be drawn around many objects on a diagram, for moving, cutting and pasting, or 
changing text settings for groups of objects. Click one of the drawing mode buttons, and you 
can add that type of item to the diagram. The object types include symbols, lines, couples, and 
caption text. When you choose one of the drawing mode items from the control bar to add to 
your diagram, the cursor automatically changes to indicate that you are either in symbol, line 
or couple adding mode, or caption text adding mode. Specifically, this means that while the 
cursor is positioned inside the diagram workspace and it is something other than an arrow, 
which indicates selection mode, clicking on the mouse adds an object to the diagram. 

 
                      Figure 1-3  The Control Bar for Entity Relationship Diagrams   
                                          with All Tool Bars Displayed 
 
For example, when the diagram tools tool bar is displayed on the control bar, you can easily 
select the particular symbol you want to add to the diagram. A symbol is added to your 
diagram centered at the cursor location anytime you click on the diagram workspace while the 
cursor indicates symbol drawing mode. 
 

 



Getting to Know Visible Analyst 
 

 12 

                     Figure 1-4               Figure 1-5   
            The Symbol Cursor          The Line Cursor 
 
  

  
                     Figure 1-6                             Figure 1-7 
 The Text Cursor              The Couple Cursor 
 

Help Bar 
As you move through the Visible Analyst menus, a line of text appears on the help bar at the 
bottom of the application workspace that briefly explains what that menu item does. The 
current zoom level, current project and current object are also displayed. You can toggle this 
feature off and on from the Options menu. 

Object Browser 
From the Options menu, you can choose to have the Visible Analyst object browser displayed 
on your screen.  The object browser displays a list of all the objects in the repository in a 
resizable window.  When there are no diagrams open, or the current window is the diagram 
list, all objects are displayed.  When a diagram is open, only those objects that are valid for 
that diagram type are displayed.  If an object appears on the open diagram, it is displayed in 
bold.  Double-click on a folder in the list to expand or collapse it; double-click on an object in 
the list to display the Define dialog box.  You can also click on an object in the list and drag it 
onto your diagram.  To resize the object browser, click on the right margin of the browser and 
drag to the desired size. 

Menus 
The menus are arranged in nine groups for browsing and selecting the various features of 
Visible Analyst. (Refer to Figure 1-1.) 

File Menu 
The File menu contains the functions for accessing and creating projects and diagrams. This 
includes all of the functions that cause the opening of another diagram, such as Nest, Spawn, 
and Page. (These functions are explained under the specific diagram type where each is 
used.) It also includes a list of Recent Diagrams and Recent Projects. The Save, Print, 
and Exit functions are also found in the File menu. If you are using a network version, 
information about network activity and modifying the user list is contained in the File menu.  



Getting to Know Visible Analyst   
 

 13 
 

 

If you purchased a copy of the Zachman Framework Edition, the framework can be opened 
and closed using the Zachman Framework option. 

Edit Menu 
The Edit menu contains the standard Windows editing functions including Cut, Copy, Paste, 
Find and Delete. There is also an Undo function for removing partially drawn lines and 
undoing a move line operation. The Strategic Planning options allow you to add a New 
Statement, Promote, Demote, Move Up, or Move Down, a strategic planning statement. 

View Menu 
The functions contained in the View menu allow you to change the appearance of the active 
diagram. There are functions to change the zoom level and to give you the ability to change 
the items displayed on a diagram, including Show Line Names, Show Symbol Names, 
Show Discriminators, Show Statement Types, Show Priority, Show Description, 
Class and Entity Display Options, Physical Schema, Events, and Messages. Also on 
the View menu are Grid and Ruler, functions that make it easier to position objects accurately 
on a diagram.  

Options Menu 
The Options menu contains functions that allow you to change default settings for Visible 
Analyst. For diagram drawing and manipulation settings, the functions include automatic 
labeling of symbols and lines, Line Settings defaults, Text Settings defaults and diagram 
Colors, as well as on/off settings for Security, the Help Bar, the Object Browser, and the 
Control Bar. The Options menu also includes settings for interaction diagrams, model 
balancing rules, SQL schema and shell code generation, DDS name translation, user-defined 
attribute and object definition, planning statement types, Zachman Framework cell settings 
and symbol template settings. 

Repository Menu 
All of the selections included in the Repository menu are functions performed on the 
information contained in a project’s repository. These include Define, which allows 
repository access, schema and shell code generation, schema / model comparison, Key 
Analysis and Key Synchronization, Model Balancing, and repository Reports. The 
Divisions function is used with the Enterprise Copy feature and is explained in the on-line 
Help. The Divisions and Enterprise Copy feature are not available in the Visible Analyst 
Student edition. 

Diagram Menu 
The Diagram menu contains functions for selecting, manipulating, and analyzing diagram 
objects. These include functions for selecting Symbols, Lines, or Text to add to a diagram, 
as well as functions for changing or stylizing a selected item on a diagram. The function for 
analyzing the diagrams according to the selected rules methodology, modifying the diagram 



Getting to Know Visible Analyst 
 

 14 

settings and the function for modifying an existing view are also contained in the Diagram 
menu.  

Tools Menu 
The Tools menu contains the various functions that can be performed on a project. These 
include Backup, Restore, Copy Project, Delete Project, Rename/Move, Import, Export, 
and copying information between projects. The utility for assigning user access to the multi-
user version of Visible Analyst is also found in the Tools menu. The Enterprise Copy and 
Enterprise Tag Maintenance features are not available in the Visible Analyst Student Edition 
but are explained in the on-line Help. 

Window Menu 
The Window menu allows you to change the arrangement of the open diagrams. Diagrams 
can be automatically arranged in a Tile, Cascade, or minimized (icon) format. You can also 
switch between open and minimized diagrams.  
 
 
 



Getting to Know Visible Analyst   
 

 15 
 

 

     Figure 1-8  Cascaded Multiple Diagram Windows 

Help Menu 
The Help menu allows you to access the Help features, product and user information, and 
Visible Analyst on the Internet.   
 

Note 
 Detailed information about each of the menu options can be found in the Visible 

Analyst Operation Manual and the online help system (accessed by pressing F1). 





The Zachman Framework 
 

 15 
 

 

Lesson 2 

The Zachman Framework 
 
 

INTRODUCTION  
It has been Visible Systems Corporation’s experience that no matter where you start in your 
application development activities, you will soon find yourself making certain “assumptions” 
about things not under your control or outside of your scope. To confirm or validate these 
assumptions, you find yourself addressing the artifacts up and down the Zachman Framework 
rows and/or across the columns to capture the true drivers for the system: who? what? where? 
when? why? and how?1 This means coordinating with the affected or interested business 
experts, system users, and management.  
 
In 1987 John Zachman wrote, “To keep the business from disintegrating, the concept of an 
information systems architecture is becoming less of an option and more of a necessity.2” 
From that assertion over a decade ago, the Zachman Framework for Enterprise Architecture 
has evolved and become the model around which major organizations view and communicate 
their enterprise information infrastructure.  The Zachman Framework draws upon the 
discipline of classical architecture to establish a common vocabulary and set perspectives--a 
framework--for defining and describing today’s complex enterprise systems.  Enterprise 
Architecture provides the blueprint--or architecture--for the organization’s information 
infrastructure and provides a framework for managing information complexity and managing 
change. 
 
Today the Zachman Framework has become a standard for Enterprise Architecture used by 
many of the most successful organizations in the world.  Evidence of the acceptance of the 
Framework has been apparent at the annual forums conducted by the Zachman Institute for 
Framework Advancement (ZIFA, www.zifa.com).  At each forum, attendees hear 
presentations on the many different aspects and practical uses of the Framework. Visible fully 
supports both the concept and philosophy of the Zachman Framework.  Visible helps clients 
gain greater control of their information systems and technology requirements through 
development of an enterprise-wide architecture.   
 

                                                           
1 “Visible and the Zachman Framework for Enterprise Architecture” by Alan Perkins p. 2. Copyright © 1997-2001, 
Visible Systems Corporation. 
2 “A framework for information system architecture” by J.A. Zachman p. 454 IBM Systems Journal, Vol. 26, Nos. 3, 
1987, ©1987, 1999 IBM. 



The Zachman Framework 
 

 16 

Visible takes an engineering approach to developing an enterprise architecture.  We use a 
combination of forward and reverse engineering to establish the enterprise architecture. 
Forward engineering tasks include business planning and data and process modeling.  Reverse 
engineering tasks include analysis and documentation of all existing structures for the 
organization.  The result is a model that represents an integrated view of the enterprise 
architecture framework, with redundancies and discrepancies resolved and documented. All 
conceptual and logical architecture components can all be maintained in Visible’s proprietary 
modeling tool, Visible Analyst®.   
 
The Visible Analyst supports the tasks and techniques involved in the creation and 
management of an enterprise architecture, with sufficient flexibility to integrate and support 
other approaches to software engineering.  Visible Analyst captures business plans of multiple 
organization levels and maintains the hierarchy of planning components (mission, goals, 
strategies, measures, business rules, etc.).   
 
Unlike many other modeling tools, Visible Analyst has the capability of directly linking each 
business plan component to the entities and attributes of a data model that support/implement 
the planning elements.  This feature is used to control quality and completeness, and to ensure 
that process and system designs meet business requirements.  Visible Analyst can also be used 
to specify physical information system designs based on the data model or import physical 
designs of existing data structures into the repository, and then link them back to the business 
plan component.   
 
The following sections provide an overview of the Visible Analyst’s repository and modeling 
capabilities, followed by an explanation of the Visible Analyst framework project. Each cell 
in the Zachman framework project is detailed in a cell-by-cell review including an 
explanation of the artifacts created for the cell in the Visible Analyst. A backup copy of the 
Zachman project is located in the VA\Zachman folder on the product CD. If you do not have 
a product CD, contact Visible Systems support at support@visible.com for a copy of the 
document and backup file set. To access the project, see the Restore instructions at the 
beginning of this tutorial. 
 
It is important to remember that the Visible Analyst Enterprise Project using the Zachman 
Framework is not a static one-time snapshot view of the enterprise. As mentioned in the cell 
explanations, the artifacts such as the business plan, physical data model, security 
architecture, strategic goals, etc. will change as the enterprise changes. Using the Visible 
Analyst and its repository to model the enterprise provides a one-stop location where all 
information about the enterprise is located. External documents may be changed, but the 
hyperlinks to the artifacts are maintained within the enterprise project, allowing for both a 
birds eye and physical implementation perspective of the enterprise. 
 



The Zachman Framework 
 

 17 
 

 

 
Figure 2-1  Zachman Framework 

 
Image provided courtesy of the Intervista Institute, Copyright © Intervista Institute 
(www.intervista-institute.com)  



The Zachman Framework 
 

 18 

THE ZACHMAN FRAMEWORK PROJECT AND CELL 
DEFINITIONS  
 
When implementing an Enterprise Architecture Framework, it is important where you begin. 
In our white paper, “Enterprise Architecture Engineering”3 by Alan Perkins and Clive 
Finkelstein, available on our web site at www.visible.com, they state, “A well documented 
Enterprise Architecture is a logical organization of information pertaining to the following 
multi-level, multi-dimensional, enterprise wide elements. 
 

• Strategic goals, objectives, strategies 
• Business rules and measures 
• Information requirements 
• Processes, systems and applications 
• Relationships between architecture elements 
• Technology infrastructure” 

 
They emphasize that the most important starting point is that establishing the right 
sponsorship helps to insure successful development and deployment. Alan also explains, 
“…all potential users of the applications and systems based upon the architecture must be 
involved in the process. Without both management sponsorship and near universal 
involvement, enterprise-wide architecture engineering projects usually fail.”4 Additional 
white papers are available on our web site at www.visible.com that help explain the “Critical 
Success Factors for Enterprise Architecture Engineering”, “Business Rules ARE Metadata”, 
etc.  
 
Each cell of the framework is described using the following format beginning with the “What 
column Planner perspective” and proceeding down the column in a top-to-bottom left-to-right 
order. 
 

• Cell location, label, perspective and descriptive type 
• An explanation of the cell definition 
• The artifact created in the project to implement the cell. The name and location of 

the cell is included in the artifact label where appropriate, such as "Row 4 Column 1 
Physical Data Model". 

• A detailed explanation of the project artifact 
• Alternative artifacts that could be created in the project to implement the cell 

                                                           
3 “Enterprise Architecture Engineering” by Alan Perkins and Clive Finkelstein p.3. Copyright © 2000, Visible 
Systems Corporation. 
4 “Critical Success Factors for Enterprise Architecture Engineering” by Alan Perkins p. 4. Copyright © 2000 Visible 
Systems Corporation. http://www.visible.com/AboutUs/whitepapers.html. 



The Zachman Framework 
 

 19 
 

 

 
This project contains many different types of artifacts, consisting of diagrams, strategic 
planning statements, lists, user defined objects, etc., and each was created to document a 
specific cell of the framework. Only one artifact was created for each cell, and additional 
artifact option types are included in this document and the cells’ repository definition when 
appropriate. An actual enterprise project will have multiple artifacts representing a particular 
cell. When using the Visible Analyst in a real-world implementation of the framework, users 
should consider using the Enterprise Modeling feature (described in the online help system) to 
eliminate any naming conflicts, to maintain logical and physical data model separation, 
program specification, etc. The Enterprise Modeling feature will maintain the linkage between 
the artifacts in the projects, promoting object re-use.  
 

Note 
 Appendix A in the “Visible Analyst Framework Document”, located in the 

VA\Zachman folder on the product CD, contains additional resources and modeling 
capabilities available in the Visible Analyst when creating artifacts for the various 
cells. If you do not have a product CD, contact Visible Systems support at 
support@visible.com for a copy of the document. 

Framework Rules 
 
Before beginning the enterprise project and creating the cell artifacts, it is important that users 
know and understand the rules of the framework as described by John Zachman and John 
Sowa.5 
 

1. The columns have no order. 
2. Each column has a simple, basic model. 
3. The basic model of each column must be unique. 
4. Each row represents a distinct, unique perspective. 
5. Each cell is unique. 
6. The composite or integration of all cell models in one row constitutes a complete 

model from the perspective of that row. 
7. The logic is recursive. 

 

Accessing the Visible Analyst Project Artifacts 
 
For users unfamiliar with the Visible Analyst we have included instructions to access the 
project artifacts maintained in the Visible Analyst Framework project. 
 
                                                           
5 “Extending and formalizing the framework for information systems architecture” by J. A. Sowa and J. A. Zachman, 
IBM Systems Journal, Vol. 31, No 3, 1992. Pages 599-603 



The Zachman Framework 
 

 20 

Accessing the diagrams 
Clicking the File | Open Diagram menu item displays a list of diagram types supported by the 
Visible Analyst in alphabetical order. If a diagram has been created a plus sign is displayed 
next to the diagram type and clicking the plus sign displays the diagram list. Double click on 
the diagram label to open the diagram. 
When viewing the repository entry of a diagram symbol, double clicking on a diagram label 
listed in the Locations field on the Locations tab of the entry opens the diagram in the 
background and the selected item is highlighted on the diagram.  
 

Accessing the repository 
There are a number of ways to display the repository Define Item screen for an object even 
when a diagram is not displayed: 
  

• Select the Repository | Define menu item to directly access the repository. If no 
diagram object or planning statement was highlighted, a blank Define item screen is 
displayed. Clicking the Next button at the bottom of the screen displays all 
repository entries in alphabetical order. Entering a letter into the label field and 
clicking the Search button displays a list of all repository entries beginning with that 
letter. Click the Search button and then the F1 key on the keyboard to display the 
“Repository Searches – Overview” help file. 

• Double click on the label of the item in the Object Browser.  
• For diagram symbols and strategic planning statements, double clicking on the 

diagram symbol or statement opens the item’s Define Item screen.  
• Right click on the diagram object and select Define from the object menu, or left 

click on the object so it is highlighted and choose the Repository | Define menu item. 
• Non-diagram repository object entries, such as data elements, data structures, user 

defined objects, etc., can be accessed by double clicking on the label of the item in 
the Object Browser or using the Repository | Define and Search feature mentioned 
above. When viewing a parent object’s Define Item screen, such as an entity, class, 
data flow, etc., double click on the attribute item or select the attribute in the 
Attributes field and click the Jump button located at the bottom of the Define Item 
screen.  

 

Accessing the strategic planning statements 
Select the File | Strategic Planning menu item or click the Strategic Planning icon which is the 
second icon on the first menu bar. Use the up and down, left and right arrows on the strategic 
planning icon bar to position the statements within the statement hierarchy. The other 
strategic planning icons allow you to display the levels, branches, priority, type and 
description of the statements on the screen. 



The Zachman Framework 
 

 21 
 

 

Column 1: The “Data” or “What” column  
Provides an understanding of the data important to the business with finer amounts of detail 
shown at each succeeding perspective. 
 

Row 1, Column 1 - “List of Things Important to the Business” 
Objectives/Scope (Contextual) 
Data column, Planner role 
Entity = Class of Business Thing 
 
Cell explanation6 
A list of items, objects, assets, etc. important to the business and defined at a high level of 
aggregation. The list is dependent on the enterprise modeled, and “…defines the scope, or 
boundaries, of Rows 2 – 5 models of things significant to the Enterprise”7. A software or 
manufacturing company would include Vendors, Products, Clients, Product Facilities, etc. A 
law firm would include specific knowledge areas, trial experience, etc., while educators 
would include a curriculum, educational levels, specific teaching disciplines, etc. 
 
Project implementation 
Implemented as an Strategic Planning Statement 
 
Artifact explanation 
The strategic planning statement’s Detailed Description repository field contains the list of 
items important to the business. This list includes Employees, Financial Resources, 
Accounting Procedures, Equipment and Technology, Profits etc. Using the Links tab of the 
statements repository entry, this statement was linked to the Row 1 Column 1 “List of things 
important to the business” cell. 
 
Each item in the list could have been be added as a separate sub-statement, and the repository 
fields of the individual statements populated with the discrete explanation of the items. 
Hyperlinks to external documents, which further describe this high level aggregation of the 
business, can be created if necessary. 

                                                           
6 The cell definitions are based on the cell explanations as described in the following documents: 
"The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright © Zachman Institute for 
Framework Advancement www.zifa.com 
and 
"A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright © 2000, 
Essential Strategies, Inc www.essentialstrategies.com 
7 "The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright © Zachman Institute for 
Framework Advancement www.zifa.com 



The Zachman Framework 
 

 22 

 
Alternative project implementations 

• A User Defined Object of type “Business Object” can be created and implemented as 
an item in the list, with each item maintaining separate repository entries that can be 
linked to other cell artifacts. 

• The list can be maintained in any word processing application and a hyperlink to the 
file created in any one of the cells descriptive-type fields (notes, detailed description, 
etc.) in the repository.  

Row 2, Column 1 - “Semantic Model” 
Enterprise Model (Conceptual) 
Data column, Owner role 
Entity = Business Entity 
Relation = Business Relationship 
 
Cell explanation: 
Contains a model of the things8 important to the business, as seen by the participants in the 
business, and is modeled as a high-level entity relationship diagram. These relationships are 
later implemented as business rules.9 
 
Project implementation: 
Implemented as an Entity Relationship diagram. 
 
Artifact explanation: 
This conceptual data model diagram contains a model of the high-level business objects and 
the relationships maintained between the objects. Entities include Company Employees, 
Company Management, Company Business Relationships, Products, etc. The relationships 
model the business concepts between the entities, such as Employees - design  - Products; 
Employees – produce – Products; Company Management – acquires – Capital Resources, etc.  
 
Alternative project artifact implementations: 
A class diagram could be used to model this cell with the classes identifying the business 
objects and the relationships between these objects defining the business concepts. 

                                                           
8 "A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright © 
2000, Essential Strategies, Inc. www.essentialstrategies.com 
9 "The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright © Zachman Institute for 
Framework Advancement www.zifa.com 



The Zachman Framework 
 

 23 
 

 

Row 3, Column 1 - “Logical Data Model” 
System Model (Logical) 
Data column, Designer role 
Entity = Data Entity 
Relation = Data Relationship 
 
Cell explanation 
The Technology neutral fully normalized logical data model with attributes and unique 
identifiers defined to record information important to the business. 
 
Project implementation 
Implemented as an Entity Relationship diagram  
 
Artifact explanation 
The entities involved in the logical data model can be modeled on one global diagram, and 
then separate subset entity relationship diagrams created if desirable. Note that key 
relationships between entities in the Visible Analyst extend across the diagrams for purposes 
of model analysis to provide additional analysis / and verification of the models. 
 
The subset area diagrams can be copied to satellite projects using the Enterprise Copy feature 
and implemented as physical data models while maintaining the relationships to the logical 
data model. 
 

Note 
 A physical data model can be reverse engineered from any ODBC compliant 

RDBMS, and the physical model used as the basis for creating a new logical data 
model. 

 
Alternative project artifact implementation 
A class diagram can also be used to model this cell.



The Zachman Framework 
 

 24 

Row 4, Column 1 - “Physical Data Model” 
Technology Model (Physical) 
Data column, Builder role 
Entity = Segment/Table 
Relation = Pointer/Key 
 
Cell explanation 
The entities in the subject areas are converted into table definitions of a technology 
constrained fully attributed entity relationship model. All keys, indexes, table and column 
check constraints, database storage information, database views, stored procedures, etc., are 
defined for implementation into a specific RDBMS. 
 
Project implementation 
Implemented as an Entity Relationship diagram 
 
Artifact explanation 
The fully attributed entities and relationships are added to entity relationship diagram(s) with 
corresponding Visible Analyst repository entries. All physical information about the entities 
and elements is defined, including primary, foreign and alternate keys; unique and non-unique 
indexes; table and column check constraints; database storage information; database views; 
stored procedures; triggers; etc. Each diagram can be modeled to correspond to specific 
business subject areas, such as Accounting, Shipping, Sales, etc. and these individual 
diagrams used as the basis of the generated SQL DDL.  
 

Note 
 The RDBMS tables, attributes, keys, index, trigger, stored procedure, tablespace 

information, database views etc., can be reverse engineered from the existing 
RDBMS and used to populate a Visible Analyst project. Diagrams can automatically 
be generated to display the imported tables, views and relationships, and data 
elements. Foreign keys can be inferred during the reverse engineering procedure to 
auto generate relationships if none are defined. 

 
 
Alternative project artifact implementation 
A class diagram can be used to model the physical information, and once the classes are 
copied to an entity diagram, SQL DDL can be generated. 



The Zachman Framework 
 

 25 
 

 

Row 5, Column 1 - “Data Definition” 
Detailed Representations (Out-of-Context) 
Data column, Sub-Contractor role 
Entity = Field 
Relation = Address 
 
Cell explanation 
The artifact is the implementation and data definition of the tables and column in the specific 
RDBMS, as well as the SQL DDL script. 
 
Project implementation 
A User Defined Object of type “Database” was created and implemented as the repository 
object “SQL Server Database”.  
 
Artifact explanation 
This “SQL Server Database” user-defined object functions in 2 ways: 
 

1. As a container object to list all of the entities associated with a business area 
implemented in a specific database(s). Entities can be listed in many of these user 
defined ‘database’ objects. 

2. As the Visible Analyst repository entry linked to the implemented code, which can 
be stored in a source control application or stored in an external file. When a source 
code control application is used, the objects Links To field on the Links tab lists the 
connection to the source code control application. Otherwise, a hyperlink is created 
to connect the object to the external file containing the SQL DDL script.  

 
The generated SQL DDL code could be pasted into the objects Notes field or a user-defined 
attribute could be created to store the SQL DDL code as part of this object’s repository entry.  
 
Alternative project artifact implementation(s) 
A pre-defined Visible Analyst “Cluster” repository object is used to maintain a listing of 
entities that can be displayed as one symbol on a diagram. Its purpose is to reduce the amount 
of displayed detail. The cluster object would be used to define the entities implemented in a 
specific database based on a specific diagram. The External Link to the source code control 
application would be entered in the “Links To” field on the cluster’s Links tab. Note that 
entities can only exist within one cluster. 



The Zachman Framework 
 

 26 

Column 2: The “Function” or “How” column 
Describes the process and functions performed by the business. Additional detail is displayed 
for each succeeding perspective. 
 

Row 1, Column 2 - “List of Processes the Business Performs” 
Objectives/Scope (Contextual) 
How column, Planner role 
Function = Class of Business Processes 
 
Cell explanation 
This cell lists the processes /activities the business performs. 
 
Project implementation 
Implemented as a Functional Decomposition diagram.  
 
Artifact explanation 
The Functional Decomposition Diagram was chosen because the symbols allow the user to 
display the high-level business functions and processes in a hierarchical relationship. Each 
methodology symbol maintains a separate repository entry allowing the user to fully describe 
the function/process, and include hyperlinks to external documents if necessary. Through the 
use of off-page connectors, each function and its sub-processes can be modeled on separate 
multi page diagrams and copied to a satellite project if necessary for further decomposition. 
The Functional Decomposition Diagrams also can be used to spawn a high-level data flow 
diagram that segues into the next cell in the column, Business Process Modeling. 
 
Alternative project artifact implementation(s) 

• The Strategic Planning Statements can be used to define the business functions and 
high-level child processes in the statement hierarchy.  

• A hyperlink from this cell to an external document listing the functions and 
processes can be used to link the cell to the document.  

 

Row 2, Column 2 - “Business Process Model” 
Enterprise Model (Conceptual) 
How column, Owner role 
Process = Business Process 
I/O = Business Resource 
 



The Zachman Framework 
 

 27 
 

 

Cell explanation 
The activities of the business function and processes are described independent of system 
implementation. The inputs and outputs describe the business resources. 
 
Project implementation 
Implemented as the Data Flow diagram  
"Row 2 Column 2 Business Process Model" 
 
Artifact explanation 
The data flow diagram is specifically suited for modeling the business processes, external 
influences and the input and outputs of the processes. Nest relationships are created when a 
process is exploded to a child diagram where more detailed information is defined. The split 
data flow feature is useful for decomposing the high-level inputs and outputs to show granular 
details on the lower level diagrams. The repository entries for the diagram symbols capture 
the process and data details in excruciating detail. The model balancing analysis confirms the 
integration of the lower level processes with the parent processes. 
 
Alternative project artifact implementation(s) 

• The Business Process Model (BPMN) diagram can also be used to model the 
business processes.  

• The functional decomposition diagram can be used to model the business processes  
• The activity diagram can be used to model the business processes. 

 

Row 3, Column 2 - “Application Architecture” 
System Model (Logical) 
How column, Designer role 
Process = Application Function 
I/O = User Views 
 
Cell explanation 
An information perspective of the business processes explaining the controls and mechanisms 
and conversion of input data to output data. 
 
Project implementation 
Implemented as a Business Process Model diagram. 
 
Artifact explanation 
The Business Process Model diagram, using the BPMN notation developed by 
the Business Process Management Initiative (www.bpmi.org) and the Object  
Management Group (OMG www.omg.org) is specifically suited for modeling the business 
processes. These diagram models communicate the business processes including the business 
processes, the events (triggers) that begin, end or interrupt the processes, and the information 



The Zachman Framework 
 

 28 

(artifacts) used and developed by the processes.  The BPMN notation supports Private 
(internal), Abstract (public) and Collaboration (global processes).  
 
The repository entries for the diagram symbols capture the processes, events and data details 
in excruciating detail. The model analysis confirms the integration of the lower level 
processes with the associated model items. 
 
 
Alternative project artifact implementation(s) 

• The data flow diagram can be used as the artifact to define this cell.  
• An activity diagram can be used to show the high-level inputs, processes and 

synchronization of the application architecture. 
• A class diagram could also be used to define the business users, the methods of the 

business, and the relationships between the business users.  
• A Use Case diagram can also be used and then “nested” to an Activity diagram, 

where the inputs and outputs can be shown interacting with the business processes. 
 

Row 4, Column 2 - “System Design” 
Technology Constrained Model (Physical) 
How column, Builder role 
Process = Computer Function 
I/O = Data Element Sets 
 
Cell explanation 
This system design is converted into to the module definitions or class methods, or BPEL if a 
BPMN diagram is used. A high level of abstraction is necessary to model this cell. BPEL 
generation is not yet available in the Visible Analyst. 
 
Project implementation 
Implemented as a Business Process Model Diagram. 
 
Artifact explanation 
The Business Process model was selected for its ability to model the activities, decisions, 
roles, as well as events and states of the system design. Concurrency of actions to be 
completed before processing can continue can be modeled and BPEL could be generated 
based on the design. BPEL generation is not yet available in the Visible Analyst. 
 
Alternative project artifact implementation(s) 

• Structure Chart diagrams could be used to model the programs architecture, i.e. 
calling structure and information passed from module to module. 

• A data flow diagram can be used as an alternative diagram artifact 



The Zachman Framework 
 

 29 
 

 

• An activity diagram can also be used because of its capabilities to include the events 
and concurrency of the processes. 

• A Sequence diagram could also be used to define the calling structure and methods. 
• A class diagram can also be used. 

 

Row 5, Column 2 - “Program” 
Detailed Representations (Out-of-Context) 
How column, Sub-Contractor role 
Process = Language Statement 
I/O = Control Block 
 
Cell explanation 
The programs designed in the above columns are converted / compiled into the actual running 
programs 
 
Project implementation 
The Visible Analyst repository has a predefined repository object type of "Program", which is 
used to link to the program code stored in a source code control application. 
  
Artifact explanation 
This "program" object can be linked to the external code maintained in a source code control 
application such as RAZOR or Visual Source Safe using the Links To field on the programs 
Links tab. All methods associated with classes are stored in the Visible Analyst repository 
with an entry type of "module". These modules can be added to the composition field of the 
program object, detailing which modules are used in the program. Additionally, structure 
chart diagrams or sequence diagrams can be used to model the modules and calling structure 
of the program. 
 
Inclusion of a hyperlink to sections of the code such as header files or code files written in C, 
C++, C#, VB files, .Net .sln files, etc. can also be created. 
 
Alternative project artifact implementation(s) 

• Creation of a user defined object similar to the program repository object mentioned 
above to maintain a link to the source code control application storing the generated 
program code. 

• Link to Visible Developer, which creates the 3-tier business object program as ASP, 
VB6 or .Net code. 

• A structure chart diagram can also be used to model the program and be the sequence 
object linked to the code. 

 



The Zachman Framework 
 

 30 

Column 3: The “Network” or “Where” column 
Describes the geographical distribution of the enterprise’s activities. 
 

Row 1, Column 3 - “List of Locations in Which the Business Operates” 
Objectives/Scope (Contextual) 
Where column, Planner role 
Node = Major Business Location 
 
Cell explanation 
A list of locations where the business operates. 
 
Project implementation 
Implemented as a Functional Decomposition diagram. 
 
Artifact explanation 
The functional decomposition diagram was chosen to create a hierarchy of the business 
architecture with the corresponding repository entries providing fields to maintain a detailed 
description of the location. Hyperlinks to external items for each location can also be included 
as part of the locations repository entry, to record contract information, rules and regulations 
specific to the location, etc. 
 
Alternative project artifact implementation(s) 

• Strategic planning statements could be used to describe each location, with 
subsidiary locations defined as sub-statements. 

• A ‘locations’ user defined object could be created in the repository, and hyperlinks 
created to reference the external contracts, rules and regulations, etc, as noted above. 

 

Row 2 Column 3 “Logistics Network” 
Enterprise Model (Conceptual) 
Where column, Owner role 
Node = Business Location 
Link = Business Linkage 
 
Cell explanation 
The detailed communications chart, listing the communications network and the protocols 
used, such as voice, data, post, rail, shipping, etc. and how the locations interact. 
Project implementation 
Implemented as a Structure Chart diagram. 
 
Artifact explanation 



The Zachman Framework 
 

 31 
 

 

The structure chart diagram type was selected so that the nodes could be modeled as modules 
and the links signifying the individual communications between the modules defined as data 
couples. These couples as well as the modules maintain repository entries allowing for a 
detailed description of the communications nodes and links. Hyperlinks to external 
information can also be included in the repository definitions. Additional details of the 
diagram symbols and the objects they represent can be defined in the repository using user-
defined attributes as necessary. 
 
Each location can be modeled independently but connected to the main location diagram via 
on-page or off-page connections. 
 
Alternative project artifact implementation(s) 

• A planning statement or user-defined object can be created to reference this cell, and 
a hyperlink to an external application supporting a network diagram can be created.  

• Hyperlinks to other documents or artifacts associated with this cell but modeled 
externally can be created. 

 

Row 3, Column 3 - “Distributed System Architecture” 
System Model (Logical) 
Where column, Designer role 
Node = I/S Function (Processor, Storage, etc.) 
Link = Line Characteristics 
 
Cell explanation: 
The architecture of the data distribution, where it is created, and where used. Technology 
neutral, it would contain the descriptions of the system facilities, “…controlling software at 
the nodes and lines (processors/operating systems, storage devices/DBMS’, 
peripherals/drivers, lines/line operation systems, etc)”.10 
 
Project implementation: 
Implemented as a Structure Chart diagram. 
 
Artifact explanation 
The structure chart diagram was used so that the data couples signifying the Links show the 
transfer of the information between the module symbols as Nodes on the diagram. Additional 
                                                           
10 The cell definitions are based on the cell explanations as described in the following documents: 
"The Framework for Enterprise Architecture Cell Definitions" ZIFA 03.doc Copyright © Zachman Institute for 
Framework Advancement www.zifa.com 
and 
"A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright © 2000, 
Essential Strategies, Inc www.essentialstrategies.com 
 



The Zachman Framework 
 

 32 

details of the diagram symbols and the objects they represent can be defined in the repository 
using user-defined attributes. 
 
Alternative project artifact implementation(s) 

• A planning statement or user-defined object can be created to reference this cell, and 
a hyperlink to an external application supporting a system architecture diagram can 
be created.  

• Hyperlinks to other documents or artifacts associated with this cell but modeled 
externally can be created. 

 

Row 4, Column 3 - “Technology Architecture” 
Technology Constrained Model (Physical) 
Where column, Builder role 
Node = Hardware/System Software 
Link = Line Specification 
 
Cell explanation 
Shows the physical design of the computer facilities including the details of the hardware and 
software used at the business locations. 
 
Project implementation 
Implemented as a Structure Chart diagram. 
 
Artifact explanation 
The structure chart diagram was used so that the data couples signifying the Links show the 
transfer of the information between the module symbols as Nodes on the diagram. Additional 
details of the diagram symbols and the objects they represent can be defined in the repository 
using user-defined attributes. 
 
Alternative project artifact implementation(s) 

• A planning statement or user-defined object can be created to reference this cell, and 
a hyperlink to an external application supporting a technology architecture diagram 
can be created.  

• Hyperlinks from the cell to other documents or artifacts associated with this cell but 
modeled externally can be created. 



The Zachman Framework 
 

 33 
 

 

Row 5 Column 3 “Network Architecture” 
Detailed Representations (Out-of-Context) 
Where column, Sub-Contractor role 
Node= Address 
Link = Protocol 
 
Cell explanation 
The definitions of the node address and line specification, which are translated into 
specifications of particular protocols, communication facilities, etc., 8are defined in this cell. 
 
Project implementation 
Implemented as the User-Defined Object of type” Architecture” and the repository entry 
"Row 5 Column 3 Network Architecture Implementation".  
 
Artifact explanation 
This user defined objects’ text fields are used to maintain the network architecture 
information. It can be hyperlinked to an external application that models network architecture, 
or hyperlinked to external documents describing the architecture. 
 
Alternative project artifact implementation 
A planning statement could be used as a “container” object to maintain information about the 
network implementation. 
 

                                                           
8 "A different Kind of Life Cycle: The Zachman Framework" by David C. Hay, Essential Strategies Copyright © 
2000, Essential Strategies, Inc. www.essentialstrategies.com 



The Zachman Framework 
 

 34 

Column 4: The “People” or “Who” column 
Those involved in the business and their relationship to the technology. 
 

Row 1, Column 4 - “List of Organizations Important to the Business” 
Objectives/Scope (Contextual) 
Who column, Planner role 
People = Class of Agent 
 
Cell explanation 
A list of people and organizations important to the business, including organizational units 
and their scope and boundaries is the artifact created for this cell. 
 
Project implementation 
Implemented using a Strategic Planning Hierarchy statement. 
 
Artifact explanation 
Only one planning statement was used to identify the people and organizations important to 
the business. Practically, each person, organization and organizational unit should be entered 
as sub-statements in the statement hierarchy to maintain individual repository entries. This 
procedure facilitates the definition of the person / unit especially when hyperlinks are created 
to external documents describing the relationship. Contact information with vendors; venture 
capital contracts; rental agreements; technology contracts; shipping agreements are some 
simple examples of the additional documentation associated with the people and organizations 
important to the business. 
 

Note 
 Not all users should be granted access to the sensitive business documents. In some 

cases a listing of the documents may be sufficient to define the artifact rather than a 
hyperlink to the actual documents themselves. 

 
Alternative project artifact implementation(s) 

• A functional decomposition diagram could also be used to identify the business units 
and the individuals, organizations and organizational units in a hierarchical diagram. 

• A user-defined object could also be used to identify the people and organizations 
important to the business. 



The Zachman Framework 
 

 35 
 

 

Row 2, Column 4 - “The Work Flow Model” 
Enterprise Model (Conceptual) 
Who column, Owner role 
People = Organizational Unit 
Work = Work Product 
 
Cell explanation 
Allocation of responsibilities as described in an organizational chart with secondary 
documents defining the products. Security requirements are also included within this cell. 
 
Project implementation 
Implemented as a Business Process Model diagram. 
 
Artifact explanation 
The Business Process Model diagram type was chosen because it models concurrent actions 
to be completed before the next action begins along with the inputs and outputs. The model 
also includes the use of Swimlanes (Pools) to categorize the activities performed by the 
respective roles of the business users.  
 
Alternative project artifact implementation(s) 

• Data flow diagrams can be used to model the organizations, organizational units and 
processes performed. 

• An Activity diagram can also be used to model the workflow. 
• A functional decomposition diagram can be used to model the organizations chart. 
• A Use Case could also be used, with links to a nested activity or collaboration 

diagram modeling the work products. 

 

Row 3, Column 4 - “Human Interface Architecture” 
System Model (Logical) 
Who column, Designer role 
People = Role 
Work = Deliverable 
 
Cell explanation 
Defines the people, their roles and responsibilities and interacting with the technology to 
create the deliverables. 
 
Project implementation 
Implemented as a Use Case diagram. 



The Zachman Framework 
 

 36 

 
Artifact explanation 
The Use Case diagram captures the interaction of the people and the work deliverables. 
Nested links to an activity diagram including the use of user-defined attributes and the use of 
hyperlinks to the deliverables can be modeled to show additional detail. 
 
Alternative project artifact implementation(s) 

• Data flow diagrams can be used to model the processes performed by the 
organizations interacting with the technology and resulting deliverables. 

• A functional decomposition diagram can be used to model the interactions and the 
deliverables. 

 

Row 4, Column 4 - “Presentation Architecture” 
Technology Constrained Model (Physical) 
Who column, Builder role 
People = User 
Work = Screen Format 
 
Cell explanation 
The actual interface is modeled with presentation formats including screens, navigation paths, 
security rules, etc. 
 
Project implementation 
This cell was implemented as a Use Case diagram. 
 
Artifact explanation 
The Use Case diagram can also be nested to an activity diagram. Each of the repository 
entries can be tied to the implementation code, such as the screen design as shown in the user 
interface code generated by Visible Developer. The security considerations can be modeled as 
user-defined attributes, separate user defined objects, or as planning statements and each of 
these repository objects linked to the appropriate Use Case symbol artifact. Hyperlinks to 
some external tools can also be created as necessary. 
 
Alternative project artifact implementation(s) 

• A database view object can be used to list the data elements used in the menu 
screens, and the Extended Attributes tab of the elements repository definition used to 
store the presentation information. 

• A hyperlink from this cell can be used to a human interface architecture diagram or 
the screen configuration files developed in an external application. 

 



The Zachman Framework 
 

 37 
 

 

 

Row 5, Column 4 - “Security Architecture” 
Detailed Representations (Out-of-Context) 
Who column, Sub-Contractor role 
People = Identity 
Work = Job 
 
Cell explanation 
Individual’s program access permissions and work they are authorized to perform. 
 
Project implementation 
Implemented as a Class diagram. 
 
Artifact explanation 
Implemented as a class diagram with the class representing the users, programs, and the 
elements defining the class data such as permissions, security mechanisms, etc. Methods can 
also be defined for classes as an additional level of detail. Hyperlinks to the code stored in a 
configuration management application can also be created. 
 
Alternative project artifact implementation 
An entity diagram can be used with a user-defined attribute or user-defined object substituting 
for the method’s definition. 
 



The Zachman Framework 
 

 38 

Column 5: The “Time” or “When” column 
Used to describe the effects of time on the business, and interacts with column 2, the How 
column. 
 

Row 1, Column 5 - “List of Events Significant to the Business” 
Objectives/Scope (Contextual) 
When column, Planner role 
Time = Major Business Event 
 
Cell explanation: 
A description of the business cycle and when events significant to the business occur. 
 
Project implementation: 
Implemented as a Planning Statement. 
 
Artifact explanation: 
The events are modeled as subset planning statements allowing for further definition and 
linkage to other artifact items listed in subsequent How columns. 
 
Alternative project artifact implementation(s): 

• A used-defined object could contain this list. 
• Hyperlinks from the cell’s definition to external documents describing the event.  

 

Row 2, Column 5 - “Master Schedule” 
Enterprise Model (Conceptual) 
When column, Owner role 
Time = Business Event 
Cycle = Business Cycle 
 
Cell explanation 
When the business functions occur, including the initiating event and the processing order. 
  
Project implementation 
Implemented as a Business Process Model diagram. 
 
Artifact explanation 
The Business Process Model diagram models the business events, processes and when 
functions are to happen and under what circumstances. 
 



The Zachman Framework 
 

 39 
 

 

Alternative project artifact implementation(s) 
• A state transition diagram can be used to model this cell. 
• An Entity Life History diagram can be used to model this cell. 
• An activity diagram can be used to model this cell. 
• A list of events and time lines can be defined as a user defined object or as an 

external documents hyperlinked to the cell. 
 

Row 3, Column 5 - “Processing Structure” 
System Model (Logical) 
When column, Designer role 
Time = System Event 
Cycle = Processing Cycle 
 
Cell explanation 
Model of the system events and times to complete the data transformation processes and 
entity state changes. 
 
Project implementation 
Implemented as a State Transition diagram. 
 
Artifact explanation 
The state transition diagram works well to show the states of the system and the events 
causing the change in state. Detailed information is documented in the appropriate repository 
fields with additional user defined attributes added as necessary. 
 
The Business Process Model diagram, if used, can display the business system processes and 
the events causing the change in state. Detailed information is documented in the appropriate 
repository fields with additional user defined attributes added as necessary. 
 
Alternative project artifact implementation(s) 

• A data flow diagram can be used to model this cell. 
• A state transition diagram can be used to model this cell. 
• The activity diagram can be used to model this cell. 
• The collaboration diagram can be used to model this cell. 
• The sequence diagram can be used to model this cell. 

 

Row 4, Column 5 - “Control Structure” 
Technology Constrained Model (Physical) 
When Column, Builder role 
Time = Execute 



The Zachman Framework 
 

 40 

Cycle = Component Cycle 
 
Cell explanation 
Triggers, messages, responses etc, described as system events with physical properties and 
processing cycles detailed. 
 
Project implementation: 
Implemented as a Sequence Diagram. 
 
Artifact explanation: 
The sequence diagram models the calling structure of the programs and the returns, etc. The 
details are stored in the appropriate repository fields with additional user defined attributes 
added as necessary. 
 
Alternative project artifact implementation(s) 

• The state transition diagram can be used to model this cell. 
• A business process model can be used to model this cell. 
• The structure chart diagram can be used to model this cell. 
• The collaboration diagram can be used to model this cell. 

 

Row 5, Column 5 - “Timing Definition” 
Detailed Representations (Out-of-Context) 
When Column, Sub-Contractor role  
Time = Interrupt 
Cycle = Machine Cycle 
 
Cell explanation 
Schedule Online and Batch applications (Function Details), showing the interrupts and 
machine cycles. 
 
Project implementation 
Implemented as a Collaboration diagram. 
 
Artifact explanation 
The collaboration diagram shows the timing of the application through the use of the 
messages that implement the business scenario.  
 
Alternative project artifact implementation 
A sequence diagram can also be used to model this cell. 



The Zachman Framework 
 

 41 
 

 

Column 6: The “Motivation” or “Why” column 
Translation of the business goals and strategies into the ends and means of the business. 
 

Row 1, Column 6 - “List of Business Goals/Strategies” 
Objectives/Scope (Contextual) 
Why column, Planner role 
Ends/Means = Major Business Goal / Critical Success Factor 
 
Cell explanation 
The goals and strategies of the business are identified. 
 
Project implementation 
Implemented as a Strategic Planning Statement.  
 
Artifact explanation 
The strategic planning statement hierarchy is specifically suited to create the artifacts 
necessary for this cell. The users can extend the statement types, and an editable priority field 
is available for assignment to each statement in addition to the predefined repository fields. 
Links to the other artifacts can be defined in the Links To field on the Links tab in the 
repository. Hyperlinks to external documents can be created as necessary. 
 
Alternative project artifact implementation(s) 

• The functional decomposition diagram can be used to define the hierarchy. 
• Hyperlinks to an external document or another statement hierarchy application can 

be used. 
 

Row 2, Column 6 - “Business Plan” 
Enterprise Model (Conceptual) 
Why column, Owner role 
End = Business Objective 
Means = Business Strategy 
 
Cell explanation 
The business plan contains the strategies, goals, financial considerations and motivation of the 
company. These artifacts can include both textual descriptions as well as financial documents. 
 
Project implementation 
Implemented as a Planning Statement hierarchy. 



The Zachman Framework 
 

 42 

 
Artifact explanation 
Individual strategic planning statements should be defined and can include references to 
external documents and artifacts hyperlinked to the statement. The “Cost Structure”, “Capital 
Funding” statements might reference MS Excel spreadsheets, while the textual description of 
the “Business Plan” statement contains a hyperlink(s) to MS Word document(s). 
Note that these statements are linked to the functional decomposition diagram symbols 
repository entries as an example of the artifact integration available in the Visible Analyst. 
 
Alternative project artifact implementation(s) 

• An alternative implementation is the functional decomposition diagram "Row 2 
Column 6 Business Plan Hierarchy". The decomposition diagram allows the artifacts 
to be listed as a hierarchy, and would include hyperlinks to the external documents 
the symbols represent. While each artifact can be represented within a symbols Notes 
field or as a user-defined attribute, maintaining them external to the application 
allows these artifacts to be updated and maintained in one place while still linking to 
the symbol in the enterprise project. Note that the decomposition diagram symbols 
are linked to the individual planning statements to demonstrate the cross artifact 
reference capability in the Visible Analyst. 

• A class diagram could be used to diagram the business plan and the methods used to 
detail the business constraints. 

 

Row 3, Column 6 - “Business Rule Model” 
System Model (Logical) 
Why column, Designer role 
End = Structural Assertion 
Means = Action Assertion 
 
Cell explanation 
Business rules can be considered as the metadata of the enterprise to include the intents and 
means of the business, and are part of the information implemented as checks on the database 
and enterprise information. Examples of these business rules as metadata include Definitions 
of Business Terms; Data integrity constraints; Mathematical and functional derivations; 
Logical inferences; Processing sequences; Relationships among facts about the business, etc.  
 
Project implementation 
Implemented as a Planning Statement hierarchy. 
 
Artifact explanation 
The strategic planning hierarchy provides the structured hierarchy allowing the metadata to be 
defined, and most importantly, to be linked to the implementation of these rules to the data. 



The Zachman Framework 
 

 43 
 

 

The tables, columns, check constraints, business processes, database access security rules, etc. 
that implement the business rules are linked to the business rule statement. 
 
Alternative project artifact implementation 
Create a hyperlink from this cell to a User Defined Object created to store these business 
rules. 
 

Row 4, Column 6 - “Rule Design” 
Technology Constrained Model (Physical) 
Why column, Builder role 
End = Condition 
Means = Action  
 
Cell explanation 
This cell describes the physical specifications of the Business Rules. 
 
Project implementation 
Implemented as a User Defined Object of type “Rule Design” labeled “Row 4 Column 6 Rule 
Design”, linked to the repository entries that implement the rule design, such as the 
relationship cardinality between entities / classes, column or table check constraints, a 
business process that enforces these rules, etc. 
 
Artifact explanation 
Since this cell describes the physical specifications of the Business Rules, implementation of 
these rules can also be enforced as part of the relationship cardinality or as table or column 
check constraints on the Class | Entity in the repository. (Remember, entities can be used on 
class diagrams and methods, keys, constraints, etc., can be defined and the class/entity used 
for SQL DDL and code generation). Additional user-defined attributes can be added to the 
project as necessary to store specific textual descriptions of the specifications. 
 

Note 
 There is some agreement in the enterprise community that the UML OCL Language 

be used to represent the artifacts of this cell. Enter the following links into a web 
browser for an explanation of the OCL language. The artifacts referenced by the 
OCL can natively be created in the Visible Analyst using the supported diagram 
types or identified as a user defined attribute(s).  See  
http://www-3.ibm.com/software/awdtools/library/standards/ocl.html and  
http://www.klasse.nl/ocl for details. 

 
Alternative project artifact implementation(s) 

• Program rule design can also be detailed in the methods associated with a class, 
either defined on the Class or Sequence diagram. 



The Zachman Framework 
 

 44 

• The cell’s repository entry may also contain hyperlinks to appropriate external 
applications. 

 

Row 5, Column 6 - “Rule Specification” 
Detailed Representations (Out-of-Context) 
Why column, Sub-Contractor role 
End = Sub-condition 
Means = Step 
 
Cell explanation 
Enforcement of the business rules in the programs are the artifacts. 
 
Project implementation 
Implemented as Application modules and Database tables, Data and Function Details. 
Hyperlinks from these repository entries to the implementation artifacts (programs) from the 
cell can be created.  
 
Artifact explanation 
The Rule Design artifacts as defined in the previous cell in this column are implemented in 
the code and applications as part of the Application modules, Database tables, Data and 
Function Details, etc. These programs or code should be hyperlinked to the Rule Design 
artifacts.  
 
Alternative project artifact implementation 
Application modules could be detailed as sequence or structure chart diagrams, but it is more 
appropriate to link to the code implementing the rules.  



Business Planning Techniques 
 

 45 
 

 

Lesson 3 

Business Planning Techniques  
 
 
 

INTRODUCTION 
Business rules are used to capture and implement precise business logic in processes, 
procedures, and systems (manual or automated).  They can also provide the basis for expert 
systems. One way these business rules are captured in the Visible Analyst is through the 
creation of Strategic Planning statements, as well as the triggers, check constraints, and 
element definitions as explained below.  
 
Enterprises that take a model driven approach to software component development can use 
business rules to refine the models and create better designs.  An enterprise that properly 
documents its business rules can also manage change better than one that ignores its rules. 
Business rules may be any of the following:  
 

• Definitions of business terms 
• Data integrity constraints  
• Mathematical and functional derivations  
• Logical inferences  
• Processing sequences  
• Relationships among facts about the business  

These types of business rules are examples of metadata.  They can be defined as metadata, 
modeled as metadata, and, most importantly, they can be implemented as metadata for an 
enterprise's operational and strategic information management systems.  
 
Implementing business rules as metadata is the most rigorous and, at the same time, most 
flexible approach to business rule implementation.  This is in contrast to other implementation 
approaches. 

• Process-driven approaches can be rigorous, but they are by no means flexible. In any 
process-centric approach, implementing the business rules is fairly straightforward, 
but, because they are typically implemented in code, changing them can be difficult 
and labor intensive. 



Business Planning Techniques 
 

 46 

• Procedure-driven approaches, characterized by manuals and checklists, are certainly 
flexible, but they are not rigorous.  Procedures can be changed very easily.  
However, procedures are only as rigorous as their users choose them to be.  People 
can and will ignore procedures. 

 

VISIBLE BUSINESS RULES 

Visible has pioneered a method and tools that allow business rules to be defined and 
implemented as metadata.  Our approach captures rules as logical model elements and 
implements them as database tables, triggers, and object actions.  The key to this is fully 
understanding the rules, documenting them consistently, and building conceptual information 
models and logical data models that accurately reflect the rules. Visible's flagship modeling 
tool, Visible Analyst®, has the ability to store business rules in many formats in a single 
enterprise architecture model.  This makes the rules visible.  The rules can be modeled, 
including specific values for metadata.  These migrate automatically to any database design 
generated from the models and, ultimately, are automatically inserted into the database tables 
when they are created or altered from the design.  

This means that a business rule can be documented once in a logical model and still be part of 
multiple system designs and implemented databases.  This one-logical, many-physical 
representation of business rules as metadata also allows a significant change in software 
component design.  Components can be designed to access database tables for rules and do 
not have to include complex decision tables and rule-based processing logic. 
 
There are several advantages that an enterprise can realize from using business rules as 
metadata: 
 

• Allows maximum flexibility 
• Reduces system maintenance 
• Simplifies system design, development and implementation 
• Rules can change without affecting implementation 
• Ensures that systems fully support business needs 
• MIS personnel don't need to learn the intricacies of the business 

 

BUSINESS RULES IN BUSINESS MODELS 
Business rules take several forms when documented in enterprise business models.  There is 
one best representation that is appropriate for each particular type of business rule.  For 
example, strategic business rules are best modeled as simple business statements, while 
operational business rules are best modeled as static data instances and derivations.   



Business Planning Techniques 
 

 47 
 

 

Business Statements 
A business statement is a simple declaration.  Business statements should be written in 
business language.  They should be concise and clear.  They should represent a single concept 
or idea.  They should state business requirements, not system requirements.  The kinds of 
strategic business rules that can be modeled using business statements are illustrated in Figure 
3-1. 
 

Critical
Success
Factors

Critical
Success
Factors

Value-Based
Process

Value-Based
Process

Critical
Assumption

Set

Critical
Assumption

Set

Enterprise
Mission

Enterprise
Mission

GoalsGoals

ObjectivesObjectives

StrategiesStrategies

EventsEvents

FunctionsFunctions

Performance
Measure

Performance
Measure

Information
Needs

Information
Needs

Critical
Decision

Set

Critical
Decision

Set

Business RulesBusiness Rules  
 

Figure 3-1 Business Rules 
 
The Visible Analyst captures these business rules as Strategic Planning statements, which can 
be defined in the statement hierarchy then linked to other repository entries. This linkage 
provides both a validation of the rule as implemented by the object, such as a process, entity, 
element, check constraint, trigger, etc, and a graphical representation of the rules for 
communicating the business vision and rules that govern the organization. The hyperlink 
capability, available for any editable field in the Visible Analyst, can also be used to reference 
and link to external documents, web sites, applications, etc. 
 
The next section explains the strategic planning capabilities within the Visible Analyst. 



Business Planning Techniques 
 

 48 

STRATEGIC PLANNING OVERVIEW 
Planning and requirements identification is often the initial phase in an enterprise-engineering 
project.  During the planning phase, you develop a comprehensive strategic business plan that 
meets the identified mission and purpose of the organization.  Visible Analyst not only allows 
you to create these statements, but also allows you to link them to other objects in your 
repository.  This allows you to track the software development process from the planning 
stages through analysis, design, and implementation.  Linking planning statements to model 
objects helps you determine the significance of each object and ensures that each object is 
essential in supporting the organization's business plan. 
 
As the product of the Planning phase, planning statements communicate the business vision 
and rules that govern the organization.  Written in business language, the planning statements 
provide the framework to ensure that the data model developed in subsequent phases meets 
the information requirements of the business. 
 
Each planning statement is assigned a statement type.  Visible Analyst comes with many 
predefined statement types such as: Vision, Critical Success Factor, Assumption, Objective, 
Mission, Policy, Strength, Tactic, Weakness, Task, Opportunity, Business Event, Threat, 
Business Rule, Goal, System Event, Strategy, System Requirement, Issue for Resolution, 
System Design Objective, etc. 
 
Your organization may use different terms for these types, so you may add different statement 
types using the Planning Statement Types feature located on the Options menu. 
 
These new statement types can be specified for the current project or can be included when a 
new project is created. 
 
Statements support each other in a hierarchical relationship according to their types 
(objectives support the mission, policies support objectives, etc.)  You form this hierarchical 
structure in the Planning Outline window. 
 



Business Planning Techniques 
 

 49 
 

 

 
 

Figure 3-2 Defining Planning Statement Types 
 

Planning Window 
Planning statements are captured and refined in Visible Analyst through the Strategic 
Planning window.  This window allows you to add statements to and delete statements from 
your repository, as well as edit and organize them.  In addition, the planning windows let you 
link planning statements to other modeling objects (such as entities, attributes and classes) 
created during later phases of the software development process. 
 
To open the Strategic Planning window, choose Strategic Planning from the File menu, or 
click the Strategic Planning icon on the control bar.  Planning is only available in the 
Corporate and Zachman editions of Visible Analyst.  If this option is grayed out, it means 
your version of Visible Analyst does not support planning statements. 
 



Business Planning Techniques 
 

 50 

The Strategic Planning window provides a hierarchical view of planning statements defined in 
the project repository. 
 

 
 

Figure 3-3 Planning Statement Outline Windows 
 
Use the Planning Outline window to: 
 

• Add, edit and delete statements. 
• Move statements to other positions within the outline. 
• Link statements to other repository objects. 
• Assign priorities to statements. 

 
Each planning statement defined in the repository is shown in a tree-like fashion in the 
planning window.  For each statement, the following information can be displayed. 
 

• Statement Icon.  A symbol showing if any levels are collapsed beneath the 
statement.  A plus symbol (+) means that one or more levels are collapsed beneath 
the statement.  A minus symbol (-) means that all levels beneath the statement have 
already been expanded.  No symbol means that there are no levels below the 
statement. 

 



Business Planning Techniques 
 

 51 
 

 

• Statement Title.  The title of the statement. 
• Statement Type.  The type of the statement.  Shown in parentheses  ( ) after the title. 
• Statement Priority.  The priority level assigned to the statement.  Shown in curly 

brackets { } after the title and type. 
• Statement Description.  A description of the planning statement.  Shown in a 

window below the statement hierarchy window.  
 
The Planning Outline window displays planning statement titles in a tree arrangement similar 
to the directory tree in Windows Explorer.  Like Explorer, you can expand and collapse 
branches of the outline to vary the level of detail displayed in the window. 
 
The tree is hierarchical.  Statements may have child (hierarchically subordinate) statement, 
which in turn may have their own child statements, if the statement type allows it.  You may 
expand all hierarchy branches or collapse one or more of them to show only parent statement 
branches. 
 
You can change the appearance of the statement window by using commands on the View 
menu, right-clicking on the window to display the Property menu, or by clicking on the 
appropriate buttons on the control bar. 
 

Adding a New Statement 

To add a new planning statement to the hierarchy: 

Select the Parent:   1      Click the planning statement to which you want to add a  
child statement. If no statement is selected, the new 
statement is added to the top of the hierarchy. 

 
Define the Statement  2      Click the New Statement icon on the control bar, right- 

click the parent and select New from the Properties menu, 
or click the Insert key on the keyboard to display the Add 
Planning Statement dialog box 

 
   3      Enter a name for the statement.  Statement names must be 

unique. 
 
   4       Select the statement type from the list. 
 
   5      Set the priority. This is an optional field that can contain 

any value that you wish. Generally, a numeric value is 
used to set the relative priority against other statements. 
 

   6       Describe the statement. 



Business Planning Techniques 
 

 52 

Save the statement:  7       Click OK.  The statement is now added to the hierarchy.  

 

 
 

         Figure 3-4 Creating a Planning Statement 
 

Planning Statement Links 
In order to track the software development process from the planning stages through analysis, 
design, and implementation, it is important to be able to link planning statements to model 
objects to help you determine the significance of each object and to ensure that each object is 
essential in supporting the organization's business plan.  The Links To field on the Links tab 
of the Define dialog box allows you to maintain these relationships. 

There are three methods for creating a link between a planning statement and any other 
object: 

• Right-click the Links To field and select Add from the Properties menu. A list of 
repository entries is presented and you can select the desired object.  If the current 
object is not a planning statement, only planning statements are listed. 

• Drag a planning statement from the planning hierarchy window using the mouse. 



Business Planning Techniques 
 

 53 
 

 

• Set the focus in the Links To field and press the Insert key.  A list of repository 
entries is presented and you can select the desired object.  Once the link has been 
added, its name and type are displayed in the field.  The link is visible from both 
directions. If you are looking at a planning statement, you see the linked object; and 
if you are defining any other type of object, the planning statement is displayed.  The 
linkage rules for a statement type dictate how statements of that type can be linked to 
other objects. 



Business Planning Techniques 
 

 54 

 
 

Figure 3-5 Planning Statement Links 



Structured Modeling Techniques 
 

 55 
 

 

Lesson 4 

Structured Modeling Techniques 
 

OVERVIEW 
The techniques for planning, process modeling, data modeling, object modeling, state 
transition modeling and structured design assist in the creation of systematically correct and 
consistent diagrams and documentation. Using structured and object techniques forces a 
standardization of logic throughout the system under analysis. The benefits of this approach 
are obvious: 
• Large systems can be partitioned into component subsystems or sub-functions for further 

analysis. 
• Specifications for individual components are easier, faster, and more accurate to define 

than the total system. 
• The interaction between the parts can be planned, designed, evaluated, and implemented 

to reflect improved information flows and controls. 
• More than one person can work with the same system in the network edition. 
• Standardized format and grammar enhance and simplify communication and 

maintenance. 
 

STRUCTURED PLANNING 
Planning uses a structured technique based on functional decomposition for describing 
interrelationships among broad organizational areas, specific organization functions, and the 
systems that support those functions. Structured planning establishes organization 
responsibilities at function levels and then defines the process responsibilities within 
functions. 
 
The objective of structured planning is threefold: 
• To identify the specific business or organization function, including roles, goals, and 

objectives, to be automated or reengineered. 
• To identify the existing system processes that support that function. 
• To provide a focus for requirements analysis in support of identified goals and objectives. 
 
For example, functions or functional areas in an organization that could be decomposed could 
be Finance, Sales, and Research. A function is usually designated by a noun. These functional 



Structured Modeling Techniques 
 

 56 

areas could then be subdivided into processes that are groups of activities necessary in 
running the organization. The processes are usually defined in active state verbs. For example, 
the Sales function could be decomposed into the Customer Relations, Selling, and 
Management processes. These processes could then be further decomposed using a data flow 
diagram. If a process is labeled as a noun, it is a signal that the process should be further 
decomposed into more processes. 
 
Because of the high-level functional nature of this type of modeling, the technique 
specifically applies to functions and not to the data that those functions use. Since functional 
decomposition modeling is viewed as the highest level of business planning, it is probably the 
place to begin when you wish to define the overall functioning of an enterprise. There is no 
rule that you must begin here, but other things are easier if you do. For designing individual 
projects, it may be just as effective to start with a process model or a data model (or both at 
once), for you might consider that the project does not have the breadth to warrant planning at 
the FDD level1. You might also choose to focus on the definition of objects, beginning with 
the object/class model. 
 

ENTITY RELATIONSHIP MODELING 
When designing, developing, restructuring, or maintaining a system, it is important to be able 
to model the interrelations of the data used in it. The technique used by Visible Analyst for 
representing data is known as entity relationship modeling or data modeling. The purpose of 
this technique is to graphically demonstrate how entities are related to one another. An entity 
represents a real or abstract thing that is important to an enterprise about which data needs to 
be stored. For example, an entity could be Customer, Product, Inventory, Supplier, Sale, 
Purchase Order, or some other label generally in the form of a singular noun. An entity would 
typically correspond to a table in a relational database. 
 
The diagramming technique used to graphically depict the data model is the entity 
relationship diagram (ERD). It provides a clear and concise method for describing data 
through the use of entity symbols that are interconnected by relationship lines. Relationships 
between entities consist of specific associations that are described in terms of their cardinality 
and are generally labeled using action verbs. Cardinality refers to the numerical scope of 
associations between entities, such as a one-to-one association (one sale is associated with one 
customer); a one-to-many association (one supplier supplies many products); or a many-to-
many association (many salesmen sell many products). The terms “one-to-one,” “one-to-
many,” and “many-to-many” are common statements used to describe the cardinality of a 
relationship. There are specific ERD symbols used to signify cardinality, the terminators on 
relationship lines. 
                                                           
1 Some of the theory behind functional decomposition diagrams can be found in  Martin, J. 
and McClure, C., Structured Techniques for Computing, Prentice-Hall, Englewood Cliffs, NJ, 
1985. 



Structured Modeling Techniques 
 

 57 
 

 

 
Relationships are also allowed to be optional instead of mandatory. It is sometimes the case 
that two entities are related, but not in all instances. For example, an employee can be 
assigned to zero, one, or many projects. The optional relationship is important when 
specifying a system in which the software is to enforce referential integrity; that is, to make 
sure that nothing is inserted into or deleted from the database that would make nonsense of 
some other entry. For instance, one sale is associated with one or many sale items, but it 
would be wrong to have one without the other. The optional relationship enforces clear 
designation of what information can be omitted from or is optional within the database 
without disrupting other references. 
 
A relationship is intrinsically bi-directional and can be thought of as consisting of a 
relationship in one direction and a reverse relationship in the other. Generally, each direction 
in a relationship is given its own name or label. If you think of a relationship in one direction 
as a sentence, subject–verb–object, entity1–relationship–entity2, the picture becomes very 
clear. 
 
Some feel that entity relationship modeling should be the starting point for designing a system 
because it is necessary to know the nature of the data in order to determine the processing 
done upon it. Others feel that the process model is the best starting place because the 
processing of the data is the system, and the data and its storage can be designed to fit the 
necessary processing. Visible Analyst accommodates either approach and allows you to build 
upon what you have done before. You can then use the diagrams you created and the 
repository information captured from them to refine the description of your model and to help 
you in properly normalizing2 the data.3 
 

PROCESS MODELING 
Process modeling, otherwise known as structured analysis, is a technique for graphically 
depicting a system. The process modeling technique describes a system by focusing on the 
transformations of data inputs and outputs by processes. Whether examining an existing 
system or designing a new one (or both), this is a key step toward fully understanding the 

                                                           
2 Normalization is a means of eliminating redundancy in data. It is a complex topic and is 
beyond the scope of this tutorial. Since understanding normalization is key to effective 
database design, you should consult a text on the subject, such as one of those written by C. J. 
Date. 
3 Although many of the methodological details are different from how it is done in Visible 
Analyst, a good introduction to the concepts of data modeling can be found in Shlaer, S. and 
Mellor, S. J., Object-Oriented Systems Analysis, Prentice-Hall,  Englewood Cliffs, NJ, 1988. 
     A practical, but more advanced, book is Fleming, C. C. and von Halle, B., Handbook of 
Relational Database Design, Addison-Wesley,  Reading, MA, 1989. 



Structured Modeling Techniques 
 

 58 

system. The diagrams you draw allow you to show, at levels of increasing detail, how data 
flows through your system and what is being done to it along the way. 
 
Specifically, process modeling is used to identify the data flowing into a process, the business 
rules or logic used to transform the data, and the resulting output data flow. It demonstrates 
for a business area or a system where the data comes from, what processes transform it, and 
how processes interact with data stores. 
 
The diagramming technique used for process modeling in structured analysis is the data flow 
diagram (DFD). The DFD consists of data flows, processes, data stores, and external entities. 
A data flow is data that is in motion in your system. It is represented by an arrow that 
indicates the direction of the flow of data. A data flow is labeled as a noun, indicating the 
particular data that is being transferred. A process is a procedural component, a 
transformation agent, in the system. It transforms inputs to outputs. A process is indicated by 
an action verb describing the sort of transformation that occurs. For example, Prepare Bank 
Deposits would designate a process. A data store, also called a file, represents a logical file, a 
database, or even a filing cabinet. In a system, it is data at rest within the scope of the system. 
An external entity, also called a source/sink, provides data to the system from outside the 
scope of the system, or receives data from the system. External entities are outside the system, 
so they are beyond the scope of analysis. A data store, a source, and a sink are all generally 
labeled as nouns. 
 
A number of methodologies are available for process modeling.  The most widely used are 
Yourdon/DeMarco, Gane & Sarson, SSADM, and Métrica. Visible Analyst implements these 
techniques. There are few differences among the techniques.  The most noticeable is the 
slightly different appearance of the symbols used. The symbols are also named somewhat 
differently. For a detailed description of the differences, please refer to the Visible Analyst 
Operation Manual or to the online help system4. 
 
The methodology you use is up to you. They are equally useful, and the results are the same. 
The data flow diagramming tutorial uses the Gane & Sarson methodology; but since they are 
so similar, it shows you the basics of how both are used. 
 

                                                           
4 For more detailed information on these analysis methodologies, you can refer to the 
following books: 

DeMarco, Tom. Structured Analysis and System Specification. Englewood Cliffs:  
Prentice-Hall, 1978. 

Gane, C. and Sarson, T. Structured Systems Analysis: Tools and Techniques. 
Englewood Cliffs:  Prentice-Hall, 1979. 
 



Structured Modeling Techniques 
 

 59 
 

 

WORKING WITH BOTH DATA AND PROCESS MODELS 
All information you place in any diagram is, of course, captured by the repository and is 
available to both your process models (DFDs) and to your data models (ERDs) (where 
applicable) if you have an integrated tool set. The Analyze function can assist you in 
balancing a data model against a process model and in maintaining consistency. 
 
There is some degree of correspondence between the entities in a data model and the data 
stores in a process model. The nature of this correspondence is not generally agreed upon. 
You may find that specifying such a correspondence helps you to insure that all data is 
accounted for between your models. You can specify that every entity must correspond to a 
data store with the same composition; Analyze notifies you if this is not the case. 
 
Similarly, you can configure Visible Analyst to notify you of any data elements that have 
been defined but are not used. In other words, is there an element listed as part of an entity but 
not used by at least one process on at least one data flow diagram? Refer to the manual or the 
online help system for details about both balancing options. 
 
Another link between your process and data models is the ability to create a view of that 
portion of your data model affected by a particular process. Once you have at least a portion 
of each model built, you can request that Visible Analyst draw a process view of your data 
model for a particular process. This shows you on a process-by-process basis how your data is 
used and how a designated process affects other data. This technique is demonstrated in 
Lesson 7 – Entity Relationship Diagrams. 
 

STRUCTURED DESIGN 
Structured design is the partitioning of a system into a hierarchy of modules that performs the 
activities internal to your system. It is a technique used for representing the internal structure 
of a program or system and its components. Structured design is a discipline that is 
complementary to structured analysis and implements another stage in the software life cycle. 
If data flow diagramming is the “what” of your system, structured design is the “how.” To be 
most effective, it should be based upon specifications derived using structured analysis. The 
capability to integrate analysis and design verifies that your designs reflect the reality of your 
specifications. 
 
The modeling technique used in structured design is the structure chart. It is a tree or 
hierarchical diagram that defines the overall architecture of a program or system by showing 
the program modules and their interrelationships. Visible Analyst uses the structural 
information contained in the system model in the code generation process to create the precise 
infrastructure of your system. This includes the passing of control and parameters between 
program modules, as well as the specific order in which the modules are arranged in your 
code. 



Structured Modeling Techniques 
 

 60 

 
A module represents a collection of program statements with four basic attributes: input and 
output, function, mechanics, and internal data. It could also be referred to as a program, a 
procedure, a function, a subroutine, or any other similar concept. A structure chart shows the 
interrelationships of the modules in a system by arranging the modules in hierarchical levels 
and connecting the levels by invocation arrows designating flow of control. Data couples and 
control couples, designated by arrows, show the passing of data or control flags from one 
module to the next. This is equivalent to passing parameters between functions or procedures 
in an actual program. 
 
The Visible rules implementation of the Yourdon/Constantine structured design methodology 
is intended to maintain as much design freedom as possible for you, while guarding against 
known poor design practices. The error and warning messages generated are intended to be 
used as guidelines rather than rules.5 
 

OBJECT-ORIENTED MODELING 
Object-oriented modeling concentrates on developing a collection of discrete objects that 
incorporate both data structure and behavior. The objects perform or are impacted by 
operations that represent the action between objects. The focus is on building object 
definitions that can be organized into a class hierarchy with high-level abstractions of a class 
of like objects that provide inheritance of characteristics to subclasses and eventually to 
individual instances or a unique occurrence. Objects can be brought together into groups 
called aggregations, and they can have relationships and attributes (called properties) similar 
to those found in the entity relationship model. In fact, the data model (ERD) is the basis for 
object-oriented concepts with its entities and attributes. 
 

OBJECT CONCEPTS  
The object model is used to define and build the classes and subclasses of objects and the data 
characteristics that uniquely define object groups. By developing a clear picture of object 
structures and operations needed to support a business process, the designer can build 
reusable object components and save time and effort in the development and testing phases of 
                                                           
5For more detailed information on the Yourdon/Constantine structured design technique you 
can refer to the following books (the Page-Jones book is the better choice for beginners): 

Page-Jones, M. The Practical Guide to Structured Systems Design.  Englewood 
Cliffs: Prentice-Hall, 1988. 

Yourdon, E.N. and Constantine, L.L. Structured Design: Fundamentals of a 
Discipline of Computer Program and Systems Design.  Englewood Cliffs:  Prentice-Hall, 
1986. 
 



Structured Modeling Techniques 
 

 61 
 

 

the project. The object model is a static model in that it defines all of the objects that are 
found in the application and the general and specific characteristics of each object. 
 
The object model shows  a static snapshot of the hierarchy and packaging of the objects. The 
data model is a static snapshot of the data components of the application and the relationships 
between data components. The data flow diagram (process model) shows the flow and 
sequence of operations of the application. The state model shows the dynamic changes that 
occur within the applications and to the objects over time. The structure chart (physical 
model) defines how the application is assembled and built. 
 

STATE TRANSITION (DYNAMIC) MODELING 
The state transition model focuses on the changing conditions and states of an object. As an 
object such as a Customer Order progresses through an organization, it changes its state from 
a pending order to a shipped order to a paid order. The movement of the order from one state 
to another changes some of the object’s properties and is usually caused by an event or a 
method being applied to the object.  
 
The dynamic model is built after the object model is defined. It provides a sequence of states 
of the objects as they change over time. Thus the object model is static and complete, and the 
state (dynamic) model is continuously changing with different events and triggers. The state 
model is closest to reality and supports the programming design mechanics. If the programs 
cover all of the state transitions of the objects, then the system should fit to reality. 
 
The object and the state-transition model are linked to the functional model that describes the 
data transformations of the system. The functional model can be represented by data flow 
diagrams with processes and data flows showing how objects are serviced through their time 
sequence transitions.6 
 

OBJECT MODELING AND PROCESS MODELING 
From the static snapshot of the objects, to the dynamic changes of states, to the sequence of 
operations in the data flow, to the build specifications of the structure chart, object-oriented 
methodologies provide a complete mechanism for defining, designing and building 
information systems. Object concepts provide an alternative and a complement to the 
structured design methodologies. Both approaches define the data components of the 
application and provide a view of how the application needs to act to provide service and 
                                                           
6For a detailed discussion, refer to: 

 Rumbaugh, Blaha, Premerlani, Eddy and Lorensen. Object-Oriented Modeling and 
Design. Englewood Cliffs:  Prentice-Hall, 1991. 
 



Structured Modeling Techniques 
 

 62 

support to the application users. The differences are mainly in the focus on components, the 
order of occurrence and the formats of packaging.  
 
Both techniques and methodologies link to the happenings of the real world. They must both 
produce working information systems. They also share many similar concepts, such as 
reusability, modularity and hierarchical structures.  
 
Visible Analyst supports both approaches to systems design and development. They can be 
used separately, together, or in any combination that suits you. Through the integrated Visible 
Analyst repository and the independence of the diagrams, you can maintain maximum 
flexibility and still take full advantage of the engineering practices for designing and 
developing better information systems. 
 

DATA AND OBJECT RELATIONSHIPS 
There is considerable similarity between entity and object models.  Both focus on defining 
physical components:  in the entity model the only elements are data or data-oriented 
components; in the object model, the focus is on real components that can be data, physical 
units, goods, materials, etc. 
 
The general consideration is that the object model follows the design of the data model, but 
has made the application more worldly and generic. 
 

LIBRARY MODEL 
The library model contains the recorded information about all the pieces, parts, components, 
actions and conditions of the project. As objects are placed on diagrams and labeled, the label 
creates an entry in the library database for the proper data logic to support the type of graphic 
object. The library model is dynamic and evolutionary and is used to describe all the known 
factors and facets of the application and the systems development project. The Visible 
Analyst repository is the implementation of a comprehensive library model. It contains all of 
the labeled parts of the diagrams, and it provides a facility for expanding the details and 
definition of many components of the project. The Visible Analyst repository can support the 
building of data elements, database keys, pseudo code, test data and other specifications of the 
application. Free-form notes and description fields allow recording extensive comments, 
findings, important information, and other relevant factors about project components. Detailed 
reports and the generation of database schema, shell code, and other useful project outputs are 
derived from the library model.  
 
The library model can serve the project design and development process, and it can be a 
useful reference source for maintenance and operation of the system as well as a key resource 
when changes need to be made to the system. 



Diagramming and Repository Basics 

 

 63 
 

 

Lesson 5 

Diagramming and Repository Basics 
 
 

INTRODUCTION 
This lesson introduces you to the diagramming tools. You learn the basic techniques for 
creating and modifying any type of diagram in Visible Analyst.  We use the unstructured 
diagram format that does not require you to “follow the structured rules.” This allows you to 
concentrate on the basics of the drawing process without worrying about rules and the 
repository. Sometimes you just want to draw a diagram, but not as a part of an analysis or 
design project. (A number of examples are shown the Operation Manual.) Also, some 
diagrams created from standard diagram types, such as cluster diagrams from entity 
relationship diagrams (ERDs) and process decomposition diagrams from data flow diagrams 
(DFDs), are always unstructured. You should know how to access them. 
 
The basic techniques of drawing diagrams are valid for unstructured and structured diagrams. 
We could just as well use the DFD type or the ERD type to teach basic diagramming 
techniques, but not all users have a Visible Analyst version that contains all diagram types. 
However, all Visible Analyst packages have unstructured diagram capability. The diagram 
drawn in this lesson has no meaning other than as an exercise and is not part of any other 
lesson. 

CREATING A NEW PROJECT 
Each project that you create represents one complete system. One project could also be used 
to depict one unit in a very large system. By maintaining the entire system in one project, 
Visible Analyst ensures that the entire system remains consistent throughout the entire 
development process rather than checking for global consistency once all of the units have 
been merged together. The LAN version of Visible Analyst allows multiple designers to work 
on diagrams in the same project. 
 
                                                                      Note 

 Different types of lines are available for each type of diagram. You can select 
the line type for any one of the other available diagram types for use with an 
unstructured diagram. This selection must be made before a diagram is created.  

 
 
 



Diagramming and Repository Basics 
 

 64 

 
Open the Menu:  1      Click on the File menu with the left mouse button. 
 

2  Select New Project. A dialog box like that in Figure 5-1  
is displayed. 
 

                            
                    Figure 5-1  New Project Dialog Box 
 
Name the Project:  3      Type TUTOR into the Project Name field. A project name  

or “root” can be up to 128 characters long. It must begin 
with a letter and can be composed of letters and numbers. 
 

Describe the Project:  4   Click the cursor inside the field marked Description. Type  
“Tutorial Project.” Another common method for moving  
the cursor to other fields in a dialog box is to use the TAB 
key.  Try pressing the TAB key a number of times. The 
highlighted selection changes as the cursor moves to a  
new field. Press the TAB key until the cursor returns      
to the Description field. 

 



Diagramming and Repository Basics 

 

 65 
 

 

The next steps help familiarize you with the options available when creating a project. If 
a default is incorrect, you can click on the item to change the setting. 
 

 
Select the database  5   Choose Btrieve as the database engine.  Btrieve is   
Engine:      included with Visible Analyst.   

 
Select the Rules to  6    In the box entitled Rules, select Gane & Sarson. This is  
Apply:     where you choose the rule set you want applied to your  

project. An unstructured diagram does not follow any 
rules, but it is necessary to select the type of rules to be 
applied to all of the diagrams that might be created for 
this project. (Rules are covered in more detail in Lesson 8 
– Data Flow Diagrams.) 

 
Select ERD Notation  7  In the area entitled ERD Notation, the default notation is 
Conventions:   IDEF1X. This selects the type of relationship line  

notation you use on your Entity Relationship Diagrams. 
Crowsfoot is selected as the alternate. (This is covered in 
more detail in Lesson 7 – Entity Relationship Diagrams.)  

 
8 In the box entitled Names Per Relationship, the default is 

Two. This refers to how relationship lines on ERDs are 
labeled. 

 
Choose a Window Type:   9   Select the type of document window that will be 

opened automatically after the project is created. If you 
don't want a window opened (if you will be performing a 
Reverse Engineering operation for example), choose 
None.   

 
Activate the Project: 10    Click OK to activate the project.  When you do this, the  

New Diagram dialog box is automatically displayed. 
 
Now you have created a project. The name of your project is displayed in the lower right-hand 
corner of the application workspace. If you turned off the help bar from the Options menu, 
the project name is not displayed. The next step is to create a diagram. 
 
                



Diagramming and Repository Basics 
 

 66 

 
  
                                        Figure 5-2  New Diagram Dialog Box 
 

CREATING A NEW DIAGRAM 
After creating a project and before creating a diagram, the screen should look just as it did 
when you started Visible Analyst, except that the name of your project appears in the lower 
right-hand corner. To create a new diagram, follow these steps: 
 
Open the Menu: 1 Click on the File menu (or click the New Diagram button  

on the standard tool bar). 
  

2 Select New Diagram. A dialog box like the one  in 
Figure 5-2 is displayed. 

 
Set the Diagram Type: 3     Open the selection box for the Diagram Type by clicking  

the arrow at the end of that field. Select Unstructured. The 
fields marked Boilerplate and Template should say None. 



Diagramming and Repository Basics 

 

 67 
 

 

A boilerplate is a template you can create to keep 
information such as diagram creation date, diagram 
created by information, and a diagram heading without 
rewriting it each time you create a new diagram. 
Templates allow you to add image files to an unstructured 
diagram template file, and create unstructured diagram 
using the images as the diagram symbols. (See the 
Operation Manual or the online help system for more 
information on boilerplates and templates. Boilerplates 
and templates are not enabled in the Education Editions of 
Visible Analyst.) 

 
Select a Workspace:  4    In the area entitled Workspace, select Standard. This   

sets your diagram size to one page.  Multi-page allows 
you to spread large diagrams over a workspace of 90 x 88 
inches. You can go to larger pages as needed later, or 
select them now if you know you are going to work on a 
large diagram.  (Multi-page is not enabled in the 
Education Editions of Visible Analyst.) 

 
Select Orientation: 5 In the Orientation area, select Landscape. 
 
Select Page Size:  6 Open the Page Size drop-down list and select 8-1/2 x 11. 
 
Select Scaling:  7 Accept the default scaling, 100%. 
 
Create the Diagram: 8     Click OK to open a blank diagram. 

 
The control bar is located just above the diagram and below the menu.  The  button is 
highlighted.  
 
Above the menus, notice the title of your diagram. Since it has not been saved, it is marked 
Untitled: US. The US indicates that the window contains an unstructured diagram. 
 

EDITING A DIAGRAM 

Adding Symbols to a Diagram 
Now add symbols to the diagram to become familiar with the different methods for doing this. 
 
Turn on Auto Label 1     Open the Options menu. There should be a check mark  
Symbols:  next to the selection Auto Label Symbols. This indicates  



Diagramming and Repository Basics 
 

 68 

that you are automatically prompted to label a symbol as 
soon as it is drawn. If there is no check mark next to the 
selection, set the option by clicking on the selection. 
 

Change to  2    Click the first symbol button in the control bar, then  
Symbol-Adding Mode:   slowly move the cursor from button to button.  As you  

move the mouse over each button, a brief description 
appears on the control bar describing its function.  Icon 
buttons are added to the control bar for each type of 
symbol available to you for the current diagram type. 
Only certain symbols are available for most types of 
diagrams, but they are all available for an unstructured 
diagram. When you move the cursor back over the 
drawing area, it changes to indicate that you are in symbol 
adding mode  

 
Position the Symbol: 3     Place the cursor where you would like the symbol to 

appear on the diagram and click the left mouse button. 
The symbol is drawn. Because Auto Label Symbols is 
turned on, a dialog box appears for labeling the symbol. 

 
Label the Symbol: 4 Type “First” into the Text field. 
 

5 Click the OK button. 
 
Repeat for Another  6      Click the third symbol button and add it to the diagram  
Symbol:   as above. 
 

7 Type “Second” into the Text field and click OK. Note that 
the new symbol is now highlighted, indicating that it is 
the current object, and the previous symbol you added has 
returned to normal display. 

 
Save and Label   8 From the File menu, select Save. 
the Diagram: 

9 Type the diagram label “Diagramming Technique.” 
 
10 Click OK. The diagram label appears in the window title  

bar.  (See Figure 5-3.) 
 

      Note   
 The only difference between saving a new diagram and saving an existing one is 

that you have to give the new diagram a name in the dialog box that is 



Diagramming and Repository Basics 

 

 69 
 

 

displayed. The only restrictions on diagram labels are that they cannot exceed 
128 characters and that they must be unique within the diagram type of the 
project. To change a diagram's name select Save With New Name from the File 
menu. After that, the process is identical to that described for a new diagram, 
above. 

 
 

  
                                    Figure 5-3  New Diagram with Symbols Added 

Stylizing a Symbol 
Change into Selection  1     Click the  button on the control bar or press the  
Mode:    ESC key. This changes the cursor, indicating that   
  Visible Analyst is now in selection mode. 
 
Use the Object Menu: 2 Position the cursor over the symbol labeled First and click  

on  it with the right mouse button. A menu appears with 
functions that can be performed on the symbol. 

 
3 Select Stylize. 



Diagramming and Repository Basics 
 

 70 

 
Stylize the Symbol: 4 In the dialog box, adjust the level of boldness by double- 

clicking the right-hand arrow on the scroll bar under the 
word Boldness. 

 
5 Click the Apply button. The symbol in the box indicates  

how your symbol looks. (See Figure 5-4.) 
 

 
       Figure 5-4  Stylize Symbol Dialog Box 
 
6 Click the OK button and the stylization you selected is 

applied to the symbol on the diagram. 

Moving, Cutting, and Pasting a Symbol 
Select the Symbol: 1 Position the cursor inside the symbol Second and click the  

left mouse button. The symbol changes color to show that 
it is now the selected or current object. 

 
Move the Symbol:  2 Position the cursor inside the symbol Second and click  

and hold the left mouse button. Move the symbol by 
dragging the box around. A rectangular outline, called the 
“bounding box,” appears in place of the symbol. Release 
the mouse button when your symbol is where you want it 



Diagramming and Repository Basics 

 

 71 
 

 

or press the ESC key if you want to cancel the move 
operation. 

 
Cut and Paste the  3 While the symbol is selected, click on the Edit menu. 
Symbol: 

4 Select Cut. The symbol disappears from the diagram,  
but is saved on the Windows Clipboard. 

 
5 Go back to the Edit menu and select Paste. The symbol 

is displayed surrounded by a dashed outline, indicating 
the symbol is the current object. Position the cursor within 
the outline of the symbol, hold the left mouse button 
down and drag it to the desired location on the diagram. 
Release the mouse button. 

 
Deselect the Symbol: 6 Click on an empty space on the diagram with the left  

mouse button. This deselects the highlighted current 
object. 

Notes 
 You can use the Windows keyboard shortcuts for the editing functions to speed 

up these operations and to edit in dialog boxes. 
 

 When selecting or changing line types and line terminator choices, Visible 
Analyst performs differently depending on what state it was in when the 
modifications were entered. When no diagram is selected and the line types are 
changed, the default choices are modified. When a diagram is selected but no 
line is highlighted, the choices remain in effect for the diagram. If a line is 
selected, the change only impacts the selected line. 

Adding Lines to a Diagram 
Now add a line to connect the two symbols you have drawn. 
 
 Turn on Auto Label 1 Open the Options menu. There should be a check mark 
Lines:    next to the selection Auto Label Lines. This indicates  

that you are automatically prompted to label a line as  
soon as it is drawn. If there is no check mark next to the  
selection, set the option by clicking on the selection. 

 
Set Line-Drawing  2 Click the first line button in the diagram tools tool bar to 
Mode:    put Visible Analyst in line-drawing mode. The cursor  

changes to indicate this. 
 



Diagramming and Repository Basics 
 

 72 

Draw the Line: 3 Position the cursor on the edge of the symbol labeled First  
that is nearest to the symbol labeled Second. 

 
4 Press and hold the left mouse button. 

 
5 Drag the line to the edge of symbol Second. The way the 

line stretches between the cursor and the start-point is 
sometimes called “rubber-banding.” 

 
6 Release the mouse button to signal the end of the line.  If 

you release the mouse button within the symbol, the line 
is connected automatically to the edge of the symbol. 
When the line is completed, it changes color and handles 
appear at the endpoints.  (See Figure 5-5.)  A dialog box 
appears for labeling the line. 

 

                                                        
 
                   Figure 5-5  A Line With Its Handles 
 
Label the Line: 7 Type  “Flowname.” 
 

8 Click OK to draw the label next to the line on the 
diagram. 

 
Now that you know how to add a line to a diagram, you can adjust the position and 
appearance of that line. 

Note 
 If you want to move the name of a line, select the name by positioning the 

cursor on the text and press and hold the left mouse button.  Drag the label to the 
desired position and then release the mouse button. 

Selecting and Adjusting Lines 
Return to Selection 1 Click the  button on the control bar or press the  
Mode:    ESC key. 
 
Select the Line: 2 If the line is not currently highlighted, click on any point  



Diagramming and Repository Basics 

 

 73 
 

 

along the line. When a line is selected, you can see its 
handles, little boxes at the end of each segment that allow 
you to move the segments by dragging the handles with 
the mouse. 

 
Set Line    3 From the Options menu select Line Settings. 
Characteristics: 

4 Choose Single Dashed for Line Type. 
 

5 Click OK.  The line is redrawn using the new type. 
 

Changing Line Settings as above allows you to adjust the line characteristics for the selected 
line. If no line is selected, you choose the characteristics for the next line you draw.  

Adding Caption Text to a Diagram 
You can add text in the form of a title or a paragraph. This text is used to enhance the 
definition of your diagram or its parts.  When entering the text, press ENTER to continue the 
text on another line. 
 
Set Caption Text Mode: 1 Click on the large T (text) button on the control bar. 
 
Select the Caption 2 Position your cursor at the top of the diagram and click  
Position:   with the left mouse button. 
 
Enter the Text:  3 Type “Unstructured Diagram #1.” Then press ENTER  

to move the cursor down to the next line. Type “Diagram 
Drawing Techniques.” 

 
4 Click OK. 
 
5 Click the  button on the control bar or press the ESC 

key to return to editing mode. 
 

Change the Caption  6 Click the right mouse button over the caption you  
Characteristics:  just added to display the Object menu for the caption. 
 

7 Select Text Settings from the Object menu. 
 

8 Select Times New Roman in the box labeled Typeface.  
Refer to Figure 5-6. 

 



Diagramming and Repository Basics 
 

 74 

               
    
             Figure 5-6  Text Settings Dialog Box 
 

9 Change the Point Size to 16 in the Size box. 
 

10 Select Bold in the box labeled Style. 
 

11 Select Center in the box labeled Format Options. 
 

12 Click the OK button and then deselect the text. The 
completed diagram should appear more or less like that 
shown in Figure 5-7. 

 
    
 
 
 
 
 
                
                             



Diagramming and Repository Basics 

 

 75 
 

 

                                              Figure 5-7  The Completed Diagram 

Note 
 The “T” icon text should not be used to define symbols or lines.  Only symbol 

labels are entered into the repository for rules based components. To label an 
unlabeled diagram object, click the object with the right mouse button and 
choose Change Item from the object menu. 

 

OTHER DIAGRAMMING FUNCTIONS 
Now we take a look at some of the other functions available to help you create Visible 
Analyst diagrams. 

Colors 
Different screen objects displayed in different colors makes it easier to distinguish them on 
the screen. You have a number of choices available that you can experiment with to find a 
pleasing combination. 
 



Diagramming and Repository Basics 
 

 76 

 
Open the Menu: 1 To change the colors of your symbols, lines, and text  

select Colors from the Options menu. 
 
Change the Color: 2 Under Object Type, select Symbol Color. Select a color  

by clicking on one of the color squares or by adjusting the  
slide bars. 

 
3 Click OK. If no objects are selected, the default colors are 

set. If objects are selected, only those items are changed. 
 

Displaying and Hiding Symbol Labels 
It is sometimes easier to see the overall layout of objects on a diagram if there are no text 
labels distracting your attention from the structure the diagram represents. Visible Analyst 
allows you to hide the labels of symbols and lines if you wish to do so. 
 
Hide the Labels: 1 From the View menu, click Show Symbol Names. The  

symbol labels should disappear. (A check mark in front of 
this selection indicates that the symbol names are shown; 
otherwise they are not shown.) 

 
Redisplay the Labels: 2 From the View menu, select Show Symbol Names  

again to reset the names to show. 

Note 
 Turning line or symbol labels off is not the same as not labeling them. A line or 

symbol that has never been labeled does not exist as far as the repository is 
concerned. 

 

Changing Text Characteristics for a Block of Diagram Objects 
Select a Group of  1 Draw a box around the symbols on the diagram. Place the  
Objects:    cursor in the upper left corner of the diagram and hold the  

left mouse button down while you drag the mouse to the 
lower right corner of the diagram. A bounding box 
rectangle is created as you drag the mouse. After you 
release the button, all items completely inside the 
bounding box are highlighted. 

 
Change the Text: 2 From the Options menu select Text Settings. 
 



Diagramming and Repository Basics 

 

 77 
 

 

3 Choose Symbol Labels in the box marked Text Type. 
 

4 Choose a Typeface and Point Size. 
 

5 Return to the Text Type box and choose Line Labels. 
 

6 Choose a Typeface and Point Size. 
 

7 Click OK. 
 

8 Click in an empty area outside of the bounding box to  
deselect it. 

 
 
The symbol labels and line labels for the items completely contained in the box change to the 
new text settings. 

Note 
 The text values of all items in the bounding box are set by this function. Those 

text types that you do not explicitly set revert to the default values shown in the 
dialog box. 

 

CLOSING A DIAGRAM 
To close a diagram: 
 
Activate the Control 1 Click on the diagram Control menu button (not the  
Menu:    Analyst Control menu button) in the top left corner of  

the diagram window, or to the left of the File menu when 
the diagram is maximized.  There is also a Close  
Diagram function on the File menu. 

 
2 Select Close. If your diagram has not been maximized,  

meaning that it occupies less than the entire Visible 
Analyst workspace, you can close the diagram by double- 
clicking on the Control menu button. 
 

3 Visible Analyst prompts you to Save the diagram. Click 
Yes to close the diagram. Selecting No closes the diagram 
without saving any changes made since the last Save 
operation was performed. 

 



Diagramming and Repository Basics 
 

 78 

THE TUTORIAL PROJECT 
For the rest of this tutorial, you add diagrams to an existing project. We created the project to 
save you the time it would take to enter the repository information and create the diagrams 
that are necessary to demonstrate some of the more advanced features of Visible Analyst.  To 
access the TEST project: 
 

1 Choose Select Project from the File menu, or click the File 
Cabinet button on the control bar. 

 
2 Select TEST from the list displayed on the Select Project dialog 

box and click OK. 
 

TEST is now the current project. As when you created the first project, the lower right corner 
of the Visible Analyst screen displays the name of the current project. 
 

CONCLUSION 
Now that you understand the basic methods for drawing symbols, lines, and text in Visible 
Analyst, as well as how to change some of the optional settings, you are ready to build more 
significant diagrams. 
 
We have provided diagrams to help demonstrate some of the structured modeling capabilities 
of Visible Analyst. The objects on the diagrams and entries in the repository have been filled 
in for you. 

 
 



Planning and Using Functional Decomposition Diagrams 
 

 79 
 

 

 

Lesson 6 

Planning and Using Functional 
Decomposition Diagrams 

 
 

OVERVIEW 
In Visible Analyst, planning is done with functional decomposition diagrams (FDDs). They 
give you the ability to do high-level planning of business functions and their hierarchical 
relationships while concurrently populating the repository. You can enter business functions 
that you define onto diagrams and break them down into successively finer gradations. At 
some point, one that is entirely up to you, you can break down business functions (hereafter 
called simply functions) into processes. These processes are semantically equal to the 
processes that appear on data flow diagrams. The processes can themselves be broken down 
into smaller parts (still lower-level processes) on the FDDs. 
 
The FDD is typically derived in close association with the user community. As they describe 
their organization responsibilities, it translates into functions. Once they begin describing 
“what” they do, it indicates the transfer to processes. This is the point at which you want to 
show finer gradations of functionality as processes. You can lay out all of the processes of this 
branch of your functional decomposition diagram, together with their hierarchical 
relationships. You can then instruct Visible Analyst to produce a set of DFDs for this branch 
of processes. This procedure is called “spawning” DFDs from an FDD function. You can then 
work on the DFDs and add data flows, files, external entities, etc. See Figure 6-1. 
 
                



Planning and Using Functional Decomposition Diagrams 
 

 80 

   
                  Figure 6-1  DFDs Created by an FDD Using Spawn 
 
This lesson leads you through the process of creating a functional decomposition diagram. It 
also introduces you to a number of new techniques that you use frequently with Visible 
Analyst. The technique of spawning is also demonstrated. 
 
As you create FDDs, repository entries are created. When you show hierarchical relationships 
between functions and/or processes, they are known to Visible Analyst, even though you 
cannot see them if you look in the repository. Since there is some overlap in repository 
support between DFDs and FDDs, it is significant which rules methodology (Yourdon, Gane 
& Sarson, SSADM or Métrica) you chose when you create a project. You can analyze your 
FDDs, either individually or as a group, to locate inconsistencies and violations of 
methodology rules. The types of analysis and the Analyze function are explained below. 

Note 
 A functional decomposition diagram is very different from a process 

decomposition diagram. The former is a full diagramming methodology for 
doing business planning. The latter, discussed in Lesson 8 – Data Flow 
Diagrams, is simply an unstructured diagram laying out the hierarchy of 
processes that are descendants of an indicated process. 



Planning and Using Functional Decomposition Diagrams 
 

 81 
 

 

DEFINITIONS 
There are four meaningful things that appear on FDDs (see Figure 6-2): 
 
Function  A function is denoted by a rectangle. It is the first of the three 

symbol buttons that appear on the control bar. 
 

Process   A process is denoted by a rectangle with rounded corners. The  
conceptual dividing point between functions and processes is 
arbitrary and entirely up to you. The process symbol is the second 
symbol button on the control bar. 

 
Connector  The lines between functions, between processes, and from  

functions to processes  are called simply “connectors.” They allow 
you to specify the hierarchical relationships between the functional 
elements of your model. The higher-order symbol can be referred 
to as a “parent” and each of the lower-order symbols connected 
can be called a “child” of the parent. The connectors between 
processes represent the same type of parent/child relationships as 
exist on DFD. Processes with the same parent would appear on the 
same DFD once the parent function has been “spawned.” This 
technique is explained further in this lesson. There are three line 
buttons that appear on the control bar. 

 
Page Connector  Unlike a data flow model, which occupies a tree-like structure of  

different diagrams at various levels of detail, a functional 
decomposition diagram is conceptually all one diagram. If a large 
model appeared entirely on a single page, it would be unreadable, 
so you are free to spread it over as many pages as you like. 
(Although not available in the Education Editions, you could also 
use a multi-page diagram.) Visible Analyst is able to keep the 
details straight if you indicate how the pages are linked by using 
page connectors. The page connector symbol is the third symbol 
button on the control bar and is identical in appearance to the off-
page connector for structure charts. 

 
                  
 
 
 
 
 
 
 



Planning and Using Functional Decomposition Diagrams 
 

 82 

   
                                      Figure 6-2  FDD Symbols  
 

CREATING AN FDD 

Adding Symbols to an FDD 
Next you add symbols to create a very general functional decomposition diagram. The 
symbols are arranged in a hierarchical fashion, with the lower-level process symbols at the 
bottom. The description for adding symbols is brief because it is assumed that you have 
reviewed Lesson 5 – Diagramming Basics that covers adding symbols. 
 
Create a New   1 Create a new diagram by selecting New Diagram from  
Diagram:   the File menu or the new diagram button. Choose  

Decomposition and click OK. 
 
Maximize the   2 If you have other diagrams open, click the Maximize  
Diagram:   button in the top right corner of the window.  Set the  

zoom level to 66% from the View menu or by clicking the 
right mouse button on the zoom level indicator at the 
bottom of the screen or use the zoom level buttons on the 
control bar. 

 
Add Symbols:  3 Click on the first symbol button, the function symbol, and  

add four functions:  Department of Motor Vehicles, 
Registration Department, Licensing Department, and 
Motor Vehicle Regulation Department.  (Refer to Figure 
6-3.) 

 
 It is not always easy to make your symbols line up in well-ordered rows. You can increase 
the zoom magnification so that you can see small details better. You can also turn on Grid, 



Planning and Using Functional Decomposition Diagrams 
 

 83 
 

 

from the View menu, to give you a framework for positioning objects. If all you want to do is 
align symbols in horizontal or vertical rows, there is an easy alternative. 
 
Align the Symbols: 4  Click the  button on the control bar, the selection  

mode button. 
 
5 Select into a block the symbols you want to line up in one 

horizontal or vertical row by drawing a box around them 
with the mouse cursor. All symbols completely enclosed 
in the block are highlighted. 

 
6 Choose Snap Symbols from the Diagram menu. Your 

symbols are aligned. 
 

7 Click the mouse on some open area outside the block to 
deselect the symbols. 

 
Add More Symbols: 8 After returning to symbol entry mode using the control  

bar, click on the process symbol (the second symbol) and 
add the three processes: Registration System, Driver’s 
Licensing System, and Regulation System. Then align the 
processes.   (Refer to Figure 6-3.) 

Note 
 If you need more room at the bottom of the screen to add symbols, you can use 

the window scroll bars or the PAGE DOWN key. 
 
 
 
 
 
 
 
 
 
 
 
 



Planning and Using Functional Decomposition Diagrams 
 

 84 

 
                       Figure 6-3  Function and Process Symbols Drawn on FDD 
 
Now add lower-level processes to the current diagram so that you can practice spawning. 
 
Add More Processes: 9 Below the process labeled Driver’s Licensing System add  

a process labeled “Issue License.” This is the name of a 
process contained in the second-level DFD that came with 
the TEST project. 

                                                               Note 
 Since processes may exist in the repository, you can search for names during 

labeling by selecting the search button on the Label menu. If the object browser 
is displayed, you can also click and drag an existing object from the browser 
onto the diagram. 

 
10 Below Issue License add three processes: Get Photograph, 

Create License, and Update DMV Database. 
 
 



Planning and Using Functional Decomposition Diagrams 
 

 85 
 

 

 
 
 
Save the Diagram: 11 Select Save from the File menu. Name the diagram  

“Department of Motor Vehicles.” 
 

Adding Connection Lines to an FDD 
Now add lines to establish the hierarchical relationships among the functions and processes on 
the diagrams. The line drawing process for a functional decomposition diagram is nearly 
automatic. Select into a block all of the symbols you want to connect and instruct Visible 
Analyst to connect them. You can also use a different method of selecting symbols into a 
block. 
 
Enter Selection Mode: 1 Click the  button on the control bar. 
 
Make a Block:  2 While pressing the SHIFT key, click the left mouse  

button on the function labeled Department of Motor 
Vehicles. The symbol changes colors to show that it has 
been selected, and a box is drawn around it. 

 
3 While holding down the SHIFT key, click the function 

labeled Licensing Department. Repeat the procedure for 
Registration Department and Motor Vehicle Regulation 
Department. The selection box expands to encompass 
each new symbol that you select using SHIFT+click. If 
you select a symbol that you do not want in your line 
grouping, simply press the SHIFT key and click the 
symbol again to deselect it. See Figure 6-4. 

 



Planning and Using Functional Decomposition Diagrams 
 

 86 

 
                                       Figure 6-4  Connecting Selected Symbols 

 
Connect the Symbols: 4 From the Diagram menu, select Connect. The  

connection lines are drawn automatically, as shown in 
Figure 6-5. 

Note 
 This function is designed to connect only two levels at a time; for example, a 

parent symbol and its children. If you select more levels into the block and 
connect, Visible Analyst assumes that there is one parent and that all of the other 
symbols are children of that parent. 

 
5 Clear the block by clicking on an open area of the  

diagram outside the block. 
 
Add More Lines:  6 Press and hold the SHIFT key and click the left mouse  

button on Licensing Department and Driver’s Licensing 
System. The box expands to encompass these symbols. 
 

7 From the Diagram menu select Connect. 



Planning and Using Functional Decomposition Diagrams 
 

 87 
 

 

8 Similarly, add connectors between Driver’s Licensing 
System and Issue License and between Issue License and 
Get Photograph, Create License, and Update DMV 
Database. 

 
9 Click on the first line button, and add a line between 

Registration Department and Registration System. 
 

10 Click the first line button and add a line between Motor 
Vehicle Regulation Department and Regulation System. 

 
11 Select the third line button, an elbow, and draw a 

connector between Driver’s Licensing System and Motor 
Vehicle Regulation Department. (This is an error you are 
deliberately making that will be discovered by  Analyze.) 

 
 Save:   12 Select Save from the File menu. 
 

 
         Figure 6-5  Functions with Connector Lines Drawn 



Planning and Using Functional Decomposition Diagrams 
 

 88 

Analyzing an FDD 
Now use the Analyze function to check the diagram for correct syntax. 
 
Analyze the Diagram: 1 Select Analyze from the Diagram menu. Be sure that  

Current Diagram and Syntax Check are selected. Click 
OK. After processing, a dialog box appears; you can 
maximize it to see it better. You see an error message 
about the extra connection line attached to Driver’s 
Licensing System, as well as warnings about process 
symbols that are not on data flow diagrams. These 
messages serve as a reminder that you may want to 
decompose these processes in order to have a fully 
defined project. 
 

 
             Figure 6-6  FDD Analysis Error Messages 

Note 
 You can keep analysis error dialog boxes on the screen while you carry on 

various Visible Analyst activities. This is to make it easier for you to correct the 
errors found by Analyze. 

 
2 Click Cancel. 

 
3 Click the  button on the control bar, the selection  

mode button. 
 
To make the diagram analyze correctly, you must remove the extra line you added to produce 
the above error. Because these connection lines are sometimes superimposed, it can be 
difficult to select the line you want; the wrong line may be selected when you click on an 



Planning and Using Functional Decomposition Diagrams 
 

 89 
 

 

endpoint. However, a line can be selected by clicking any point on the line, not just at the 
endpoints. Since the line you drew has two right angles in it, it has two segments. At the 
junction of the segments there is a handle.  Although the handle is invisible except when the 
line is selected, you can still click on it. (See Figure 6-7 where the positions of all of the line 
handles are revealed.) 
 

 
                                       Figure 6-7  Select a Line by a Handle 
 
Select the Line:  4 Click the right mouse button on any point of the line  

added between Driver’s Licensing System and Motor 
Vehicle Regulation Department to display its Object 
menu.  Make sure the line you have selected is the one 
you drew in step 11 of Adding Connection Lines to an 
FDD.  

 
Delete the Line:  5 Select Cut or Delete from the Object menu to remove  

the line from the diagram.  You can also delete the line by  
pressing the DELETE key or by selecting Delete or Cut  
from the Edit menu. 

                                                 Note 
 Visible Analyst asks you to confirm Delete but not Cut. 

 
Analyze Again:  6 Run Analyze again. The diagram is correct, except  

for the warnings. 

                                                           Note 
 It is not necessary to save a diagram after Analyze has been performed 

because Visible Analyst automatically saves it for you before analysis 
begins. The Save option may not be available at various times.  This 
means the diagram has already been saved. 



Planning and Using Functional Decomposition Diagrams 
 

 90 

 
                                             Figure 6-8  The Completed FDD 
 

Generating DFDs from an FDD (Spawning) 
The Spawn function is used to generate data flow diagrams from the decomposed processes 
contained on a functional decomposition diagram. The Spawn function only works with 
functions that have been directly decomposed into processes. This feature would not work for 
the function Department of Motor Vehicles or for any process on the diagram. 
 
Select a Function: 1 Click the  button on the control bar. 
 

2 With the right mouse button, click the function labeled 
Licensing Department. 

 
Start Spawn: 3 Select Spawn from the Object menu and choose New  

DFD Set. This would ordinarily be used to create new 
DFDs, but a data flow diagram already exists containing 
the process Driver’s Licensing System. There is also a 



Planning and Using Functional Decomposition Diagrams 
 

 91 
 

 

child diagram of that process containing the process Issue 
License. Therefore, Spawn checks for the existing 
connections and opens a dialog box explaining that it 
wants to add the three lower-level processes that you just 
created to a diagram that is given the name of the parent 
process of that diagram. In this case, it is Issue License. 

 
Update Existing DFDs: 4 Click Update DFDs. Visible Analyst adds the three  

new processes to a DFD and opens the top-level DFD for 
you. This is one of the diagrams supplied with the TEST 
project and is displayed in Figure 6-9. You work with the 
spawned DFDs in Lesson 8 –Data Flow Diagrams. 

  

                       
                             Figure 6-9  TEST Project Context Diagram 

Notes 
 If the error message “Decomposition hierarchy incompatible with data flows 

diagrams” is displayed, check the spelling of the process “Driver’s Licensing 



Planning and Using Functional Decomposition Diagrams 
 

 92 

System.”  Make sure that the apostrophe s (‘s) in the word “Driver’s” is correct.  To 
correct the spelling, click on the process “Driver’s Licensing System” with the right 
mouse button and choose Change Item.  Save the changes, and then perform the 
Spawn operation again. 

 
 The spawn process produces detailed level DFDs. You must define, build, and then 

nest the appropriate higher-level DFDs (such as the context diagram and the level 1 
DFD) to the spawned ones. The spawn process can build a blank context diagram. 
You can add a context diagram, and then open and complete the spawn generated top 
level diagram. The Nest connectors still have to be built (see Lesson 8 - Data Flow 
Diagrams). 

 
 The structured modeling technique (structured analysis and structured design) is used 

for the licensing application within the DMV, and the object modeling technique is 
used for the vehicle registration application. This illustrates the principles of each 
approach and also shows that Visible Analyst is flexible enough to allow either or 
both to be used within the same project. 

 

What to do Next? 
You now have a real life choice to make in pursuing the structured methodology life cycle. 
Having used the FDD Spawn function to build some intermediary DFDs, you can continue to 
build top-level DFDs and the overall data flow model.  To do this, go to Lesson 8. 
 
The alternative is to move to the data modeling process, build a data structure, and then return 
to the DFDs.  To do this, continue with Lesson 7.  The choice is entirely yours. You could 
also build part of your data model, then move to DFDs, and return later to finish or change 
your data model. Total flexibility with integration is a key feature of Visible Analyst. 
 



Entity Relationship Diagrams 
 

 93 
 

 

Lesson 7 

Entity Relationship Diagrams 
 

OVERVIEW 
This data modeling technique provides a precise method for detailing and illuminating the 
interrelationships of the data used by a system. You can depict the “entities” (see definition 
below) in the data you are modeling and the relationships between them by drawing them 
onto an entity relationship diagram (ERD). The data model (ERD) shows the major data 
objects of an application and how they fit together using the relationships. You can define the 
primary keys for the data entities and the composition of the data attributes of the entities in 
the Visible Analyst repository. (Defining primary keys and adding data attributes are 
explained in Lesson 16, Working with the Repository Functions.) The defined components 
can then be displayed on your ERD diagram by selecting these options from the View menu.   
 
A diagram containing a picture of all or a subset of your data is called a “view.” Each view 
can show an arbitrarily large or small part of your data model. You can show multiple views 
of your data model by including different combinations of entities and relationships on 
various diagrams. However, the entire data model, including the data elements composing 
each entity, is retained in the repository and can be accessed by creating a global view of the 
data model. This feature is explained in this lesson. 
 

Definitions 
The important diagram constructs in entity relationship data modeling include: 
 
Entity   The entity (or, more properly, the entity type) is nothing more than  

a real-world object that you want to describe. The most generic 
type of entity is really a fundamental or independent entity, but is 
usually simply called an entity. It is composed of data elements 
(also called attributes), and you can describe these in the entity’s 
repository composition field. A fundamental entity is an object or 
event. It is represented on an entity relationship diagram as a 
rectangle and is accessed by the first symbol button on the control 
bar. 
 

 
 



Entity Relationship Diagrams 
 

 94 

Associative Entity  Another type is the associative entity (sometimes called a  
junction, intersection or concatenated entity, a gerund or a 
correlation table). This is basically a relationship (see below) about 
which you want to store information. It can only exist between two 
other entities. For example, the relationship between a customer 
and a product produces as a by-product the associative entity 
purchase order. A purchase order entity would not exist without 
the relationship between the other two entities. An associative 
entity is represented as a rectangle with straight diagonal lines 
across each corner. It is accessed by the second symbol button on 
the control bar. 

 
Attributive Entity  The third entity type is the attributive or dependent entity. This is  

used to show data that is wholly dependent upon the existence of a  
fundamental entity. It is also used to show repeating subgroups of  
data. For example, the associative entity purchase order may have  
a dependent attributive entity named shipment showing the full or  
partial shipments that fulfill the purchase order. It is represented as  
a rectangle with rounded lines across each corner and is accessed  
by the last symbol button on the control bar. 

 
Relationship  A relationship shows how one entity interacts with or can be  

affiliated with another entity. It appears on a diagram as a line 
drawn between two entities. Relationship lines ordinarily have two 
labels, one for each direction. The relationship lines can have 
terminators that show that the entities relate to each other on a one-
to-one, one-to-many, or many-to-many basis (the relationship’s 
cardinality), and whether the relationship is optional or mandatory.  
There are four line buttons on the control bar. Line types may be 
changed after they are drawn on the diagram. 

 
Supertype/Subtypes Specialized subtype entities can be created that are based on a  

generalized supertype entity and share common attributes. Only 
the attributes unique to the specialized entity need to be listed in 
the subtype entity. This is closely related to the object class 
inheritance concept.  Visible Analyst also provides a detail field 
for specifying the exact number of relationships, if known.  The 
supertype/subtype button is the fifth line button on the control bar. 

 
Cluster   A cluster is a collection of entities and the relationships between  

them. It is not truly a part of your data model because it carries no 
new information. However, it can be very useful when you want to 
show very large data models on a single diagram and still have it 



Entity Relationship Diagrams 
 

 95 
 

 

comprehensible. You have the ability to cluster groups of entities 
and show these clusters and the relationships between them in 
summary fashion on a diagram. This limits the amount of detail on 
the diagram so that the larger outlines of what is contained in your 
data model are more visible. 

 
A cluster is created in the repository and entities are added to its 
composition field. A cluster view can then be created by Visible 
Analyst to display the pseudo-relationships between clusters rather 
than real relationships between specific entities. The diagram 
Visible Analyst generates is an unstructured diagram, but the 
information contained in the diagram pertains to your entity 
relationship diagrams. For more information on Clusters, see the 
Operation Manual or the online help system. 

 
View Object  A view object can be thought of as a derived or virtual table. It is  

composed of two components:  a list of column names and a select 
statement used to filter information from the tables in the view.  
For each view, there is one primary select clause and any number 
of sub-select and union select clauses.  Using the Define View 
dialog box, you select the tables and columns and define the join 
relationships, clauses and flags to be used by the view.   For more 
information on view objects, see the Operation Manual or the 
online help. (View objects are not available in the Education 
Editions of Visible Analyst.) 
 

 
                             Figure 7-1  Entity Relationship Diagramming Symbols 



Entity Relationship Diagrams 
 

 96 

Relationship Cardinality 
Visible Analyst supports four different relationship cardinality notations:  IDEF1X, 
Crowsfoot, Arrow, and Bachman. The type of notation you use is up to you, and you select it 
when a new project is created. The number of names per relationship line is also your choice. 
You can indicate one or two names per relationship. For this lesson, we use the standard 
Crowsfoot notation with two names per relationship. 
 
If you select IDEF1X as the relationship cardinality when creating the project, the default 
notation is IDEF1X.  You would then select Crowsfoot, Arrow or Bachman as an alternate 
cardinality notation. 

DEVELOPING YOUR DATA MODEL 
Each entity relationship diagram is complete in and of itself and shows one view of the data 
model of your project. (Remember that a view is a portion or subset of your entire data model 
represented on a single diagram.) When beginning your data model, you must manually add 
new entities and relationships to a view diagram. After this has been done, you can create 
additional views by using the File menu View function to select existing entities and 
relationships from the repository.  Visible Analyst automatically draws the views for you. 
Then you can add to or subtract from each view and rearrange it as you wish. Thus you avoid 
having to draw portions of your data model repeatedly on different views. 

Adding Entities to a View 
Since the basic building block of the data model is the entity type (or simply, the entity) and 
since relationships cannot exist except to relate already existing entities, you begin by adding 
entities to a view. 
 
Set the Zoom Level: 1 From the View menu, select 66% zoom so that you can  

see all of your needed workspace. 
 
Create a New Diagram: 2 From the File menu, select New Diagram. 
 

3 Select the diagram type to be Entity Relationship with 
standard drawing method. 

 
4 Select the Page Size to be Standard. 

 
5 Click OK. 

 
Add Entities:  6 Click the first symbol icon, the rectangle. This is a  

fundamental entity. 
  

 



Entity Relationship Diagrams 
 

 97 
 

 

7 Place the cursor in the middle of the diagram workspace 
and click the left mouse button. An entity is drawn. 

 
8 Name the entity “Student Driver” and click OK. 

 
9 Add another fundamental entity below the first, and name 

it “Driving School.” 
     

10 Add another fundamental entity below Driving School, 
and name it “Driving Lessons.” 

 
                   Figure 7-2  New Entities 
 
Save the Diagram: 11 From the File menu, choose Save and name the diagram  

“Driving School View.” 
 

Changing a Symbol Type 
In the diagram we have created, the entity Driving Lessons is actually an attributive entity 
because the entity exists solely because it is an attribute of the fundamental entity Driving 
School. Since we placed it on the diagram as a fundamental entity, it is necessary to change 
the symbol type. 
 



Entity Relationship Diagrams 
 

 98 

Select Symbol to   1 Put the cursor in selection mode by clicking the  button  
Change:    on the control bar.  
    

2 Click the symbol labeled Driving Lessons with the right 
mouse button so that its Object menu appears. 

 
Change the   3 Select Change Item.  The Scope must be set to Global  
Entity Type:  change in the Change Object dialog box. This option is  

important when you change an object’s type or label. 
Selecting Global causes the change to be made on every 
diagram where that object occurs. If you select Individual, 
the change is only made to the selected object. A Local 
change would modify all occurrences on the current 
diagram. All changes to a symbol type must be Global. 

 
4 Select Change Type. 

 
5 Select Attributive Entity and click OK. 
 
6 Click OK on the Change Object dialog box. The symbol 

is changed on the diagram. 
 

 
                  Figure 7-3  Changed Entity Type 
 



Entity Relationship Diagrams 
 

 99 
 

 

 

Adding Relationship Lines  
We need to establish the relationships between the entities on the current diagram. 
 
Draw the   1 Click the first line button on the control bar. 
Relationship:    

2 Draw a line from Driving School to Student Driver. The  
procedure is the same as that used to draw a line in 
Lesson 5 -  Diagramming. Click and hold the left mouse 
button where you want the line to begin, drag the line 
to where you want it to end. If you release the button 
within the symbol, the line is connected automatically.  If 
not, you must double-click the left mouse button to end 
the line.  
 
 Note 

 When you use an elbow line and the elbow in the line does not bend in the 
direction that you want it to, click the right mouse button while you are still 
holding the left one, and the elbow inverts. 

 
 
Label the   3 Enter “Instructs” for the label of the first relationship.  To  
Relationship:   set the relationship cardinality, click One for the  

Minimum, and click Many for the Maximum. This means 
that “Driving School instructs one or many Student 
Drivers.”  If you know the exact maximum number of 
relationships, you can enter it in the detail box. (See 
Figure 7-4.) 

 



Entity Relationship Diagrams 
 

 100 

 
                Figure 7-4  Label Relationship Dialog Box 

 
4 Press the TAB key to move the cursor to the next field or 

click the mouse in the other label field. 
 

5 Enter “Attends” for the reverse relationship name. For the 
Minimum click One, and for the Maximum click Many. 
(This deliberate error is added to demonstrate the 
capabilities of the Analyze function.) It means  a “Student 
Driver attends one to many Driving School.” Both of 
these relationships are considered mandatory because it is 
necessary to attend driving school to be a student driver, 
and it is necessary to have students to be a driving school. 
Ensure that Type is set to Normal, and click OK. 

 



Entity Relationship Diagrams 
 

 101 
 

 

 
Draw Another   6 Draw a line from Driving School to Driving Lessons.  For  
Relationship:   the first label, type “Offers,” and set Minimum to Zero  

and Maximum to Many. For the second label, type  “Are 
Provided By.” Because this is an Identifying relationship, 
the cardinality is automatically set to 1:1. Click OK. 
 

 Save:    7 Press CTRL+S to save the diagram. 
  

Analyzing the Diagram 
The Analyze function checks to ensure that the diagram is syntactically correct, meaning that 
all relationship lines and symbols are labeled. You can also use the Analyze function to check 
for certain normalization errors. 
 
Start Analyze:  1 Select Analyze from the Diagram menu. 
 

2 Choose Current Diagram and Syntax Check.  Click OK.  
It tells you that the current diagram is correct. 

 
Insert an Error:  3 Add a symbol to the diagram without naming it. 
 
Analyze Again:  4 Run Analyze again.  You see an error message  

indicating that there is one unnamed entity. Click Cancel 
to return to the diagram. The unnamed entity can be 
deleted from the diagram by highlighting it with the 
cursor in selection mode and pressing Delete. 

 
Analyze Still Again: 5 Run Analyze again, but this time choose Normalization.  

You see the error message that the relationship “Driving 
School [Instructs] Student Driver” is not normalized. This 
is true. The error indicates that the cardinality is 0:many 
or many:many in both directions. It is flagged as an error 
because optional:optional and many:many relationships 
can be difficult to implement. Click Cancel to close the 
box. 

 
Correct Cardinality  6 To change the cardinality of the relationship Attends,  
Error:    click the relationship line with the right button. 
 

7 Select Change Item. Change the cardinality for Attends 
from a maximum of Many to a maximum of One.  

 



Entity Relationship Diagrams 
 

 102 

8 Click OK. 
 

Analyze Once More: 9 Select Analyze from the Diagram menu. Choose  
Normalization and click OK. The diagram is now correct. 

 

 
                                          Figure 7-5  Normalized Diagram 
 

Automatically Generating a View of Your Data Model 
Another very useful feature of Visible Analyst is the ability to generate new data model views 
automatically. Since a data model can become very large and sometimes very difficult to 
decipher with many relationship lines and symbols, generating a specific view of the data 
model allows you to focus on one portion of your data model without having to redraw all of 
the symbols and connections that you want to have on the diagram. The function for 
generating a view is found on the View of Data Model submenu from the File menu. 
 
There are three different options for generating a view from this function. 

• There is an option to generate a Global view of your data model. All of the entities 
and relationships that are in the repository are placed on one diagram. This feature is 
important when additions are made to one portion of the data model and you would 



Entity Relationship Diagrams 
 

 103 
 

 

like to see how those changes have affected the entire model. Another use for this 
feature is to generate an entity relationship diagram for imported entity information. 

• You can generate a New view, allowing you to choose from the entities you have 
already created on a diagram or in the repository those entities and attached 
relationships you would like displayed on a new diagram. This allows you to make 
additions or changes to your entire data model while concentrating on only one 
portion. 

• The other view option from the View of Data Model option is Process. A Process 
view is an entity relationship diagram that represents a subset of your data model and 
is based upon a process existing on a data flow diagram or in the repository. Data 
elements that enter or leave the selected process in data flows and that are also 
contained in the composition of entities cause those entities to appear in the process 
view, along with the relationships existing between pairs of entities. A process view 
allows you to concentrate on the specific portion of your data model that is involved 
with the selected process. This is the type of view that you now create. The 
composition information for the entities that appeared, as well as the attribute 
information of the particular process, has already been entered for you in the sample 
diagrams we supplied. This is so that you do not have to enter the information 
necessary to demonstrate this feature of Visible Analyst. 

 
To create the process view: 
 
Start View Generation: 1 Select View of Data Model from the File menu, then  

choose Process.  The Select Process for Views dialog  
box appears. 
 
 



Entity Relationship Diagrams 
 

 104 

         
                                            Figure 7-6  Process View Dialog Box 
 
Select the Process: 2 Click the process Issue License and click OK. Visible 

Analyst searches the repository for entities that contain 
data elements in common with the data flows that are 
attached to Issue License and creates a “View” of the data 
model. 

 
Save the New View: 3 Select Save from the File menu. 
 

4 Title the diagram “Process View: Issue License.”  This 
diagram is a subset of your entire data model. 

 
5 Click OK. 

 
 
 
 

 
 

                     
 
 
 
 
 
 



Entity Relationship Diagrams 
 

 105 
 

 

 
                                      Figure 7-7  The Generated Process View 



Entity Relationship Diagrams 
 

 106 

 



Data Flow Diagrams 
 

 107 
 

 

 

Lesson 8 

Data Flow Diagrams 
 
 

OVERVIEW 
As described in Lesson 4 – Structured  Modeling Techniques, a data flow diagram (DFD) is 
used for process modeling. This modeling technique shows the flow and transformation of the 
data without regard to the details of the data structure or type. It clearly represents where the 
transactions and transformations occur in your system. 
 
A DFD is not the same as a flow chart, although there are certain similarities. A flow chart is 
much less specific with regard to how pieces of data are broken down, combined, and moved 
around the system than is a DFD. On the other hand, a flow chart is much more specific and 
physical than a DFD with regard to how processing is performed. A data flow diagram is 
more flexible and has a more general applicability than does a flow chart. 
 
Data flow diagramming is not designed to show materials flow, just data. For example, if you 
were modeling a bookstore, how all of the receipts, invoices, inventory counts and financial 
transaction items are handled would be shown on your diagrams; but the books themselves 
would not. The books are materials, and their movement from the publisher to the store’s 
loading dock to the shelves to the bag in the customer’s hand is materials flow and not a part 
of data flow diagramming. 
 
In any structured analysis methodology, the first task is to draw a top-level diagram, a simple 
summary of the overall system. It shows the system environment and major inputs and 
outputs, and is sometimes referred to as the basic problem statement. This is usually much 
less specific than the way most people picture a system because so many details are omitted. 
It should involve only one, two, or three processes and a very few external entities 
(source/sinks). In the example that follows, you use only one process and two source/sinks, 
though a top-level diagram could contain a few more of each. You break down (decompose) 
these top-level elements into more specific processes and flows.  Some methodologies and 
analysts like to use a single process to represent the highest level of the data flow diagram. 
This is called a context diagram, and only one process is allowed on a context diagram to 
designate the entire system. For child diagrams, though, you can have multiple processes on 
any diagram. 
 



Data Flow Diagrams 
 

 108 

 
 
The idea behind creating a general top-level diagram is twofold: 

• To ensure agreement and understanding of the fundamental, overall mission of the 
system. There is confusion on this more often than is realized, and the details can 
rarely work well if the overall mission is unclear. 

• To make explicit the source and derivation of the more detailed operations of the 
system. Often it is the second or third level of design that is the taken-for-granted 
starting point. Making the derivation explicit is important both for the design 
discipline itself and for the completeness of the resulting documentation. If you start 
Visible Analyst at the highest level, the tracking of all subsequent derivations 
automatically results from the data repository documentation. 

 
There are four meaningful objects that appear on data flow diagrams: 
 
Process   The process symbol is accessed with the first symbol button on the  

control bar. If you are using Yourdon rules, a process is 
represented by a circle. For Gane & Sarson rules, a process is 
represented by a rounded-corner square. For SSADM and Métrica 
rules, a process is represented by a square. 
 
A process signifies that something is happening to transform data. 
At the highest level you could show the whole bookstore as a 
single process. 

 
After creating the context (or high-level) diagram, you then break 
that diagram down into processes representing the various 
departments of the store, then into processes representing the 
functions of the departments, then into subdivisions of these 
processes, and so forth to as fine a level of description as you wish. 
This is done by “nesting” or decomposing a process and creating a 
child diagram at a greater level of detail, one that shows all of the 
inputs and outputs to the parent process and allows you to show 
what is going on inside it. Processes have numbers, and those 
numbers reflect the decomposition hierarchy, as shown in Figure 
8-1. 

 
 
 
  
 
 
 



Data Flow Diagrams 
 

 109 
 

 

 
 

 
           Figure 8-1  A Process Numbering Scheme 
 
Data Store (or File)  A data store or file is accessed using the second symbol  

button on the control bar. If you are using Yourdon rules, 
a file is represented by two horizontal parallel lines. For 
Gane & Sarson , SSADM and Métrica rules, a data store 
is shown as a rectangle with the right side open, and it has 
a number. A data store is a place where data is kept while 
it is not actively being processed. Your process model 
does not show how it is stored, whether encoded on 
magnetic disk or scribbled on the back of an envelope, 
just that it is stored. Data can only enter a data store from 
a process and can only leave a data store to a process. The 
detailed data element in a data store can be defined in the 
Visible Analyst repository. 

 



Data Flow Diagrams 
 

 110 

 
 
External Entity (or   An external entity is accessed using the last symbol  
Source/Sink)   button on the control bar. It is represented by a large 

square under Yourdon rules, or a square drawn with relief 
under Gane & Sarson rules. For SSADM and Métrica 
rules, an oval represents an external entity. An external 
entity is something outside the boundary of the system 
you are modeling that either sends data to your system or 
receives data from it. It is effectively a black box, in that 
what happens inside the external entity is not material to 
your system description. It is only there to make clear 
some of the environment in which your system resides. 
External entities are optional. A net input data flow can 
just as well be shown coming from nowhere as from an 
external entity. Note that an external entity has no relation 
to the entity that is a part of entity relationship modeling. 
It is simply an unfortunate duplication of terminology. 

 
Data Flow   A data flow depicts the movement of one to many items  

of data. Data can enter a system from outside, such as the 
entries that appear on a publisher’s invoice or a packing 
list. (The invoice data flow is shown entering a process—
it must enter a process—where it is examined and acted 
upon.) This process might send some of the data to be 
stored, some to be printed, some to be ignored. These 
invoice data elements may or may not be combined with 
elements from other input data flows and may then exit 
the process as parts of other data flows. To draw a data 
flow line, click on a line type in the control bar. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Data Flow Diagrams 
 

 111 
 

 

 
 
 

                                

1

D

Métrica and SSADM

Process Data Store External Entity

1

D

Process Data Store External Entity

0

Process File Source/Sink

Gane & Sarson

Yourdon/DeMarco

 
 
   Figure 8-2  Data Flow Diagramming Symbols 

Note 
 In Yourdon methodology, names of data flows contain hyphens instead of 

spaces. When you enter a space in a data flow name, Visible Analyst uses a 
hyphen. 

 
This lesson leads you through the diagram creation process for a Gane & Sarson-based 
process model. Basic drawing and decomposing a process into a subordinate “child” diagram 



Data Flow Diagrams 
 

 112 

are shown. Also, you see how the system is validated using the rules capabilities of Visible 
Analyst. You build errors into your diagram to demonstrate the types of errors that can be 
identified by the Analyze function. 
 

CREATING AND POPULATING A TOP-LEVEL DIAGRAM 
The basic procedure for creating a top-level DFD is the same as creating a new diagram for 
the unstructured diagram type. The only difference is that if you choose a context diagram, by 
clicking the box at the bottom of the New Diagram screen, a process symbol number 0 is 
automatically placed on the diagram; and you are prompted for its name. A context diagram is 
permitted only one process symbol. You can add data flows and other symbols to the diagram. 
 
This diagram has already been created for you so that you do not have to draw the diagrams 
and enter repository information. It is named DMV System and is shown in Figure 8-9, the 
top-level diagram of the DFDs you spawned from your FDD. This diagram also has one child 
diagram called Driver’s Licensing System. You can display a list of diagrams by selecting 
Open Diagram from the File menu, or by clicking the Open button on the control bar. When 
a diagram type has a plus sign next to it, it means that diagrams of that type have been 
created.  Click the plus sign to display the list of existing diagrams, and then double-click the 
diagram you would like to open.  (You can hide the list again by clicking the minus sign next 
to the diagram type name.)  
 
To close a diagram, click the control button in the top left corner of the diagram window and 
select Close, double-click the control button, or choose Close Diagram from the File menu. 
 

NESTING A PROCESS 
In this unit, you structurally decompose a process symbol. This is also called “nesting” or 
“exploding” a process. The File menu contains the Nest function for this purpose; the 
submenu contains the Explode function. Explode can also be found by clicking the right 
mouse button on a process symbol that you want to model in more detail to display its Object 
menu, and then selecting Explode. 
 
If the process has not previously been decomposed, this generates a “child” diagram from this 
“parent” process. All of the data flows attached to the parent process are automatically 
“dragged down” to the child diagram by the Nest function. These flows can be attached to the 
lower-level processes that you create on the child diagram. Those lower-level processes can 
then be nested further to increase the level of detail. In the current example, the child diagram 
was created by the Spawn function that you executed in Lesson 6 – Functional Decomposition 
Diagrams, and the processes you added to the FDD were placed on it. 
 
Open the Diagram: 1 From the File menu or the open diagram button on the  



Data Flow Diagrams 
 

 113 
 

 

control bar, open the data flow diagram DMV System, if 
it is not still open from a previous lesson. This is the 
context diagram for this project. 
 

Select a Process:  2 Click the right mouse button on the process Driver’s  
Licensing System to open its Object menu, and choose  
Explode. This opens the existing child diagram Driver’s  
Licensing System and is an alternate way to navigate  
between the diagrams of your project, avoiding the File  
menu. 

 
Explode It:  3 Click the right mouse button on the process labeled  

Issue License and choose Explode. The flows attached to 
the parent process are dragged down to the spawn-created 
diagram entitled Issue License, where the three process 
symbols from the functional decomposition diagram were 
placed. Maximize the diagram. The dragged-down flows 
are lined up on the sides of the child diagram, input flows 
on the left, output flows on the right. (See Figure 8-3.) 
Since you did not move the symbols on the diagram 
before nesting, it is possible that the dragged-down flows 
were drawn over a symbol. 



Data Flow Diagrams 
 

 114 

                  
                   Figure 8-3  Child Diagram With Dragged-Down Flows 
   
Edit the Diagram: 4 Move the symbols and attach the flows as shown in  

Figure 8-4. To move a symbol, click and drag it with the 
left mouse button. To attach the lines, click one endpoint. 
Then click the left mouse button on the middle of the data 
flow and drag the line so that it is positioned correctly. 
When the data flow is selected, it changes color; and the 
line becomes a dashed line as it is moved on the diagram. 
Do the same for the other data flows.  (Ignore for now the 
other flows you see in Figure 8-4; you add them later in 
this section.) 
 



Data Flow Diagrams 
 

 115 
 

 

  
 
              Figure 8-4  The Completed Diagram 
 

Note 
 When you want to show a data flow line (or another type of line) as attached to a 

process (or another type of symbol), you must drag the end of the line into 
contact with the symbol.  With the Auto Connect option on, Visible Analyst 
redraws your connection at the outer edge of the symbol. 

 
Add Flows and Text: 5 Add two new data flows: License-Approval and  

Photograph. Since these are internal flows, as opposed to 
net input or net output data flows7appearing on the parent, 
the Nest function could not create them. 

 
Change Line Format: 6 You may want to change the data flow lines from straight  

to elbow.  This can be done by highlighting the line and 
then selecting Line Settings from the Options menu and 
changing the line orientation to elbow.  Or click the elbow 
line button on the control bar before drawing the lines.  
 
To change the orientation of an elbow, position the cursor 
over the line segment handle to change and click, but do 
not release, the left mouse button.  Move the mouse 
slightly until the line changes from solid to dashed, and 

                                                           
7For a full explanation of net input and output flows, please see the Visible Analyst Operation 
Manual or the online help. 



Data Flow Diagrams 
 

 116 

then press the right mouse button.  Release the left mouse 
button to save the change. 

 
7 Click the T button on the control bar to add the caption  

text “Issue License” to display the diagram title on the 
diagram. Note that there is a way to do this automatically 
by using boilerplates. You can read about this in the 
Visible Analyst Operation Manual or in the online help 
system.  (Boilerplates are not available in the Education 
Editions of Visible Analyst.) 

 
Add a File:  8 If you wish, you can add the file DMV Database to the  

diagram. Since it appears on the context diagram, this is 
not necessary, but some people feel that showing it on a 
lower-level diagram adds clarity. Move the flow New 
Licensee-Record to attach it to the file DMV Database.  A 
symbol is considered attached to a line when the endpoint 
of the line is touching the edge of the symbol. (It does not 
automatically connect to the symbol.) 

 
Save:   9 Select Save from the File menu. 
 

CREATING A NEW DIAGRAM 
In previous sections of this lesson, you worked with diagrams that were either supplied by 
Visible Systems or created by the Spawn function. In this unit, you create and populate a new 
diagram yourself and practice more data flow diagramming techniques. You structurally 
decompose the process Administer Road Test (drawing a level-three diagram) that details 
what occurs within the process Administer Road Test. 
 
If you have any other diagrams open, you should maximize the window by clicking the 
Maximize button in the upper right corner of the window. 
 
Set the Zoom Level: 1 Set the zoom level to 66% from the View menu. 
 
 
Open the Parent   2 Select Nest from the File menu. 
Diagram: 

3 Select Parent from the submenu. You move up the 
diagram tree to display the diagram Driver’s Licensing 
System. 
 

Nest a Process:  4 With the left mouse button, select the process symbol  



Data Flow Diagrams 
 

 117 
 

 

Administer Road Test by clicking on it. It is highlighted  
as the current object. 

 
5 From the File menu, select Nest and then Explode. 

 
6 Choose Create New Diagram. If you had previously 

nested this process, the child diagram would have 
displayed automatically. This option is useful to drag 
down new data flows that you may have drawn on the 
parent diagram to child diagrams after the child diagram 
has been created. A new diagram is drawn with your input 
flows in the upper left corner of the diagram, and the 
output flows in the upper right corner. If you cannot see 
the flows, select 33% zoom from the View menu and your 
diagram, shown in Figure 8-5, scales down so that you 
can see more of it. 

 
 

         
  
   Figure 8-5  Exploded Diagram with Flows 
 
Save:   7 Select Save from the File menu and click OK. The title  

of your diagram defaults to the name of the parent  
process. Visible Analyst indicates that it is saving both 
diagrams. This is because they are involved in a nest 
relationship and both ends of the nest relationship must be 
saved in the repository. 

 



Data Flow Diagrams 
 

 118 

Adding Processes to a Child Diagram 
Now add processes to the child diagram named Administer Road Test. The processes 
contained in this diagram are the individual processes that make up the parent process 
Administer Road Test. This diagram is a more detailed representation of the transformations 
and interactions that occur to the data flows within the parent process. 
 
Add Processes:  1 Click the first symbol button, process, in the control bar. 
 

2 Add and label three processes: Validate Applicant, Test 
Vehicle Knowledge, and Test Driving Capabilities. 

  
Save:   3 Select Save from the File menu. 

Attaching Data Flows to Symbols 
The input data flows on the left side of the diagram and the output data flows on the right side 
of the diagram were dragged down to the child diagram with the Nest function. It is 
necessary to attach the data flows to the appropriate processes on the child diagram. To attach 
a flow to a symbol: 
 
Select a Line:  1 Put the cursor in selection mode by clicking the  

button on the control bar. 
 

2 Select the data flow Learners-Permit. The line handles  
appear. 

 
Drag It Into Position: 3 Drag it to the edge of the process symbol labeled Validate  

Applicant, as shown in Figure 8-6. 
 

Repeat for Other Flows: 4 Attach the other dragged-down flows as shown in Figure  
8-6. 

 
Add New Flows:  5 Click the first line button on the control bar. 
 

6 Add a flow from process Validate Applicant to Test 
Vehicle Knowledge and label it “Valid-Applicant.” 

 
7 Click the straight line button on the control bar and add an 

input flow into the process Test Driving Capabilities and 
label it “Test-Criteria.” 

 
8 Add a flow from process Test Vehicle Knowledge to 

process Test Driving Capabilities, but leave it unlabeled 



Data Flow Diagrams 
 

 119 
 

 

by clicking Cancel or pressing ESC when you are 
prompted to enter a name. (This deliberate error is added 
to demonstrate the capabilities of the Analyze function.) 

  
9 Add an unattached data flow labeled “Driving-Criteria.” 

(Remember, you must double-click to end the line when it 
is not attached to a symbol.) This demonstrates the ability 
to select an existing flow from the diagram when a flow is 
split. 

 
Save:   10 From the File menu select Save. 
 
 
 
 
 
 
 
 

 
         Figure 8-6  Child Diagram with Processes and Flows 



Data Flow Diagrams 
 

 120 

Splitting Data Flows 
Decomposing, or “splitting,” a data flow offers the capability to divide net input or net output 
data flows into subflows, creating more detailed representation on lower-level diagrams. The 
concept is illustrated in Figure 8-7. This capability greatly aids in the system analysis process 
by showing more complex data flows at high levels of the structured specification and smaller 
or even atomic data flows at the lower levels of the structured specification.  This 
decomposition capability provides a better understanding of the entire system and its parts. 
Whenever a dragged-down data flow is split into subflows, the original flow is erased from 
the current diagram and replaced by the selected or created subflows. 
 
 

 
              Figure 8-7  Splitting a Data Flow   
 
Select a Flow to Split: 1 Click the  button on the control bar to put the  

cursor into selection mode. 
 

2 Display the Object menu for the data flow labeled Road-
Test-Criteria by clicking on one end of it with the right 
mouse button. 

 
Start the Split:  3 Choose Split Data Flow. 
 

4 In the box labeled Enter Subflows, type in “Vehicle-
Familiarity-Criteria.” This option draws a new flow (a 
subflow of Road-Test-Criteria) on the diagram with this 



Data Flow Diagrams 
 

 121 
 

 

label. See Figure 8-8. If you want to add more than one 
name in this box, press ENTER to place the cursor on a 
new line. 

 
              Figure 8-8  Split Data Flow Dialog Box 

 
5 In the box marked Select Flows from Diagram, click 

Driving-Criteria. This option allows you to select an 
existing flow to be a subflow of Road-Test-Criteria. 

 
6 Click OK. Notice that the flow Road-Test-Criteria is no 

longer on the diagram and that the flow Vehicle-
Familiarity-Criteria has been added to the diagram. 

 
7 Attach the flow Driving-Criteria to the process Test 

Driving Capabilities with the arrow pointing away from 
the process symbol. (This error is made deliberately; it is 
explained during the discussion of Analyze.) 

 
8 Ignore the data flow Vehicle-Familiarity-Criteria, as 

another test for Analyze. 
 



Data Flow Diagrams 
 

 122 

ANALYZING FOR BALANCE AND COMPLETENESS 
As a project goes through a number of nested decompositions (nests), data flow splits, various 
object moves and other edit procedures, there is a significant possibility that various data 
flows are incorrectly used, or that objects are forgotten, etc. For a large project with many 
symbols and flows, this is a real probability; and the errors are not easily detected by visually 
checking the diagrams yourself. The Analyze function, found on the Diagram menu, is 
designed to warn you of completeness and logic errors. The function checks diagrams for: 
• Labels on all objects. 
• Unattached objects. 
• At least one input flow and one output flow for each process. 
• Data flow balance, which implies that an input flow is used everywhere as an input flow 

rather than an output flow and that data flows are properly accounted for at all levels of 
the diagram hierarchy. 

 
The diagram is now analyzed for adherence to the rules of the Gane & Sarson methodology. 
Those rules are outlined in the Visible Analyst Operation Manual and in the online help. 
 
Analyze the Diagram: 1 Select Analyze from the Diagram menu. 
 

2 Select Current Diagram and click OK. 
 
Visible Analyst displays the errors found. To display the errors full screen, click the 
Maximize button in the upper right corner of the error window. If an error message extends 
beyond the box, use the scroll bar at the bottom of the box to scroll the text to the left. There 
should be five messages. 
 
Data Flow labeled   This indicates that Vehicle-Familiarity-Criteria is not  
‘Vehicle-Familiarity-  attached to a process. 
Criteria’ is dangling. 
 
There are 1 unnamed   This is the data flow that you left unlabeled on the  
Data Flow(s).   diagram. 
 
Net input Data Flow  This indicates that the data flow Test-Criteria has been  
‘Test-Criteria’ is not   added to the child diagram but is not accounted for on the  
shown attached to parent   parent diagram. 
Process. 
 
‘Driving-Criteria’   This indicates that Driving-Criteria is being used as a net  
should be shown as a net  output flow on the diagram, while it is used as a net input  
input Data Flow.   flow on the parent. 
 



Data Flow Diagrams 
 

 123 
 

 

Input Data Flow    This message is a result of the fact that Vehicle- 
‘Road-Test-Criteria’   Familiarity-Criteria, a child flow of Road-Test-Criteria is  
on parent is not shown.   not attached to a process as a net input flow, even though  

it appears on the diagram. 
 

Note 
 Analysis error dialog boxes allow you to keep them on the screen while you 

carry on various Visible Analyst activities. This is to make it easier for you to 
correct the errors found by Analyze. If you don’t want to keep the box open, 
press ESC or click Cancel to close it. 

 

Fixing the Errors 
Correct the Data Flows: 3 Attach the data flow Vehicle-Familiarity-Criteria to the  

process Test Vehicle Knowledge, as shown in Figure 8-9. 
 

4 Reverse the direction of Driving-Criteria, so that it 
becomes an input flow to Test Driving Capabilities (see 
Figure 8-9), by dragging the endpoints. 

 
5 Delete Test-Criteria by clicking on the line and pressing 

the DELETE key. 
 

6 Label the unlabeled data flow “Vehicle-Knowledge” by 
clicking on the line with the right mouse button and 
selecting Change Item from the Object menu. Then 
enter the label and click OK 

 
Analyze Again:  7 Select Analyze from the Diagram menu again. 
 

8 Choose Current Diagram and click OK. The diagram 
should now be correct. 

 
Note 

 It is unnecessary to save a diagram after Analyze has been performed because 
Visible Analyst automatically saves it for you before analysis begins. 

 
 
  
  

 
 
 



Data Flow Diagrams 
 

 124 

 

 
                                     Figure 8-9  The Completed Diagram 
 

GENERATING A PROCESS DECOMPOSITION MODEL 
A process decomposition model for a process shows you the hierarchical structure of a 
decomposed process that has been nested. 
 

Note 
 A process decomposition diagram is very different from a functional 

decomposition diagram. The former is simply an unstructured diagram 
displaying the hierarchy of processes that are descendants of an indicated 
process. The latter, discussed in Lesson 4 -Functional Decomposition Diagrams, 
is a full diagramming methodology for performing business planning. 

 
Open the Diagram: 1 From the Window menu, click “DMV System: DFD.” 
 
Select a Process:  2 Click the process Driver’s Licensing System with the  



Data Flow Diagrams 
 

 125 
 

 

right mouse button. 
 
Create the   3 Select Decompose. An unstructured diagram is generated  
Decomposition:   showing the hierarchical structure of the process. 
 
Save the New Diagram: 4 Select Save from the File menu. Label the diagram  

“Process Decomposition” and click OK. 
 
 

  
                                 Figure 8-10  Process Decomposition Diagram 



Data Flow Diagrams 
 

 126 

 



Structured Design and Structure Charts 
 

 127 
 

 

Lesson 9 

Structured Design and Structure Charts 
 

OVERVIEW 
Structured design (SD) and structure charts (SC) produce the road map of how the new 
information application is built, tested and operated. SD and SC define modules, invocation 
sequences, control architectures, calling and return flows, decision logic, looping and other 
programmatic level operations. The structure chart is top-down, hierarchical in nature, and 
produces one overall diagram of the application. The repository entries for the modules can 
contain pseudo-code and detailed specifications for how the module performs its operations. 
Specifications for testing, test data and other project details can also be defined in the 
repository. In addition, the components from the data flow models and the data models can be 
reused to assure that all processes have been covered in the structured design and the defined 
database structures used to build the programmed data stores. 
 
A key concept in structured design is to define, build and test clearly defined, limited function 
programming modules. These modules are easier to build and maintain, and they operate 
using a hierarchical control executive that manages the flow and control between modules. 
The use of standards for calling sequences, operational flows and parameter passing helps to 
maintain the consistency of the design logic and to make the application easier to build, test 
and maintain. 
 
This unit leads you through the diagram creation process for a basic structure chart. Previous 
lessons acquainted you with the fundamental drawing techniques. Therefore, this unit is short 
and concentrates on drawing features unique to structure charts. You are also shown a 
different method of adding items to a diagram. 

Definitions 
A structure chart is the diagram used for structured design. The purpose of structured design 
is to provide a technique for transforming process descriptions and specifications generated 
using data flow diagramming into a design for a set of computer programs. As such, it is 
almost a graphical programming technique. Structured design is practiced in a more 
subjective manner than is structured analysis, meaning that there are fewer hard and fast rules 
for how a given project analysis should be transformed into a structured design. We lead you 
through a simple design process that produces a set of program design specifications.  If code 
generation is part of your tool, we show you how to use Visible Analyst to generate shell 
code. 



Structured Design and Structure Charts 
 

 128 

Unlike a data flow diagram, a structure chart is considered to be a single, possibly huge, 
diagram. For ease of viewing, parts of the structure chart are displayed on different pages. 
Modules can invoke modules on other pages of the chart, but all modules are conceptually on 
the same level. As an alternative to connecting many diagrams with page connectors, you 
could generate one large diagram using the multi-page option. (The multi-page option is not 
available in the Education Editions of Visible Analyst.) 
 
There are only a few diagramming constructs used in structured design (Figure 9-1). 
 

 
      Figure 9-1  Structure Chart Diagramming Symbols 
 
Module   A module symbolizes a package of instructions to carry out some  

operation, that is,  a computer program or subroutine. They come 
in various forms (modules, library modules, macros, library 
macros), but they are all essentially capsules of instructions. There 
is a very loose relationship between the processes appearing in a 
process model and the modules appearing on a structure chart, in 
that the modules contain the code for performing the processes; but 
the correspondence is highly variable and subjective. The means of 
transforming one into the other is beyond the scope of this tutorial; 
please consult one of the texts on the subject referred to in Lesson 
4 – Structured Modeling Techniques for details. A basic module is 
a rectangle with solid borders.  

 
 



Structured Design and Structure Charts 
 

 129 
 

 

 
Library Module  This is a module that is executed in the same way each time it is  

invoked. It differs in usage from the standard module by the fact 
that its interfaces to other modules (if any) are hidden from the 
designer. It is represented as a rectangle with double lines on the 
two vertical sides.  

 
Macro   A macro is a module whose body is effectively copied in-line  

during translation (that is, compilation or assembly) as a result of 
being invoked by name. The only practical difference between a 
macro and a module is that macros tend to make a system operate 
faster, but at the expense of more memory space required to 
operate the system. A macro is represented as a rectangle with 
dashed sides.  
 

Library Macro  This is a macro that is repeated in a system. It is a rectangle with 
dashed lines and double lines for the vertical sides.  

 
Data Only Module A data only module is simply a collection of data, analogous to a  

data store or a common area. This kind of module cannot be 
invoked since it contains no instructions, only data. The data can 
be shown being used by one or more modules. It is represented as a 
rectangle with rounded, convex sides.  

 
Information Cluster An information cluster is an aggregate symbol, a combination of  

two or more modules and a data only module that the modules 
share in common. You can tell Visible Analyst how many modules 
you want in your information cluster when you label it, and Visible 
Analyst draws the symbol appropriately. 

 
On-Page Connector To avoid crossing lines on a diagram, it is often convenient to  

begin an invocation on one part of a diagram and complete it 
discontinuously on another part. For this, the on-page connector is 
used. The on-page connector symbol is a small circle. 

 
Off-Page Connector A structure chart is viewed by Visible Analyst as one unified  

diagram. You can, however, spread your chart over multiple pages 
by linking them using invocations that begin on one page and end 
on another. The off-page connector symbol is identical in 
appearance to the page connector for FDDs. 

 
 
 



Structured Design and Structure Charts 
 

 130 

 
Invocation Line  An invocation is a line drawn from one module to another showing  

that the first module invokes (or calls) the second, with the 
implication that control will eventually return to the invoking 
module. The line is usually, but not always, drawn with an 
arrowhead terminator pointing to the invoked module. There are 
two variants of the invocation line called the control connection 
and the data connection. 

 
Control Connection A control connection describes a one-way transfer of control  

between modules. It is drawn as a line with a filled in circle on one 
endpoint and an arrowhead on the other. The arrowhead is 
optional. 

 
Data Connection  A data connection depicts the passing of data between a module  

and a data only module. It is a line with an open circle on one 
endpoint and an arrowhead on the other. The arrowhead is 
optional. 

 
Couple   A couple is a piece of information passed between modules and  

symbolizes the arguments passed between computer programs or 
functions. It is shown next to an invocation line, pointing in the 
direction in which it is passed. There are data couples, control 
couples, and generic couples.  

 
A data couple  represents data parameters that are passed between 
program modules. It is a short line with an open circle at one end 
and an arrow at the other.   
 
A control couple represents information pertaining to the way 
modules function rather than the data on which they function. It is 
a short line with a filled circle at one end and an arrow at the other.  

 
A generic couple shows that both data and control are passed 
between modules upon invocation. It is a short line with no circle 
at one end and an arrow at the other 

 
Interface Table Row  An interface table row represents a set of couples and is used to  
(ITR)    make complex diagrams more clear. The same symbols that are  

used for data, control, and generic couples are used to denote an 
ITR for that couple type. An ITR is drawn on a diagram in the 
same manner as a couple. Then the type of the line is changed to 
an ITR in the repository in the entry type field and the couples to 



Structured Design and Structure Charts 
 

 131 
 

 

be contained in the ITR are listed in the composition field of its 
repository entry. 

 
Loop Line  The loop line type is the open ellipse shape shown in Figure 9-2.  

Even though it is a line, it cannot be labeled and cannot be defined 
in the repository. Its purpose is to show that an invocation line (of 
any type) is part of an iterative and/or an ordered set of 
invocations. In usage, a loop can be drawn around the start point of 
one or more invocation lines. Loops can be nested.     

 
 

DRAWING A STRUCTURE CHART 

Adding Symbols 
Since you are already familiar with adding symbols, the description for this section is brief. 
 
Create a New   1 Select New Diagram from the File menu and choose  
Diagram:    Structure Chart. 
 
Maximize the  2 Maximize the workspace by clicking on the Maximize 
Diagram:   button in the top right corner of the window. 
 
Set Zoom Level:  3 Set zoom level from the View menu to 66%. 
 
Add Symbols:  4 Add the symbols to the diagram as shown in Figure 9-2. 
 
Save:   5 Select Save from the File menu. Name the diagram  

“Menu Structure.” 
      
 
 
 
 
 



Structured Design and Structure Charts 
 

 132 

 
                                     Figure 9-2  Structure Chart with Symbols 

Adding Invocation Lines to a Structure Chart 
The method for adding lines to a diagram is the same for all diagram types. This section 
reviews the line-adding procedure and also explains how to use different line terminators and 
line types. For any line that you create on a diagram, you can change its type immediately by 
selecting Line Settings from the Options menu while the line is still selected (highlighted). 
This gives you the ability to draw a line and then set the terminators. In this section, though, 
when it is necessary to draw a different type of line, you change the line type before you draw 
the line. 
 
Draw an Invocation: 1 Click the first line type and position the cursor over the  

bottom line of the module Process License Applicant. 
Click and hold the left mouse button, and drag the line to 
the top of the module Validate Applicant Eligibility. 

 



Structured Design and Structure Charts 
 

 133 
 

 

2 Release the mouse button within the symbol.  (If Auto 
Connect is turned off, you must double-click to end the 
line.) This ends the line, and the line terminator is drawn. 

 
Deselect the New Line: 3 Open the Diagram menu. Note that the Lines menu item  

is checked, indicating that you are in line entry mode. If 
you were to click Lines, you would return to selection 
mode. This same type of action works for getting out of 
caption text modes. For symbol mode, you must click the 
selected symbol on the submenu.  

 
4 You should still be in line adding mode. Click on an 

empty space on the diagram, so that the line you drew is 
no longer selected. (If you don’t deselect the line, making 
changes in Line Settings affects the selected line, not a 
future line, as you want to do in this case.) 

 
Change the Terminator  5  Select Line Settings from the Options menu. 
Type: 

6 Select Decision as the Terminator Type and click OK. 
 
Draw Conditional 7 Draw an invocation line from Process License Applicant  
Invocations:   to Reject Ineligible Applicant. The line has a  

conditional terminator at the starting point of the  
line. 

 
8 Click the left mouse button on the conditional terminator 

of the invocation you just drew and draw a line from 
Process License Applicant to Update Applicant List. The 
conditional terminator of the new invocation can be 
overlaid on top of the previous one, so that they appear as 
one binary choice. (Since the two invocations are in fact 
distinct, they can later be separated, if you want to display 
them as independent choices.) This establishes another 
conditional invocation relationship. It means that under 
certain circumstances, either Reject Ineligible Applicant 
is invoked or Update Applicant List is invoked. In this 
case, the circumstances depend upon whether or not the 
Applicant is valid. 

 
9 Deselect the line. 
 

 



Structured Design and Structure Charts 
 

 134 

Draw a Data   10 Select Line Settings from the Options menu. 
Connection: 

11 Select the Line Type to be Data Connection and the 
Terminator Type to be Single Arrow. Click OK. 

 
12 Draw a line between Update Applicant List and the data 

only module Applicant List. Then deselect the line. 
 
Draw a Loop Line: 13 Select Line Settings from the Options menu. 
 

14 Select the Line Type to be Loop and click OK. 
 

15 You want to end up with a loop line like that shown at the 
bottom of the module Process License Applicant in Figure 
9-3. Place your cursor on the edge of the module near the 
lower left corner. Click and drag the line so that its 
endpoint is at the lower right edge of the symbol and 
double click to complete the line. While the line is still 
selected, notice its handles. You can drag these around to 
change the shape and size of the loop. 

 
Save:   16 Select Save from the File menu. 
 

Drawing Couples 
Enter Couple Mode: 1 Deselect the line. 
 

2 Select Line Settings from the Options menu. 
 
3 Select the Line Type to be Data Couple and click OK. 

 
Note 

 When the cursor is over the drawing area, it displays as the couple-adding 
cursor. On any cursor there is a spot, called the “hot spot,” that is the business 
end of the cursor; that is, the location at which you want some action to take 
place. For the couple-adding cursor, the hot spot is at the point of the large 
arrow at the top of the cursor. 

 
Select the Invocation: 4 Click on either end of the invocation line between Process  

License Applicant and Validate Applicant Eligibility. 
This selects the line. 

 
 



Structured Design and Structure Charts 
 

 135 
 

 

Draw the Couple: 5 Click on the start point of that line. A data couple is  
drawn pointing in the direction the data is passed. By 
clicking at the start of the invocation line, you indicated 
that the data couple is passed from Process License 
Applicant and follows the direction of the invocation line. 

 
6 Name the couple “Applicant Name” and click OK. 
 

Draw More Couples: 7 Now that you know how to enter diagram objects using 
the Diagram menu, you can continue doing it the easy 
way using the tool bar buttons.  Click on the couple with a 
filled circle (the last line button). This is a control couple. 
(You may have to click on the “gripper” to drag more of 
the diagram tools tool bar into view.) 

 
8 While it is still selected, click on the endpoint of the same 

invocation line where it meets Validate Applicant 
Eligibility. Name the new control couple “Applicant 
Valid” and click OK. 

 
9 Click on the second to the last line button, the data 

couple. 
 

10 Click on one end of the invocation line between Process 
License Applicant and Update Applicant List. This selects 
the line. 

 
11 Click on the endpoint of that line, where the terminator is 

attached to Update Applicant List. Name the data couple 
“Applicant Information.” 

 
Invert the Couple: 12 Look at Figure 9-3.  If the couple you just drew is facing 

the wrong direction, it is easy to fix. To select the couple 
you just drew, press ESC to activate selection mode and 
click on the couple with the right mouse button. 

 
13 Choose Change Item from the Object menu, click the 

Invert Couple box, and click OK. The couple and its label 
move to the other side of the invocation. 

 
Complete the Diagram: 14 Draw the other couples as shown in Figure 9-3. 
 
 



Structured Design and Structure Charts 
 

 136 

Save:   15 Choose Save from the File menu to save the diagram. 
    Your structure chart is complete. 
 
 
 

 
                         Figure 9-3  The Completed Structure Chart 
 

 



The Class Diagrams 
 

 137 
 

 

Lesson 10 

The Class Diagrams 
 

OVERVIEW 
Visible Analyst provides a series of capabilities for supporting the definition of object classes 
and a variety of object relationships and methods. Visible Analyst implements the concepts of 
Object Modeling and Design (OMT), as developed by Rumbaugh, et al, for the General 
Electric Company, and Rational’s Unified Modeling Language (UML). These methods are 
similar, so they are covered together here.  
 
The key to object modeling is the development of class diagrams that show the object 
elements and relationships, including cardinality, attributes, association, inheritance, and 
aggregation. There is considerable flexibility in these concepts to allow the user to define and 
implement a number of variations and options in the object model. 
 
Visible Analyst’s object modeling approach is implemented in a way that is very similar to 
the entity relationship model. A rectangular symbol is used to represent both a data entity and 
a class object. The relationship and cardinality questioning sequence is similar. Attributes of 
both entities and classes are displayed in similar formats. The key differences are in the 
extended definitions of the object in the Visible repository. 
 
The object model is represented by class diagrams (CLDs) that contain classes, with an object 
being an instance of a class. The relationships between the classes for a project are depicted 
with lines and symbols to depict inheritance and aggregation. Like the ERD, the CLD can be 
built into views that show all or a subset of the classes and their relationships.  

Definitions 
The components of the class modeling process include: 
 
Aggregation  An aggregation is a relationship that indicates the parent class  

contains the child. 
 
Attributes  Attributes are data members describing the class object.  

An attribute can be assigned a name, class type, limit, type of 
visibility, reference method and a qualification flag indicating 
whether it is static or volatile. 

 



The Class Diagrams 
 

 138 

Class   A class is a group of objects with the same data structure  
(attributes) and behavior (operations). A class is an abstraction that 
describes properties that are important to an application. 

 
Inheritance  Inheritance is the sharing of attributes and operations among  

classes based on a hierarchical (parent and child) relationship. 
 
Instance   Instance is a specific object from a class. Each instance of the class  

has its own value for each attribute but shares the attribute names  
and operations with other instances of the class. 

 
Method   A method is a specific implementation of an operation by a certain  

class. 
 
Operation  An operation is an action or transformation that an object performs  

or is subject to. 
 

Relationship  The relationships between classes can define cardinality of classes  
(numeric relationships), aggregations, and inheritance. Refer to 
Adding Relationships to a View later in this chapter for a 
discussion of relationship attributes. 
 

Stereotype A Stereotype is a special denotation and is used as a mechanism to 
extend the UML. The stereotype indicates that the class is a special 
kind of class, and conforms to some rigid specifications. The two 
surrounding characters “«»” of the stereotype selection are called 
guillemets (pronounced Gee-may).  

 
The class stereotype selection  is specified on the Change Class 
dialog, and may have the following values: no stereotype selected; 
<<implementationClass>>; <<interface>>; <<metaclass>>; 
<<powertype>>; <<process>>; <<structure>>; <<thread>>; 
<<type>; <<union>>;<<utility>>. When a class is also used on an 
entity relationship diagram, no stereotype selection is available. 

 
Subtype    Subtype provides additional information on how a class is used. A  

Standard class (the default) indicates a normal class.  Elemental 
indicates the class contains no attributes and physical 
characteristics should be defined. Structure and Union subtypes 
indicate C type components should be used instead of a class. 
Entity, Associative, and Attributive indicate the class is persistent 
and can be used on an Entity Relationship Diagram. 

 



The Class Diagrams 
 

 139 
 

 

Symbols   The symbols for a class diagram consist of rectangles that are  
defined as classes. 

 
Visibility  Indicates the level of exposure to the outside world permitted by  

the class. The options are: public, private or protected. 
 
 

DEVELOPING YOUR CLASS MODEL 
Each class diagram is complete in and of itself and shows one view of the classes in your 
project. You begin your class model by specifying and defining classes of objects on a 
diagram and then establishing a definition of the relationships between the classes. You can 
also define the attributes and operations for the classes within the Visible Analyst repository. 
Once you defined a class diagram, you can create additional views by selecting the File menu 
New Diagram function and choosing the New View Drawing Method.  This selects existing 
class entities and relationships from the repository, and Visible Analyst automatically draws 
the views for you. You can add or subtract elements from each view and rearrange it as you 
wish. This allows you to establish object models for various portions of your project without 
having to create redundant definitions or large confusing diagrams. Any new objects or 
relationships created on any view are automatically updated into the Visible Analyst 
repository. 
 

Adding Classes to a View 
The basic building blocks of the class model are classes of objects that exist within an 
application. You begin the CLD with a new diagram and add and define classes to this view. 
For the lesson exercise, we return to the Department of Motor Vehicles application and 
concentrate on the Registration portion of the application.  
 
Set the Zoom Level: 1 From the View menu, select 66% zoom so that you can  

see all of your needed workspace. 
 
Create a New Diagram: 2 From the File menu select New Diagram. 
 

3 Select the diagram type Class. 
 

4 Select Standard Workspace and Landscape Orientation. 
 

5 Click OK. 
 
Add Classes:  6 Click the class symbol button on the diagram tools tool  

bar.  



The Class Diagrams 
 

 140 

 
7 Place the cursor in the middle of the diagram workspace 

and click the left mouse button. A class object symbol is 
drawn. 

 
8 Name the Class symbol “Registrations.” 

 
9 Add another class below Registrations, and name it 

“Trailers.” 
 

10 Add another class below Registrations and name it 
“Vehicles.” 

 
11 Add a class below Vehicles and name it “Trucks.”  
12 While trucks is still selected, click the right mouse button 

to display the Object menu, then select Stylize. Change 
the horizontal and vertical sizes to 75%.  Click Apply, 
then click Set Default Size.  Click OK. 

 
13 Below Vehicles, add two more classes: Cars and 

Motorcycles. 
 

14 To the right and slightly under Vehicles, create four more 
classes: Engine, Axles, Fuel, and Weight. 

 
Save the Diagram: 15 From the File menu, choose Save and name the diagram  

 “Registration Object Classes.” 
 
Reset Default Object 16 Click on the Registrations object.   
Size: 

17 Select Stylize from the Diagram menu.  Change the 
horizontal and vertical sizes to 100%.  Click Apply, then 
click Set Default Size.  Click OK. 

Adding Relationships To A View 
The relationships between classes establish the cardinality, aggregations or inheritance 
connections between the classes. 
 
Drawing Relationships: 1 Click the first line choice on the diagram tool bar. This  

establishes a normal relationship between the classes.  
(Because the first line type icon is selected, the default 
cardinality is 1:1 and 1:1.) 

 



The Class Diagrams 
 

 141 
 

 

2 Draw a line from Registrations to Vehicles. This 
procedure is the same as that used to draw an Entity 
Relationship Diagram in Lesson 7. Click and hold the left 
mouse button where you want the line to begin, and drag 
the line to the symbol where you want it to end.  

 
3 Type “identify” for the label of the first relationship. 

        
4 Use the TAB key to move to the next relationship label. 

Type “are licensed by” for the label that establishes the 
relationship of the vehicle to the registration. Click OK. 

 
5 Draw a similar relationship between Registrations and 

Trailers. Use the same labels as you did for Registrations 
and Vehicles. 

 
6 Select the line type for Inheritance, the fourth line button, 

and make connections between Vehicles and Trucks, Cars 
and Motorcycles. Start drawing the line at the same point 
on the class Vehicles so that the lines are overlaid as 
shown in Figure 10-1. The default label “is a” is 
automatically entered.  You can change this or just click 
OK. You can also use the Shift + Click method as 
described in Lesson 6 to select the class symbols and use 
the Connect option on the Diagram menu to auto-connect 
the symbols. 

 
7 Select the line type for Aggregations and make the 

connections between Vehicles and Engines, Axles, Fuel 
and Weight.  Start drawing the line at the same point on 
the class Vehicles so that the lines are overlaid. (When 
drawing a line over an existing line, the new line is red 
indicating the lines are overlaid.) Use the labels “have,” 
“use,” “have,” and “have,” respectively, from Vehicles to 
these classes.  

 
Save:   8 From the File menu choose Save. Your diagram should  

be similar to the one shown in Figure 10-1. 
 
 
 
 
 



The Class Diagrams 
 

 142 

 
 
 
 

 
     Figure 10-1  Class Relationship Notation 
 
The information that is maintained for a relationship is: 
• From. The name of the parent entity or class 
• Cardinality. How many instances of one entity or class relate to another. The Detail field 

can be used to store a specific quantity, for example 1, 3 or 5+ 
• To. The name of the child entity or class. 
• Type. The type of relationship. An aggregation relationship indicates the parent class 

contains the child. An inheritance relationship indicates the definition of the To class is 
based on the From class. The base class contains the basic definition, while the derived 
class implements only those features that need to be different. A normal relationship 
indicates there are no special characteristics between the objects involved. 

• Role. The role names used for the parent and child classes. For normal relationships, a 
role should exist as an attribute of the class at the other end of the association with the 
Reference type set to Address. For aggregation relationships, it should be set to Value. 
The Visibility in both cases should be Protected, and the type set to the opposite class. 

• Qualifier. The qualifier names used for the parent and child classes. If a qualifier is used, 
an attribute of type Void is created in the class at the other end of the association with the 
Reference type set to Address and the Visibility set to Protected. You can change the type 
of the qualifier by modifying the attributes field in the repository. 



The Class Diagrams 
 

 143 
 

 

• Ordered. Ordering indicates the objects on the many side of a relationship have an 
explicit order. The term set is commonly used to describe an unordered association, while 
a list indicates an ordered association. 

 

           
                   Figure 10-2  Labeling Relationship for DMV    

 
Note 

 Each relationship between two entities or classes is a unique object in the 
repository. The fact that two relationships between two different pairs of objects 
may have the same name does not change the fact that the individual 
relationships are distinct. When using the Search function to name relationships, 
you are only selecting a name, not a relationship repository object. If, when you 
are finished, a pair of objects on this view is connected by relationships with the 
same names as relationships joining the same object on another view in the data 
or object model, then both sets of relationships are considered two different 
instances (locations) of the same repository object. 

 



The Class Diagrams 
 

 144 

ATTRIBUTES OF AN OBJECT 
Class objects are defined by their data members that can be selected in the Visible Analyst 
repository.  The following information can be defined: 
• Name. The name of the attribute. Each attribute of a class has a separate entry in the 

repository with a type of Local Data Element. This is an optional field. The Search button 
can be used to find other Member Names in the repository. 

• Type. The attribute type can be a Class, Data Element, or Data Structure. If the type does 
not exist in the repository, a new class is created. The location field of the attribute type 
will contain a reference to the current class. This is a mandatory field. The Search button 
can be used to display a list of valid types. If the attribute type is a Data Element or 
Elemental Class, its physical characteristics are displayed. 

• Limit. The number of occurrences of the attribute. If this field is blank, the attribute 
occurs once. 

• Reference. A qualifier to indicate the access method for an attribute. Value indicates the 
object defined in the Type field is used; Address indicates a pointer to the object is to be 
used; and Reference indicates a reference to the object is to be used. The default is Value. 

• Visibility. Public members have global visibility. Private members are only accessible to 
member functions and friends. Protected members are accessible to derived classes and 
friends. Implementation members are only accessible to the class itself. The default is 
Private. 

• Qualification. Constant indicates a member’s value cannot be changed. Volatile 
indicates the member can be modified by something other than the program, either the 
operating system or hardware. Static indicates there is only one instance of the member 
regardless of the number times a class is instantiated. The default is None. 

• Physical Characteristics. If the attribute type is elemental, the physical characteristics 
can be set.  

 
 
For every item entered into the Type field, Visible Analyst creates a repository entry (if one 
with the same name does not already exist) and updates that entry’s location field. Likewise, 
if an item is removed from this field, that entry’s location field is updated to reflect this. These 
repository entries are generally created as classes unless a data element already exists with the 
same name or the physical characteristics are defined. 
 
As you enter items, the dialog box automatically scrolls as necessary to allow you to enter 
more items until you have finished. Insert is used to insert a new attribute into the list at the 
current position, while Delete removes the current attribute (the current position is indicated 
by  ). When you have completed the entries, click OK to add them to the Attributes field. 
 



The Class Diagrams 
 

 145 
 

 

Item names entered into this field may contain up to 128 characters each and may consist of 
any upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; 
but the first character must always be a letter. 

Adding Attributes to a Class Diagram 
Bring your Registration Class Objects CLD to the working diagram position and follow these 
steps: 
 
Move to the Repository: 1 Select the Registrations class object and double-click  

the left mouse button to go to its repository entry. 
 
Enter the Attributes 2 Move the entry cursor to the Attributes field. 
Field: 
 
Bring Up Attributes  3 Click the Attributes Details button   
Entry:    or select Add/Change from the Repository Object 
    menu that is displayed when you right-click in the  

Attributes field. 
 
Define Attributes:  4 Type values for the Registrations class object, as shown in 

Figure 10-3.    
    

5 Click OK to save your entries and return to the Define  
dialog box.  Note that the attributes you entered are 
displayed in the Attributes field. Click Save and Exit to  
return to the diagram. 
 
 
 
 
 
 
 
 



The Class Diagrams 
 

 146 

 
                                Figure 10-3  Attributes for Registration Class Object 

 
 

Define More  6 Select the Trailers class object and double-click the left 
Attributes:   mouse button to go to its repository entry. 
 

7 Move the entry cursor to the Attributes field. 
 
8 Click the Attributes Details button, and complete the 

Attributes dialog box. Type “Weight” in the Name field, 
type “Character” in the Type field, type “1” in the Limit 
field.  Select Value in the Reference area, Public in the 
Visibility area, and None in the Qualification area.   

 
9 Click OK to save your entries and return to the Define 

dialog box. Click Save, then click Exit to return to your 
diagram. 

 
10 Double-click the left mouse button on the Vehicles class 

object to display its repository entry. 
 

11 Right-click in the Attributes field and select Add/Change 
from the Object menu that is displayed. 



The Class Diagrams 
 

 147 
 

 

 
12 Complete the Attributes dialog box by typing “Motor 

Number” in the Name field, “Numeric” in the Type field, 
and “1” in the Limit field.  Select Value in the Reference 
area, Public in the Visibility area, and None in the 
Qualification area. 

 
13 Click OK to save your entries and return to the Define 

dialog box. Click Save, then Exit to return to your 
diagram. 
 

Complete Your  14 Continue adding attributes to the remaining class objects  
Attributes:   on your diagram.  
 
Exit the Define  15 When you have completed adding attributes to class  
Dialog Box   objects, click Exit to close the Define dialog box. 
 

METHODS FOR AN OBJECT 
Methods are the operations defined for accessing a class.  The methods are specified in the 
Visible Analyst repository and include the following information: 
• Returns. The return type can be a Class or Data Element. If the type does not exist in the 

repository, a new class is created. The location field of the attribute type contains a 
reference to the method. This is an optional field. The Search button can be used to 
display a list of valid types. 

• Limit. The number or size of the parameter. If this field is blank, it occurs once. 
• By. A qualifier to indicate how the return value is passed. Value indicates a copy of the 

parameter is passed; Address indicates a pointer to the object is to be used; and Reference 
indicates a reference to an object is to be used. 

• Visibility. Public methods have global visibility. Private methods are only accessible to 
other member functions within the same class and friends. Protected methods are 
accessible to derived classes and friends. Implementation methods are only accessible to 
the class itself. The default is Public. 

• Qualification. Static indicates a method can be used without a specific instance of an 
object (it can only be used with static attributes (data members)). A Virtual method is one 
that you expect to be redefined in a derived class. A pure Virtual method has no 
definition and must be defined in a derived class. A class with any pure virtual functions 
is an abstract (or virtual) class. The default is None. 

• Arguments. A list of parameters to be used by the method. This is an optional field. If a 
method appears more than once with the same name within a class, it must have a 



The Class Diagrams 
 

 148 

different argument list for each definition. This is known as function overloading. See the 
next section for defining arguments. 

 
When a method is added to a class definition, an entry of type Module is created in the 
repository. The long name includes the class name and the argument list. The argument list is 
needed to differentiate between overloaded functions. 
 

Note 
 Because the same name can be used for more than one method, there may be 

duplicate Module entries in the repository, each belonging to a different class. 
 

Arguments for Methods 
When defining methods (member functions) for a class, the parameters to the function need to 
be specified. To add, change, or remove arguments, click the Arguments button on the 
Method Definition dialog box. For each argument, the following information can be defined: 
• Name. The name of the parameter. This is an optional field. 
• Type. The parameter type can be class or data element. If the type does not exist in the 

repository, a new class is created. This is a mandatory field. The Search button can be 
used to display a list of valid types. If the parameter type is a data element or elemental 
class, its physical characteristics are displayed. 

• Limit. The number or size of the parameter. If this field is blank, it occurs once. 
• Pass By. A qualifier to indicate the how the parameter is passed. Value indicates a copy 

of the parameter is passed; Address indicates a pointer to the object is used; and 
Reference indicates a reference to an object is used. The default is Value. 

• Qualification. Constant indicates a parameter’s value cannot be changed. Volatile 
indicates the parameter can be modified by something other than the program, either the 
operating system or hardware. The default is None. 

• Physical Characteristics. If the parameter type is elemental, the physical characteristics 
can be set. 

 
For every item entered into the Type field, Visible Analyst creates a repository entry (if one 
with the same name does not already exist). These repository entries are generally created as 
classes unless a data element already exists with the same name or the physical characteristics 
are defined. 
 
As you enter items, the dialog box automatically scrolls as necessary to allow you to enter 
more items until you have finished. Insert is used to insert a new parameter into the list at the 
current position, while Delete removes the current parameter (the current position is indicated 
by  ).  When you have completed the entries, click OK to update the method name field. 
 



The Class Diagrams 
 

 149 
 

 

Item names entered into this field may contain up to 128 characters each and may consist of 
any upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; 
but the first character must always be a letter. 

Adding Methods to a Class Diagram 
Methods are defined in the Visible Analyst repository. Bring the “Registration Class Objects” 
CLD to the working diagram position and follow these steps: 
 
Move to Repository: 1 Select the class object “Registrations” and double-click  

the left mouse button to go to its repository entry. 
 
Methods Window: 2 Move to the third page of the repository dialog box by 

clicking the Methods/Friends tab. 
    

3 Move the cursor to the Methods field. 
 

4 Click the Attributes Details button or select Add/Change 
from the Repository Object menu that is displayed when 
you right-click in the Methods field. 

 
Enter Methods:  5 Define methods for the Registration. To do this, click the  

New button to name the new method “Registration 
Renewal,” and click OK.  Type “Data Element” in the 
Returns field, and “6” in the Limit field. Select Value in 
the By area, Public in the Visibility area, and None in the 
Qualification area.  (Refer to Figure 10-4.)  Repeat this 
process for new methods “Create New Registration” and 
“Suspend Registration.” 

 
 
 
 
 
 
 
 
 
 
 
 



The Class Diagrams 
 

 150 

 
        Figure 10-4  Method for Registration Object 

 
6 Click Close to return to the Define dialog box.   
 
7 Click Save, then Exit to return to your diagram. 

 
Enter More Methods: 8 Double-click on the Trailers class object to display its  

repository entry, then click the Methods/Friends tab.   
 

9 Click the Attributes Details button to display the Methods 
Definition dialog box. 

 
10 Click the New button, and type “Weight Specification” in 

the Name field.  Click OK. 
 

11 Type “Data Element” in the Returns field, and type “1” in 
the Limit field. Select Reference in the By area, Public in 
the Visibility area and None in the Qualification area. 

 
12 Click Close to return to the Define dialog box.   

 
13 Click Save, then Exit to return to your diagram. 

 
14 Select Vehicles, then right-click to display its Object 

menu. 
 



The Class Diagrams 
 

 151 
 

 

15 Select Define to display its repository entry. 
 

16 Click the Methods / Friends tab and put the cursor in the 
Methods box. 

 
17 Right-click to display the Object menu, and select 

Add/Change to display the Method Definition dialog box. 
 

18 Click the New button and name the new method “Motor 
Number Specification.” Click OK. 

 
19 Type “Data Element” in the Returns field and “1” in the 

Limit field.  Select Reference in the By area, Public in the 
Visibility area, and None in the Qualifications area.  Click 
Close. 

 
20 Click Save, then Exit to return to your diagram. 
 

 
Note 

 The attributes and/or methods for an object can be displayed on object model 
diagrams.  This is done by making the appropriate selection of items to display 
from the View menu Class options window. 

 

ANALYZING THE CLASS DIAGRAM 
The Analyze function evaluates the following conditions of a class diagram. 
• Syntax errors.  These are errors that would make your class diagram impossible for 

Visible Analyst to understand. 
• Connection errors.  These indicate classes are improperly associated with other classes. 

Different rules apply depending on whether the relationship type is normal, inheritance or 
aggregation. 

• Use errors.  These indicate classes have not been used, either on a diagram or in the 
definition of another class. 

• Definition errors.  These indicate a class definition is incomplete; attributes or methods 
have not been defined.  Different rules apply depending upon the class subtype. 

 
Execute Analyze:  1 With your diagram for “Registration Class Objectives” in  

the active diagram window, select Analyze from the 
Diagram menu. 

 



The Class Diagrams 
 

 152 

2 Review your error messages and decide an appropriate 
corrective step. 

 
3 Save the diagram when finished. 

 



State Transition Diagramming 
 

 153 
 

 

Lesson 11 

State Transition Diagramming 
 

OVERVIEW 
The state transition model defines the dynamic changes that occur in the life history of an 
object. The understanding of the different states and the conditions that trigger the changes 
from state to state represent the programmatic modules that must be built to allow the 
application to perform in harmony with the real world. State transition modeling consists of 
defining each stable state of an object and then defining the triggers or events that cause the 
object to change to another state. For example, an object “customer order” could be defined in 
states such as completed, back-ordered, partial, awaiting shipment, in-shipment, delivered, 
lost, overdue, billed-but-not-paid, paid partial, paid-in-full, etc. As the states are natural 
positions, and the events or triggers actions on the objects, the transitions from one state to 
another represent the operations modules of a system. In addition, the attributes that define the 
state condition are established and can be used to develop the triggers and event processes. 

Definitions 
The components of state transition modeling include: 
 
State  The condition that an object can be at rest in. The state can be defined as a  

class of objects. 
 

Triggers  The action or change of condition that will cause an object to change from  
  one state to another. 
 
Transitions The steps that the object passes through in transition from one state to  

another. 

Relationships 
The relationship structure in a state transition diagram (STD) is directional arrows showing 
how an object moves from one state to another. The indication of the event triggers and the 
transition steps are outlined on the relationships. 



State Transition Diagramming 
 

 154 

DEVELOPING YOUR STATE TRANSITION MODEL 
Each state transition model is composed of objects and provides a sequence of steps for each 
major transition within a project. The state transition model can be linked to the object class 
models using the nesting concept.  
 
When beginning your state transition model you can enter the objects or nest down to the 
STD from a class diagram. For the lesson exercise, you develop the state transition model for 
the registrations in the DMV application. You use the definition that a registration can be in 
the following states: 
• Never Registered (New Vehicle) 
• Registered 
• Unregistered 
• Renewal Registration 
• Registration Expired 
• Vehicle Resold 
 
These states and their transitions provide a reasonable picture of the processing requirements 
for the registration application. 

Adding States To A View 
The basic building block of the state transition model is the state entity. The relationships 
between states represent the transitions. 
 
Set the Zoom Level: 1 From the View menu, select 66% zoom so that you  

can see all of the needed workspace. 
 
Create a New Diagram: 2 From the File menu select New Diagram. 
 

3 Select the diagram type State Transition Diagram. 
 

4 Select Standard Workspace. 
 

5 Click OK. 
 
Add States:  6 Click the first symbol button, the rectangle, on the  

control bar.  This is the state object. 
 

7 Place the cursor in the middle of the diagram workspace 
and click the left mouse button. A state object is drawn. 

 
8 Label this state “Registered.” 



State Transition Diagramming 
 

 155 
 

 

 
9 Add the rest of the state objects as shown in Figure 11-1. 

 
Save the Diagram: 10 Save the state model with the label “Registration  

States.” 
 

Adding Relationships To The State Model 
The relationships in a state model define the transitions that occur to produce the various 
states. The transitions are events or triggers that cause the state to change from one value to 
another. 
 
Build Relationships: 1 Select elbow line type in the control bar and begin the 

connections from the state of Never Registered to 
Registered. This process is similar to the one used in 
defining entity relationships. 

 
2 Label the transition “Vehicle is Purchased.”  
 
3 Continue the relationship labeling until the model is 

complete, as shown in Figure 11-1. 
 

Save:   4 Select Save from the File menu. 
 
 
 
                                                          Note 

 The state model is the dynamic view of the objects in the class model.  The Nest 
process can be used to link the class objects to their dynamic state transition 
diagrams. To do this return to your class diagram and select the Registration 
class.  Then choose Nest/Explode from the File menu. 

 
 
 
 
 
 
 

 
          
   



State Transition Diagramming 
 

 156 

                        
                                  Figure 11-1  Completed State Transition Diagram 



Activity Diagramming 
 

 157 
 

 

Lesson 12 

Activity Diagramming 
 

OVERVIEW 
The activity diagram describes the sequencing of activities, with support for both conditional 
and parallel behavior.  An activity diagram is a special form of a state diagram in which the 
states represent the performance of actions and the transitions are triggered by the completion 
of the actions. The activity diagram can be attached to a class or to the implementation of an 
operation or a Use Case. The purpose of an activity diagram is to focus on flows driven by 
internal processing (as opposed to external events). Usually activity diagrams are constructed 
in situations where all or most of the events represent the completion of internally generated 
actions. 
 

DEFINITIONS 
The main components of an activity diagram include: 
 
Activity   An activity is a state of doing something. It could be a task such as  

receiving a payment, or the execution of a software routine, such 
as a method on a class. It is represented by a rectangle with 
rounded corners. 

 
Decision   A decision is used when more than one activity can be performed  

next, based on a certain condition. There is a single incoming 
transition and several guarded outgoing transactions. The guards 
are mutually exclusive and so only one of the outgoing transactions 
is followed. A diamond denotes the decision start and end. 

 
Synchronization Bar A synchronization bar is used to show parallel activities. It is  

represented by a black bar with one or more input transitions and 
one or more output transactions, that are all taken in parallel. This 
means that the sequence of the output transactions is irrelevant. In 
order to show that all the parallel activities need to be completed 
before the following activities, use a second synchronization bar 
that has multiple incoming transactions and a single outgoing 
transaction. The outgoing transaction is taken only when all the 
incoming transactions are completed. 



Activity Diagramming 
 

 158 

 
Start   The start object designates the starting point of the activity diagram  

and is represented by a filled circle. 
 
End    The ending point of the activity diagram is represented by a filled  

circle inside a hollow circle. 
 
Swimlane  A swimlane is a way of designating responsibility for each action  

state. An activity diagram may be divided visually into 
''swimlanes''; each separated from neighboring swimlanes by 
vertical solid lines on both sides. Each action is assigned to one 
swimlane.  

 
Transition  Represented by a solid line with a stick arrowhead, transitions  

may cross swim lanes. Transitions are implicitly triggered by the 
completion of the preceding them. The transitions may include 
guard conditions and actions. It is labeled by a transition string of 
the form ‘Event [guard]/Action’. All components of the transition 
string are optional 

 

RELATIONSHIPS 
The relationship structure in an activity diagram is directional arrows showing how the order 
in which the activities occur.  The completion of one activity triggers the flow to move on to 
the next activity as dictated by the arrows. 
 
 



Activity Diagramming 
 

 159 
 

 

 
Figure 12-1  Activity Methodology Symbols 

 
 

DEVELOPING YOUR ACTIVITY DIAGRAM 
An activity diagram is a variety of activity states arranged in the sequence in which they must 
be performed.  For our tutorial example, we look at the process of getting a driver’s license. 
 

Designating the Starting Point 
For every activity diagram there has to be a designated starting point shown on the diagram 
with a filled circle. 
 
 
 

Set the Zoom Level: 1 From the View menu, select 66% zoom 
so that you can see all of the needed 
workspace. 
 



Activity Diagramming 
 

 160 

Create a New Diagram: 2 From the File menu, select New 
Diagram. 
 

 3 Select the diagram type Activity. 
 

 4 Select Standard Workspace. 
 

 5 Click OK. 
 

Add Start: 6 Click the fourth symbol button, the filled 
circle, on the control bar. This is the start 
object. 
 

 7 Place the cursor in the top center of the 
workspace, and click the left mouse 
button. The starting point is drawn on the 
diagram. 
 

Save the Diagram: 8 Save the activity diagram with the label 
“Driver’s License Activity Diagram”. 
 

 

Adding A Synchronization Bar 
A synchronization bar is helpful in depicting activities that are performed in parallel. For 
instance in our example, the receiving clerk can receive the application form and proof of 
insurance simultaneously.  It is not important which order they are received in. Furthermore, 
the next activity of validating the applicant can be performed only after both application and 
insurance proof have been received. The synchronization bar denotes the starting and ending 
of activities performed in parallel. 
 
 

Add Synchronization Bar: 1 Click the third symbol button, the bar, on 
the control bar. This is the 
synchronization bar that denotes forks 
and joins. 
 

 2 Place the cursor under the start circle and 
click the left mouse button. A 
synchronization bar is drawn. 
 

 3 Add the other bar as shown in the Figure 
12-2. 



Activity Diagramming 
 

 161 
 

 

 
Save the Diagram: 4 Save the activity diagram. 

 

Adding Activities  
Activities are the basic building blocks of the activity diagram. By determining what activities 
need to be performed, and arranging them in the order in which they are performed, with 
support for conditional and parallel behavior, the activity diagram is complete. Activities are 
represented as rectangles with the activity described inside the rectangle. 
 
 

Add Activities: 1 Click the first symbol button, the 
rectangle, on the control bar. This is the 
activity (state) object. 
 

 2 Place the cursor under the start circle 
and click the left mouse button. An 
activity is drawn. 
 

 3 Label this activity “Receive Road Test 
Form/Learner’s Permit”. 
 

 4 Add the rest of the activities as shown in 
the Figure 12-2. 
 

Save the Diagram: 5 Save the activity diagram. 
 

Adding Decisions To A View 
In a process, some activities may occur only if a certain condition is met; otherwise certain 
other activities are carried out. The decision diamond marks the beginning and end of 
conditional behavior. In our example, only if an applicant is deemed valid does the testing 
procedure continues; otherwise the applicant is informed why his/her application was deemed 
invalid and the process ends there. 
 
 

Add Decision: 1 Click the second symbol button, the 
diamond, on the control bar. This is the 
decision object. 
 

 2 Place the cursor under the activity 
“Validate Applicant” and click the left 



Activity Diagramming 
 

 162 

mouse button.  A decision symbol is 
drawn. 

   
 

 3 Add the rest of the decisions as shown in 
the Figure 12-2. 
 

Save the Diagram: 4 Save the activity diagram. 
 

Adding Stopping To A View 
The stopping point for a process is denoted with a filled circle inside a hollow circle. 
 

Add Stop: 1 Click the fifth symbol button, the filled 
circle inside a hollow circle, on the 
control bar. This is the ending object. 
 

 2 Place the cursor under the activity 
“Validate Applicant” and click the left 
mouse button. An ending symbol is 
drawn.   
 

 3 Add the rest of the decisions as shown in 
the Figure 12-2. 
 

Save the Diagram: 4 Save the activity diagram 
   

 

Adding Transitions To A View 
Transition lines are arrows that communicate the order in which the activities need to be 
carried out. They can be labeled or left unlabeled. 
 
 

Turn Off Auto Label Lines: 1 Select the Options menu and click 
Auto Label Lines, so that it is not 
checked anymore. 
 

Add Transition: 2 Click the symbol button labeled 
‘event’, the horizontal arrow, on the 
control bar. This is the transition 
symbol. 



Activity Diagramming 
 

 163 
 

 

 
 3 Place your cursor on the start object.  

Click the left mouse button and hold 
down as you drag the cursor down to 
the first synchronization bar. 
 

 4 Add the rest of the transitions as shown 
in the Figure 12-2. 
 

Save the Diagram: 5 Save the activity diagram. 
 

Adding Labels to Transition Lines 
 

Select the Transition to be 
labeled: 

1 Click on the transition leading to the 
activity “Test Vehicle Knowledge”. 
 

Add Transition:  2 Click the right mouse button and 
choose Change Item. 
 

 3 Type ‘valid’ in the Event Name field 
and click OK. 
 

 4 Add the rest of the labels as shown in 
the Figure 12-2. 
 

Save the Diagram: 5 Save the activity diagram. 
 
 
 

Adding Swimlanes To A View 
Swimlanes depict responsibility.  One can use swimlanes to depict which people or 
departments are responsible for which activities. In programming, this translates to assigning 
a class to each activity.  In our example, we can identify two DMV departments that would be 
responsible for the activities in our diagram. The testing department would take care of 
performing the actual tests, and evaluating the test results; while DMV administration staff 
would perform the other duties such as accepting applications, validating applicants, issuing 
licenses to qualified applicants, etc. 
 
 

Add Swimlane: 1 Click the sixth symbol button, the 



Activity Diagramming 
 

 164 

rectangle, on the control bar. This is the 
swimlane object. 
 

 2 Name this swimlane “DMV 
Administration”. 
 

 3 Place the cursor above the start object 
and click the left mouse button. A 
swimlane symbol is drawn.   
 

 4 Click the arrow to activate select mode. 
 

 5 Select the swimlane you just drew and 
expand its size by a clicking and 
dragging at its ends. Make sure the 
activities that are DMV 
Administration’s responsibility fall in 
this swimlane as shown in Figure 12-2. 
 

 6 Add the other swimlane as shown in 
the Figure10-2. 
 

Save the Diagram: 7 Save the activity diagram. 
 
 



Activity Diagramming 
 

 165 
 

 

 
 

Figure 12-2  Activity Diagram 
 



Activity Diagramming 
 

 166 



Use Case Diagramming 
 

 167 
 

 

 

Lesson 13 

Use Case Diagramming 

OVERVIEW 
A Use Case diagram is a representation of a set of activities that are performed to satisfy user 
goals. It is based on the premise that a user interacts with a business system to obtain benefits 
and satisfaction.  
 
A Use Case diagram defines a set of transactions and the flow of events that occur from the 
time the user first starts using the system until the user’s goals are satisfied. The Use Case 
diagram includes ‘actors’ representing the typical kinds of users that will interact with the 
system. The actors then communicate with ‘Use Cases’, representing the activities that are 
needed to satisfy the user goals. 
 
The Use Case diagram focuses on ‘what’ a business process must do as opposed to ‘how’ a 
business process is implemented. 
 

DEFINITIONS  
A Use Case diagram includes the following components: 
 
System Boundary   A system boundary is a rectangular box representing the business  

processes supported by an information system. 
 

Use Case    A Use Case is an elliptical shape representing an activity included  
in an information system.  
 

Actor.    An actor is a stick person shape representing a role or a set of roles  
that a user plays. 

 
 
 
 
 
 



Use Case Diagramming 
 

 168 

 
 

 
 

Figure 13- 1   Basic Use Case Components 
 
The following general rules apply to the Use Case components: 
• A Use Case symbol is positioned inside the system boundary. 
• A Use Case diagram may include one or more Use Cases. 
• An actor is positioned outside the system boundary.  
• A Use Case diagram may include one or more actors.  
• An actor communicates with one or more Use Cases. 
 



Use Case Diagramming 
 

 169 
 

 

RELATIONSHIPS 
A relationship is represented as by a line from one object to another. The following 
relationships may be shown in a Use Case diagram: 
 
• Communicates.  The communicates relationship is represented by a solid line with no 

arrow, and is drawn between an actor and a Use Case. 
• Includes. The includes relationship signifies that a Use Case contains behavior that is 

common to more than one Use Case. Thus the common Use Case is ‘included’ in the 
other Use Cases. The includes relationship is represented with a dashed line with an 
arrow. An includes relationship may exist between Use Cases, but not between actors.  
The arrow points to the common or shared Use Case. 

• Extends. The extends relationship signifies that one Use Case possesses behavior that 
enables the other (extended) Use Case to handle an exception, or a variation from the 
usual. The extends relationship is represented with a dashed line with an arrow to the 
basic Use Case. The extends relationship may only exist between Use Cases (not between 
actors).  When specifying an extends relationship, you may also specify one or more 
extension points. An extension point represents additional information that needs to be 
gathered in order to complete the transaction.   

• Generalize.  The generalize relationship signifies that one thing is more usual or typical 
than the other thing. A generalize relationship may exist between two Use Cases, as well 
as between two actors. It is represented with a dashed line with an arrow. The arrow 
points to the Use Case (or actor) that generalize the other Use Case (or actor). 

 

Examples of Relationships 
The following is a discussion of the relationships presented in Figure 13-2. 
• Actor Communicates with Use Case 

An example is an actor ‘communicates’ with a Use Case. This is the most common 
relationship found on Use Case diagrams.  

• Use Case ‘Authorize Transaction’ included in Use Case 
The Use Case ‘Deposit Cash’ and ‘Pay Bill’ include the common Use Case ‘Authorize 
Transaction’. 

• Actor ‘Regular Customer’ Generalizes Actor ‘VIP Customer’ 
An example is an actor having a set of roles that ‘generalize’ another actor’s roles. For 
example, a ‘regular customer’ is a generalization of a ‘VIP Customer’. 

• Use Case ‘Arrange Financing’ Extends Use Case ‘Sell Automobile’ 
The extended Use Case provides additional steps concerning the setup of the loan. The 
basic Use Case ‘Sell Automobile’ involves a cash sale.   

 
 
 



Use Case Diagramming 
 

 170 

 
Figure 13-2 Use Case Relationships 



Use Case Diagramming 
 

 171 
 

 

DESCRIBING USE CASE ACTIVITIES 
Visible Analyst provides the following basic attributes for describing a Use Case activity: 
 
• Name.  The name of the Use Case that appears on the diagram. 
• Description.  A brief description of the Use Case object. 
• Alias.  An alternate name for the Use Case. Up to ten aliases are permitted. 
• Scenario.  A complete description of the business scenario, up to 64,000 characters. 
• Notes.  Optional comments concerning the Use Case, up to 64,000 characters.  

 

DEVELOPING YOUR USE CASE DIAGRAM 
The business analyst creates one or more Use Case diagrams to fully explore the following 
questions: 
 
Who will be the users of a business system? 
Classify the kinds of users by defining an actor for each distinct role played by the users. 
 
What goals does the system satisfy? 
Consider the benefit or added value that the actor is seeking 
 
What Use Cases are needed? 
Consider the flow of events that will occur when a typical user who comes prepared with 
complete and accurate information and any prerequisites such as having enough cash or 
credentials.  Make sure the Use Cases will satisfy the base case scenario. Then consider what 
activities are needed to handle the exceptions. 
 
Ultimately, after exploring the above questions, you have one or more Use Case diagrams to 
create using Visible Analyst. Use the following procedures to create a Use Case diagram. 
 

BUSINESS SCENARIO 
The following is a business scenario that will be rendered using Use Cases. 
 
An applicant visits a Department of Motor Vehicle’s driver testing facilty, and provides the 
registrar with a personal details including name, address, and telephone number, as well as 
proof of automobile insurance and a learner’s permit. The registrar schedules a driver road 
test and written examination with a certified driver examiner. After passing the theoretical and 
practical tests the applicant is issued a drivers licence. 
 
There are two actors in this scenario: the registrar and the driver examiner. 



Use Case Diagramming 
 

 172 

• The registrar interacts with the system by registering applicants, by setting up 
appointments for driver tests, and by issuing drivers licences to successful applicants. 

• The driver examiners interact with the system by scheduling their availability, and by 
conducting driver tests. 

 
The objective is to create a Use Case diagram that includes the following Use Cases: 
• Register Applicant 
• Schedule Driver Test 
• Conduct Driver Tests 
• Issue Licence 
 

Adding System Boundaries, Actors, and Use Cases 
The following procedure enables the analyst to create a Use Case diagram and add system 
boundaries, actors and Use Cases. 
 
Set the Zoom Level:  1 From the View menu, select 66% zoom so you can see all 

the needed workspace. 
 

Create a New Diagram: 2 From the File menu select New Diagram. 
 

 3 Select the diagram type Use Case Diagram. 
 

 4 Select Standard Workspace 
 

 5 Click OK. 
 

Add System Boundary: 6 Click on the third symbol button, the rectangle, on the 
control bar. This is a system boundary. 
 

 7 Label this system boundary “Driver Registration System”. 
 

 8 Select the system boundary to highlight the system 
boundary, and its sizing handles. Then adjust the size and 
position of the system boundary so there is enough room to 
the left of the boundary to place actors, and enough room 
inside the boundary to place Use Cases.  
 

Add Actors: 9 Click on the first symbol button, the actor, on the control 
bar. Place the symbol on the diagram. 
 

 10 Label this actor “Registrar”. 



Use Case Diagramming 
 

 173 
 

 

 
 11 Add the rest of the actors as shown in Figure 13-3. 

 
Add Use Cases: 12 Click on the third symbol button, the Use Case, on the 

control bar. Place the symbol on the diagram. 
 

 13 Label the Use Case “Register Applicant”. 
 

 14 Add the rest of the Use Cases as shown in Figure 13-3. 
 

Save the Diagram 15 Save the Use Case diagram with the label  
Introductory Use Case. 

 
  

Adding Relationships 
The following procedure enables the analyst to add relationships to a Use Case diagram.  
 
Adding a Communicates 
Relationship between an Actor 
and Use Case: 
 

1 Select the first relationship button, the solid line 
Communicates. Begin the line on the actor “registrar” 
and end the line on the Use Case “Register Applicant”. 

Adding an Includes Relationship 
between Use Cases: 

2 Select the second relationship button, the dotted arrow 
Includes. Begin the line on the Use Case “Register 
Applicant” and end the line on the Use Case “Collect 
Payment”. 
 

 3 Add the rest of the relationships as shown in Figure 13-3. 
 

Save the Diagram: 4 Save the Use Case diagram.  
 

  



Use Case Diagramming 
 

 174 

 

  
Figure 13-3  Introductory Use Case Diagram 

 



Sequence Diagramming 
 

 175 
 

 

Lesson 14 

Sequence Diagramming 

OVERVIEW 
A sequence diagram is a type of interaction diagram. Interaction diagrams describe how 
groups of objects interact and collaborate in performing a behavior. There are two types of 
interaction diagrams that basically model the same information: sequence diagrams and 
collaboration diagrams. In a sequence diagram, the interaction is modeled in time sequence.  
Generally, an interaction diagram captures the behavior of a single use case. The sequence 
diagram shows several objects participating in the interaction and the messages that are 
passed among these objects. The diagram shows the objects by their ''lifelines'' and the 
messages that they exchange arranged in time sequence. It does not show the associations 
among the objects. The associations can be obtained from the complementary collaboration 
diagram. 
 
A sequence diagram has two dimensions: the vertical dimension represents time and  the 
horizontal dimension represents different objects. Normally time proceeds down the page. 
(The dimensions may be reversed if desired.) Usually only time sequences are important; but 
in real-time applications, the time axis could be an actual metric. There is no significance to 
the horizontal ordering of the objects. Often call arrows are arranged to proceed in one 
direction across the page; but this is not always possible, and the ordering does not convey 
information.  
 

DEFINITIONS 
The components of the sequence diagramming process include: 
 
Object    An object is defined as an instance of a class. It is drawn as a  

rectangle with the name of the object and class name inside the  
rectangle. 

 
Class    A class is a group of objects with the same data structure  

(attributes) and behavior (operations). A class is an abstraction that 
describes properties that are important to an application. 

 
Lifeline     The lifeline represents an object’s life and existence during the  

time period of the interaction. A dashed vertical line is the symbol  
of a lifeline. An object symbol is drawn at the top of the lifeline. 



Sequence Diagramming 
 

 176 

 
Activation   An activation shows the time period during which an object is  

performing an action. It represents both the duration of the action 
in time and the control relationship between the activation and its 
callers. An activation is shown as a tall thin rectangle whose top is 
aligned with its initiation time and whose bottom is aligned with its 
completion time. Activation symbols are drawn on the top of an 
object’s lifeline. 

 
Message   A message is a communication from one object to another, usually  

communicating an order to perform an action. A message is 
represented by a horizontal solid arrow from the lifeline of one 
object to the lifeline of another object. The time order in which 
these messages occur is shown top to bottom on the page. Each 
message can be labeled with a message name, conditions, return 
arguments, etc. 

 
Self Call   This is a message that an object sends to itself. It is represented by  

a message arrow originating at the object lifeline and looping 
around to end at the same lifeline. 
 

Object Deletion  Objects that are deleted by a message or self-destruct during the  
time period of the interaction have a large X drawn at the bottom 
of their lifeline. 

 
Return    A return is a message that is not a new message, but rather a return  

message from an object to which a new message was previously  
sent. It is labeled with a dashed line rather than a full line. 

 
Condition   Some messages are sent only when a certain condition is true. In  

this case, you can label the message with the controlling condition. 
 
Asynchronous Message  An asynchronous message is one that does not stop the caller  

object from continuing processing. 
 
 
 
 
 
 
 
 
 



Sequence Diagramming 
 

 177 
 

 

                 
Figure 14-1  Sequence Diagram Symbols 

 
 

DEVELOPING YOUR SEQUENCE DIAGRAM 
The sequence diagram primarily is composed of a group of objects and the messages that are 
passed between them.    

Adding Objects 
Objects are the basic building blocks of the sequence diagram. The objects are usually placed 
horizontally across the page in no particular order, while the vertical axis denotes time 
sequence. Objects used on the sequence diagram may already exist in the repository, or they 
may be new objects created during the time period of the interaction.   
 



Sequence Diagramming 
 

 178 

Each object will have a dashed vertical line under it, representing its lifetime. If the object is 
created or destroyed during the period of time shown on the diagram, its lifeline starts or stops 
at the appropriate point. Otherwise, it goes from the top to the bottom of the diagram. 
 
 

Set the Zoom Level: 1 From the View menu, select 66% zoom so 
that you can see all of the needed workspace. 
 

Create a New Diagram: 2 From the File menu, select New Diagram. 
 

 3 Select the diagram type Sequence. 
 

 4 Select Standard Workspace. 
 

 5 Click OK. 
 

Add Object: 6 Click the first symbol button, the rectangle, on 
the control bar. This is the object symbol. 
 

 7 Place the cursor in the top left of the 
workspace and left-click the mouse. The 
object is drawn and you are prompted for an 
object name and class name. Leave the object 
name field blank. Type “Application Entry 
Window” as the class name. Click OK. 
 

 8 You are prompted to create a new class if it 
doesn’t already exist. Click the Yes button. 
 

 9 Add the rest of the objects as shown in the 
Figure 14-2. 
 

Save the Diagram: 10 Save the sequence diagram with the label 
“DMV Sequence Diagram”. 
 

 
 
 
 
 
 
 
 



Sequence Diagramming 
 

 179 
 

 

         
 

Figure 14-2  Sequence Diagram with Objects 
 

Adding Activation Symbols 
An activation represents the time period during which an object is performing an action. It 
represents both the duration of the action in time and the control relationship between the 
activation and its callers. An activation is shown as a tall thin rectangle whose top is aligned 
with its initiation time and whose bottom is aligned with its completion time. The incoming 
message may indicate the action. In procedural flow of control, the top of the activation 



Sequence Diagramming 
 

 180 

symbol is at the tip of an incoming message (the one that initiates the action) and the base of 
the symbol is at the end of a return message.    
 
In the case of a recursive call to an object with an existing activation, the second activation 
symbol is drawn slightly to the right of the first one so that they appear to ''stack up'' visually.  
Before drawing the second activation symbol, lengthen the size of the original activation 
symbol by grabbing the symbol handles when the object is highlighted. After drawing the 
second activation symbol on top of the first symbol, increase the width of the second symbol 
so that it visually “stacks up” over the first symbol. 
 

Add Activation Symbol: 1 Click the second symbol button, the narrow 
vertical bar, on the control bar. This is the 
activation symbol.  
 

 2 Place the cursor on the “Application Entry 
Window” object’s lifeline, and click the left 
mouse button. An activation symbol is drawn 
on top of the object’s lifeline. 
 

 3 Add the other activation bars as shown in the 
Figure 14-3. You can size the length of the 
activation symbols by clicking on the 
rectangle and dragging the edges. 
 

Save the Diagram: 4 Save the sequence diagram. 
 
 
 
 
 
 
 
 
 
 
 

  



Sequence Diagramming 
 

 181 
 

 

  

     
 

Figure 14-3  Sequence Diagram with Activation Symbols Added 
 
 
 



Sequence Diagramming 
 

 182 

 

Adding Object Deletion 
Objects can be deleted during an interaction during the time represented on a sequence 
diagram. Objects that are deleted by a message or that self-destruct during the time period of 
the interaction have a large X drawn at the bottom of their lifeline. In our example, the object 
Application is created when a new application is received and is deleted after the application 
has been processed. 
 

Add Object Deletion: 1 Click the third symbol button, the X, on the 
control bar. This is the object deletion symbol. 
 

 2 Place the cursor under the “Application” 
object lifeline and click the left mouse button.  
An object deletion symbol is drawn. Add the 
other object deletion symbols as shown in 
Figure 14-4. 
 

Save the Diagram: 3 Save the sequence diagram. 
   



Sequence Diagramming 
 

 183 
 

 

     
 

Figure 14-4  Sequence Diagram with Object Deletion Symbols Added 

Adding Procedure Calls to the Diagram 
Messages that are procedure calls can be passed from one object to another.  It is basically a 
command for the receiving object to perform a certain action. When adding any message, 
there are certain pieces of information you are required to enter: 
 
• Name.  Name of the message. 



Sequence Diagramming 
 

 184 

• Type.  A message can be of three types:  procedure call, flat flow of control, or 
asynchronous stimulus.   

• Occurs Many Times.  This is a flag that indicates whether a message is sent many times 
to multiple receiver objects. 

• Guard Condition.  If the message is to be sent only if a condition is met, this field will 
contain that condition. 

 
In our example, the object Application Entry Window submits an application to the object 
DMV Validation when a new application is accepted. This is an example of an unconditional 
procedure call. The Application object sends a message to the object License to create a new 
license. However, this message is sent only if the applicant passes the driving test. This is an 
example of a conditional procedure call.  
 

Add Procedure Call: 1 Click the first arrow button, the bold full 
arrow on the control bar. This is the procedure 
call arrow. 
 

 2 Place the cursor on the activation bar under 
the “Application Entry Window” object and 
click the left mouse button. Holding the left 
mouse button down, drag the cursor to the 
activation bar under the “”Application” object 
and release the left mouse button. The Label 
Message dialog box appears. 
 

 3 The Label Message dialog box appears. Click 
New Method and type “New” for the name of 
the method. Click OK to return to the Label 
Message window. Click OK again to exit this 
window. 
 

Add Procedure Call with 
Condition: 

4 Place the cursor on the activation bar under 
the “Application” object and click the left 
mouse button. Holding the left mouse button 
down, drag the cursor to the activation bar 
under the “DMV Database” object and release 
the left mouse button. 
 

 5 The Label Message dialog box appears. Click 
New Method and type “Update Success” as 
the method name. Click OK to return to the 
Label Message dialog box. Type “passed” in 
the guard condition field and click OK. 



Sequence Diagramming 
 

 185 
 

 

 6 Add the rest of the procedure calls as shown 
in Figure 14-5. 
 

Save the Diagram: 7 Save the sequence diagram. 
 
 

 

       
 

Figure 14-5  Sequence Diagram with Procedure Calls Added 



Sequence Diagramming 
 

 186 

Adding Return to the Diagram 
An object can send a message in response to a message sent to it earlier. In our example, the 
application object returns the message sent to it by the application entry window object. 
 
 

Add Return: 1 Click the fourth arrow button, the dashed 
arrow, on the control bar. This is the return 
symbol. 
 

 2 Place the cursor on the activation bar under 
the “Drive Test” object and click the left 
mouse button. Drag the cursor to the 
activation bar under the “Application” and 
release the mouse button. A return arrow is 
drawn. 
 

Save the Diagram: 3 Save the sequence diagram. 
 

 

Adding Text Notes to the Diagram 
 

Add Note: 1 Click the rightmost button on the toolbar, an 
uppercase T.  This is the Add Text button. 
 

 2 Place the cursor under the procedure call 
isdrvok() and click the left mouse button.  
The Add Text window appears.  Type 
“passed = isdrvok()” and click OK.  The note 
is added to the diagram. 
 

Save the Diagram: 3 Save the sequence diagram. 
 

 
 
 
 
 
 
 
 
 



Sequence Diagramming 
 

 187 
 

 

    
 

Figure 14-6   Completed Sequence Diagram 



Sequence Diagramming 
 

 188 

 



Collaboration Diagramming 
 

 189 
 

 

Lesson 15 

Collaboration Diagramming 

OVERVIEW  
UML includes specifications for two forms of interaction diagrams: sequence diagrams and 
collaboration diagrams. Both diagrams present the objects participating in a business scenario 
and show the messages sent and received. 
 
The sequence diagram uses ‘lifelines,’ parallel bars drawn below the objects, so that the 
sequence of messages sent and received can be understood by looking at the diagram from top 
to bottom. On the other hand, in a collaboration diagram the objects are arranged so that the 
basic relationships are highlighted; and sequence numbers are used to order the messages sent 
and received. 
 
A collaboration diagram consists of a set of objects that together carry out a scenario, the links 
between the objects, and details concerning the messages sent and received. A collaboration 
diagram can be drawn at the class level or at the instance level.  
• At the class level, it shows the associations or relationships between the different classes. 
• At the instance level, it shows the links or messages that are passed between the 

instances. 
 

DEFINITIONS 
The important diagram constructs in collaboration diagrams include: 
 
Object    An object appears in as a plain rectangle with an underlined title. It  

represents an entity with a well-defined boundary and identity that 
encapsulates state and behavior. A collaboration diagram may be 
populated with objects representing different classes, as well as 
objects representing specific instances in a class. 
 

Note   A note appears as a rectangle with the top right corner folded over.  
A note is used to record descriptive text that appears on the 
diagram. 

 
 
 



Collaboration Diagramming 
 

 190 

Object Link    An object link appears as a solid line connecting two objects and  
represents the fact that there is a relationship between the two 
objects. Visible Analyst automatically adds an object link (as part 
of the task) when a message is drawn between two objects. 

 
Procedure Call   A procedure call is a message between two objects, appearing as a  

filled solid arrow. The target object (at the arrowhead end) must 
complete its task before the calling process can continue. 
 

Flat Flow of Control   Flat flow of control is a message between two objects, appearing as  
a stick arrowhead and signifying the passing of control from the 
originating object to the target object. 
 

Asynchronous Stimulus Asynchronous stimulus is a message between two objects,  
appearing as a half-stick arrowhead, and used instead of a stick 
arrowhead to show an asynchronous communication between two 
objects in a procedural sequence. 
 

Return     A return is a message between two objects, appearing as a dashed  
arrow with a stick arrowhead, and represents a return from a 
procedure call. 
 

Self-Delegation  Self-delegation is a message from an object to itself, appearing as a  
recursive arrow. 

 
Note Link  A note link appears as a dotted line connecting an object with a  

note. 
 

DEVELOPING YOUR COLLABORATION DIAGRAM 

Describing Scenarios using a Collaboration Diagram 
The business analyst creates a collaboration diagram to explore the following questions: 
• What objects are included in the scenario? 
• What messages are sent and received? 
• What is the sequence of the messages? 
 
The objects that are included in a scenario are typically part of the enterprise model. For 
example, an object introduced to the repository using the class diagram can certainly be 
reused in a collaboration diagram. See Lesson 10, The Class Diagrams.  



Collaboration Diagramming 
 

 191 
 

 

Object Instances Versus Object Classes 
The objects appearing in a collaboration diagram may represent object instances or object 
classes. The way in which an object is identified determines if the object is an instance or a 
class. When the name is specified, it means this object represents a particular object instance. 
For example ‘John Smith:: Applicant’ represents the fact that ‘John Smith’ is a member of the 
‘Applicant’ class. If no object name is specified, the object represents the class.  
 
Note the object class must always be specified. The object identifier is separated into two 
parts using a double colon (::); the first part specifies the name, the second part the class.   
 
Object Methods 
The messages sent to and from an object must ‘fit’ the object, or correspond with its methods. 
Only methods from the derivation tree of the target (the one receiving the message) object's 
class can be used. All available methods are displayed in the drop-down list. If you want to 
create a new method, click the New Method button.  
 
If the method has arguments, you can specify values for the arguments by clicking the Values 
button. By default the name and type for the method are displayed. If you want to change the 
argument list of the method, click the Change Arguments button.  
 

 Note  The degree to which you can change method or message attributes 
depends on your rights to the target object's class and the interaction diagram 
settings. 

 
Object Links 
A Label Message dialog box appears when an object link is drawn between two objects. You 
must then supply details concerning the messages. If you are not ready to define these details 
(or wish to define them a later), you can delete the message icons, and retain the object link as 
a solid line. 
 
Messages 
Messages are added to the collaboration diagram to describe the way in which the objects will 
work together.  
 
The following information is maintained for each message:  
• To and From.  The name of the target object and source object. This can be switched by 

clicking the reverse button.  
• Type.  The type of message, either asynchronous stimulus, flat flow of control, or 

procedure call. 
• Occurs Multiple Times.  Indicates the message will be called more than once. If this 

option is selected, an asterisk will appear next to the message name on the diagram.  



Collaboration Diagramming 
 

 192 

• Guard Condition.  Specify the guard condition that controls the firing of the message. 
This is a free-form text field. A guard condition is a logical expression that evaluates to 
TRUE or FALSE, and must be satisfied before the message can be sent. 

• Sequence Number.  Indicates the order of messages. This can be either a single numeric 
value such as 1, 2, or 3, or a decimal such has 1.2, or 1.1.4. This option is only available 
on collaboration diagrams, since sequence diagrams by their very nature indicate message 
ordering.  

DEPARTMENT OF MOTOR VEHICLES SCENARIO 
The collaboration diagram example is based on the following scenario: 
• The registrar logs onto the system and selects the driver registration window. 
• By selecting the option New Applicant, an Applicant object appears. Details concerning 

the applicant’s name, address, and phone number are recorded. 
• The registrar verifies that the applicant possesses an insurance certificate, and if yes, 

records the coverage limits. The registrar also verifies that the applicant has a learner’s 
permit. Once these checks are made the applicant is considered ‘Valid’ and is ready for 
the road test. 

• If the applicant passes the road test, a driver’s license is issued. 
 
A completed collaboration diagram is shown in Figure 15-1. 

Adding Objects to a View 
The basic building block of the collaboration diagram is the ‘object’. The following steps are 
taken to establish a new collaboration diagram and create the objects. 
  
Set the Zoom Level: 1 From the View menu, select 66% zoom so you can 

see all of the needed workspace. 
 

Create a New Diagram: 2 From the File menu select New Diagram. 
 

 3 Select the diagram type Collaboration Diagram. 
 

 4 Select Standard Workspace and Portrait 
Orientation. 
 

 5 Click OK. 
 

Add Objects: 6 Click on the first symbol button, the rectangle, on 
the control bar. This represents an object. 
 

 7 Place the cursor inside the diagram workspace and 
click the left mouse button.  



Collaboration Diagramming 
 

 193 
 

 

 
 8 Label the object, leaving the name field blank, and 

the class field “Applicant”. 
 

 9 Add the rest of the objects as shown in Figure 15-1. 
 

Save the Diagram: 10 Save the Collaboration Diagram, and give it the 
name ‘Driver Registration’. 
 

 

Adding Relationships to a Collaboration Model 
The relationships in a collaboration diagram appear as object links. Messages to and from the 
objects are added to the object links. 
 
This procedure was written with Auto Label Lines turned on; thus message details must be 
added when an object link is drawn.  
     
 
Add Object Links: 1 Select the object link from the control bar and make 

a connection from ‘Driver Registration Window’ to 
‘Applicant’. 
 

Add Message to the 
Object Link: 

2 Select the method that is associated with the target 
object; or if no method exists, add a method. Add 
the method “new”. 
 

 3 Select the message type ‘Flat Flow of Control’. 
 

 4 Leave the guard condition blank. 
 

 5 Enter the sequence number ‘1.1’. 
 

 6 Continue adding messages until the model is 
complete, as shown in Figure 15-1. 
 

Save: 7 Select Save from the File menu. 
 

 



Collaboration Diagramming 
 

 194 

 
Figure 15-1 Collaboration Diagram Example 

 



Component Diagrams 
 

 195 
 

 

Lesson 16 

COMPONENT DIAGRAMS 

 

OVERVIEW 
Component diagrams allow you to show the structural relationships between system 
components. According to the UML 2.x specification, components are "autonomous, 
encapsulated units within a system or subsystem that provide one or more interfaces". 
Although the specification does not strictly state it, components are larger design units that 
represent things that will typically be implemented using replaceable modules. Components 
are strictly logical, design-time constructs that can easily be re-used. By providing a high 
level view of the system components, the component diagrams provide an easily understood 
overview of the system to developers, analysts and administrators of the system.  

Component diagrams can contain components, classes, interfaces and relationships. You can 
describe the components you are modeling and the relationships between them by drawing 
them onto a diagram. Each diagram or view can show an arbitrarily large or small part of your 
component model. You can show multiple views of your component model by including 
different combinations of components in the repository. 

All information you place on a component diagram is, of course, captured by the repository 
and is available to your class model, your process model (data flow diagrams), your structure 
charts, and your data model (entity relationship diagrams), where applicable. The Analyze 
function can assist you in determining any syntax or definition problems with your object 
model. 

COMPONENT DIAGRAM SYMBOLS 
The component symbol is the primary graphic used when creating a component model. When 
a component is added to a diagram, an entry is created in the repository so that additional 
information can be specified regarding the component, in order to complete its definition. The 
class symbol is also used on a component diagram. 
Each component is represented by a rectangle with an icon is the upper right corner as shown 
below. 



Component Diagrams 
 

 196 

 
 

Figure 16-1 Component and Class Symbols 
 
If you want to show the internal structure of a component, use the Explode function on the 
right mouse click object menu, or select Nest on the File menu. This allows you to create a 
new diagram with an outline of the component in which you can add the internal elements. 
These internal elements, consisting of classes with their methods and attributes expose the 
“black-box” properties and operational details of the component object.  
Because component symbols are container objects, similar to Pools and System Boundaries, 
they have no default color assigned. Select a component symbol and choose Colors from the 
Options menu to choose a color for the component.  
 
The Visible Analyst allows users to include Note symbols on a component diagram or within 
a component object.  Notes do not maintain a repository entry and are only used as a textual 
reference on a diagram. Use the Note Link line type on the Control Bar to link the note to a 
component or class. 

 
 

Figure 16-2 Note Symbol 

 

INTERFACE LINES 
An interface represents the formal contract of services a component provides to its 
consumers/clients. These interfaces are the basis for “wiring” the components together as 
explained in the UML 2.x specification, and Visible Analyst uses the UML 2.x notation for 
defining an interface. A line with a complete circle at its end (lollipop) represents an interface 
that the component provides. Interface lines with only a half circle at their end (socket) 
represent an interface that the component requires. In both cases, the name of the interface is 
placed above the interface line.  
 



Component Diagrams 
 

 197 
 

 

Interface lines are only displayed on a diagram and do not maintain an accessible repository 
entry. Interfaces that are attached to a component can be included when generating a 
component report. 

 

 
 

Figure 16-3 Component Symbol with Provided (left) and Required (right) Interface 
Lines 

There are several ways to add an interface to a component: 

• Right-click on a component and choose either Add Provided Interface or Add 
Required Interface from the context menu.  

• Click on an interface icon on the control bar and then click within a component; the 
interface will be drawn automatically. For a provided interface click near the left side 
to add to the left or near the top to add to the top. For a required interface, click near 
the right side or bottom.  

• Click on an interface icon on the control bar and then press and hold the left mouse 
button down where you want the interface to begin and then drag the mouse until it 
is inside the component symbol and release the button.  

When labeling the interface, you can choose to show a port which provides a way to model 
how a component's provided/required interfaces relate to its internal parts. A port is displayed 
as a square at the component end of an interface. 

You can connect the required interface of one component to the provided interface of another 
by pressing the left mouse button on the endpoint of the interface and dragging it until it 
connects with the endpoint of another interface.  

The UML 2.x specification describes the assembly and a delegation connector types as 
follows: 



Component Diagrams 
 

 198 

 
Assembly Connections 
 
An assembly connector is a connector between two components that defines that one 
component provides the services that another component requires. The assembly connector 
defines the connection from a required interface or port to a provided interface or port. This 
Assembly Connection is drawn with the Provided Interface line (with the lollipop) connected 
to a Required Interface line (with a socket). 

 

 
 

Figure 16-4 Example Assembly Connector between 2 Component Objects 

 
Delegation Connection 
A delegation connector is a connector that links the external contract of a component (as 
specified by its ports) to the internal realization of that behavior by the component’s parts. It 
represents the forwarding of signals (operation requests and events): a signal that arrives at a 
port that has a delegation connector to a part or to another port will be passed on to that target 
for handling. The line is drawn from the port to the class or component as shown in Figure 16-
5. Delegation lines are not normally named, but are recognized by the Visible Analyst Rules 
when the diagram is analyzed. 

 
 

Figure 16-5 A Delegation Connector from the port of VehicleEntry to Vehicle 
 



Component Diagrams 
 

 199 
 

 

Dependency Line 
A dependency relationship line is a dashed line with an open arrowhead as shown in figure 
16-6. The dependency relationship is used to connect components or classes, and signifies that 
a single or a set of model elements requires other model elements for their specification or 
implementation. It is not a direction of a process but a direction of a relationship. Within a 
component object, use the dependency relationship to relate classes or components. In the 
example below, the Inspection Station relies on the information from the Vehicle class. While 
a dependency line may have a label associated with the line, no editable repository entry is 
created for these line types. The dependency lines are recognized by the Visible Analyst Rules 
when the diagram is analyzed.  

 

 
 

Figure 16-6 Dependency Relationship Line 
 

COMPONENT INTERNAL STRUCTURE 
The internal structure of a component or “white-box” view of the component as referenced in 
the UML 2.x specification can be drawn on a linked “child” diagram in the Visible Analyst.  
This parent-child linkage is similar to the diagram linkage when exploding a data flow 
process to create a child diagram. Each component can be “exploded” to create a new 
component diagram to display additional internal structure detail.  
 
When a component symbol is exploded, all interfaces connected to the “parent” component 
are attached to the expanded component symbol on the child diagram, as shown in Figure 16-
7. When the child diagram is saved, you are prompted to create a Nest relationship between 
the new interface component diagram and parent component symbol. 

 
 



Component Diagrams 
 

 200 

 

 
 

Figure 16-7 Exploded Component Symbol with Attached Connectors 
 
 

  

THE DMV COMPONENT SCENARIO 
Many states and countries periodically require vehicle inspections for safety and 
environmental reasons. The owner of the vehicle is required to bring the vehicle to a certified 
inspection station, where a certified inspector will evaluate the safety and environmental 
features of the vehicle. If any deficiencies are found in either test, the vehicle fails the 
inspection. In most cases, the owner is allowed to return for a follow up inspection after the 
deficiencies have been corrected. Once the vehicle passes the tests, an inspection sticker is 
issued for the vehicle indicating that the vehicle passed the inspection. The vehicle details and 
results of the inspection are then communicated to the Department of Motor Vehicles to be 
recorded in the DMV database after each vehicles inspection. 
 
Drawing the Component Diagram 
 
Set the Zoom Level: 1 Set the zoom level to 66% from the View menu. 
 
Open a new:   2 Select New Diagram from the File menu, choose 
Component as the diagram  
    Type and click OK. 
Diagram: 

3 Click the first icon in the Control Bar, component, add a 
component symbol to the diagram, and label the 
component “Vehicle Testing”. Add a second component 
symbol to the right of “Vehicle Testing” and label it 
“DMV Vehicle Database System”. Click the Esc key to 
exit drawing mode. 
 



Component Diagrams 
 

 201 
 

 

Add the Interfaces: 4 Right mouse click on the component “Vehicle Testing” 
  and choose the Add Provided Interface option. The 
interface is automatically drawn attached to the left side of the component 
symbol.  Label the interface “VehicleEntry”. Confirm that the Show Port 
option is checked.  

 
Right mouse click on the “Vehicle Testing” symbol again, but choose Add 
Required Interface to draw the interface line attached to the right side of 
the symbol. Label the interface “Vehicles”.  

 
Add a provided interface to the component object “DMV Vehicle Database 
System” and label the interface “Vehicles” 

 
NOTE: You can select the line types from the Control Bar and manually 
draw the interface lines connected to the component symbol. The interface 
lines can be moved to any position on the component symbol by dragging 
the interface line to the selected position. 
 

5 From the File menu, select Save, and save the diagram 
with the name Vehicle Testing Components”. 
 

Create an Assembly  
Connection:         6 Left mouse click on the required interface connected to 

the “DMV Vehicle Database System” component so that 
the line handles, as explained in Chapter 5 (see figure5-5), 
are displayed. Left mouse click on the left line handle, 
hold down the mouse button, and drag the line so that the 
lollipop is within the socket, as shown in figure Y-4.  
 
NOTE: While making the line longer, the line may not be 
drawn completely horizontal. While drawing the line, the 
line becomes dashed. While the line is dashed, click the 
“S” key on the keyboard to Snap the line and make it 
horizontal. 
 

Analyze the Diagram: 7 Select Analyze from the Diagram menu to check the  
diagram for the correct syntax and click OK. The error 
message displayed points out that no required interface 
was attached to the component “DMV Vehicle Database 
System”.  

   
To correct this error, right mouse click on the “DMV 
Vehicle Database System” component, choose Add 



Component Diagrams 
 

 202 

Required Interface, and label the interface 
“VehicleControl”. 
Save the diagram and run the Analyze feature again to 
confirm that the diagram is correct.  
 

 
 
Figure 16-8 Completed Top-Level Component Diagram 

 
The DMV Vehicle Testing system is composed of both safety and environmental components. 
These internal component objects may already exist as classes or other component objects in 
the project, or they can be added directly onto the new component diagram. The first action is 
to explode the “Vehicle Testing” component and create the child diagram.  

 
Explode a Component: 1 Right mouse click on the component “Vehicle Testing” 
and choose  

 Explode. Click the Create New Diagram button to 
create the new component diagram.  

 
NOTE: The Explode option is also available by selecting 
Nest from the File menu. 

 
Add Internal Structures: 2 Click the first symbol icon and add the component  

“Safety Inspection” inside the “Vehicle Testing” symbol, 
adding the symbol towards the top of the component.  

 
Add a second component symbol below the first symbol, 
and label it “Environmental Inspection”.  
 
Add a Provider interface labeled “VehicleEntry” and a 
Required Interface labeled “Vehicles” to both component 
symbols. 

 
Add Classes as Structures: 3  Click the class icon, the second symbol icon, and add a 

class symbol between the component symbols, labeled as 
“Vehicle”. 

 
Save the Diagram:             4  From the File menu, select Save, and save the diagram 

with the name “Vehicle Testing Internal Components”. 



Component Diagrams 
 

 203 
 

 

 
 
Add Delegate Lines: 5 Click the Delegate line icon, the third line icon, and draw  

a delegate line from the “VehicleEntry” interface port to 
the component “Safety Inspection” provider interface 
lollipop. Draw a second line from the “VehicleEntry” 
interface port to the “Environment Inspection” interface 
lollipop. 
 
Draw delegate lines from the required interface sockets 
attached to the “Environmental Inspection” and Safety 
Inspections” components to the “Vehicle” required 
interfaces port. 
 
NOTE: Delegation lines indicate that messages and 
signals flow from the interface to the internal 
components. 

 
Add a Dependency Line 6 Click the Dependency line icon, the fourth line icon, and  

draw two dependency lines from the class “Vehicle” to 
the component “Safety Inspection” “and to the  
component “Environmental Inspection”.  Label both 
lines” VehicleDetails”. 
 
NOTE: These dependency lines indicate that the 
components depend on an element or group of elements 
listed in the class.  

 
Analyze the Diagram: 6 Select Analyze from the Diagram menu to check the  

diagram for the correct syntax and click OK.  
 



Component Diagrams 
 

 204 

 
Figure 16-9 The Completed Internal Structure Component Diagram



Business Process Diagramming with BPMN 
 

 205 
 

 

 

 

Lesson 17 

Business Process Diagramming with BPMN 

 

OVERVIEW 
Visible Analyst provides support for Business Process Modeling Notation (BPMN) diagrams 
based on the Business Process Modeling Initiative developed by the Object Management 
Group (OMG).  The complete specification is available for download from the OMG website, 
www.omg.org.   
 
The primary goal of BPMN is to provide a modeling notation is an effective communication 
medium across all the constituencies in computing technology supported organizations.  
BPMN is specifically designed to communicate process behavior information in a manner 
easily understood by business end users while providing supporting technology organizations 
with sufficient information about process execution, flow and dependencies to understand the 
workings of the business processes being modeled. BPMN notation is designed therefore to 
support the needs of not only business end users but also the business analysts who develop 
models and technical analysts who implement the model processes.   
 
Future releases of the Visible Analyst Workbench are planned that will use defined BPMN 
models to generate execution languages such as BPEL4WS (Business Process Execution 
Language for Web Services). 
 
BPMN models describe business process behavior and as a result use an event based 
paradigm. Both parallel and conditional behavior is supported in the modeling notation and 
also in the Visible Analyst’s implementation of BPMN. A number of symbols are used to 
describe process flows, events and decisions and allow the viewer to easily differentiate 
between sections of the BPMN diagram. 
 

BPMN MODEL TYPES 
There are three types of sub-models that may be used within an end-to-end BPMN model: 



Business Process Diagramming with BPMN 
 

 206 

Functional Private (internal) business processes - Private business processes internal to an 
organization, such as the Sales Department. If swimlanes (described below) are used, then a 
private business process will be contained within a single pool, with all Sequence Flows 
contained within the Pool and no Message Flows crossing the boundaries of the Pool. 
Abstract (public) processes - These processes represent the interactions between a private 
business process and another process or participant. Only those activities that are used to 
communicate outside the private business process, plus the appropriate flow control 
mechanisms are included in the abstract process. The “internal” activities of the private 
business process are not shown in the abstract process. Thus, the abstract process shows to the 
outside world the sequence of messages that are required to interact with that business 
process. An example of this would be the interaction between the Customer and the 
company’s Sales Department. 
 
Collaboration (global) processes - A collaboration process depicts the interactions between 
two or more business entities, and is defined as a sequence of activities that represent the 
message exchange patterns between the entities involved. A collaboration process can be 
shown as two or more abstract processes communicating with each other. The interaction of 
the company’s Accounting Department and Sales Department and the processes performed by 
both to complete the sales cycle is an example of a collaboration process. 
 

DEFINITIONS 
BPMN diagrams are drawn using four basic categories of objects:  Flow Objects, Connecting 
Objects, Pools/Swimlanes, and Artifacts 

Flow Objects 
Flow Objects are the main graphical elements of the diagram and consist of Event, Activity 
(process) and Gateway symbols.  
 
Event  An event is something that occurs during the course of a business 

process which affects the flow of the process..  There are three 
types of events: Start Events, Intermediate Events and End Events. 
Each Event type has a “trigger”, i.e., a determination for the cause 
of the event. Each event trigger has a unique appearance to indicate 
the trigger type, as shown in Figure 17-2. 

 
Activity  An activity (process) is a generic term that represents the work that 

a company or organization performs. Activities can be atomic or 
non-atomic (compound) and are represented as a rounded 
rectangle. Activity types include Process, Sub-Process (which can 
be defined as a Transaction), and Task. 

 



Business Process Diagramming with BPMN 
 

 207 
 

 

 
Atomic Task
Activity

                                                          Figure 17-1   Activity 



Business Process Diagramming with BPMN 
 

 208 

 
 Start Event Intermediate Event End 

Event 
    
Message 

 

 

  

Timer 
 

  

 

Error  
 

 
 

 
Cancel  

 
 

 
Compensation  

 

 

 

 

 
Rule 

 

 

 

 

 

 

Link 
 

 

 

 

 

 

 

 
Multiple 

 

 

 

 

 

 

 

 
Terminate   

 

 

 
                                              Figure 17-2   Event Types 

 
 
Gateway  A Gateway is used to control the divergence and convergence of 

multiple Sequence Flows. It will determine branching, forking, 
merging, and joining of paths. 

 
The Gateway, sometimes called a “fork in the road”, is used to 
indicate Decisions, where the Sequence Flow can take two or more 
alternative paths.  For a given performance (or instance) only one 
of the paths can be taken. A Decision is not an activity from the 



Business Process Diagramming with BPMN 
 

 209 
 

 

business perspective, but is a type of Gateway that controls the 
Sequence Flow between activities. It can be thought of as a 
question that is asked at that point in the process, and the question 
has a defined set of alternative answers (Gates). Each Decision 
Gate is associated with a condition expression found within an 
outgoing Sequence Flow. The conditions are evaluated in a 
specific order and first condition that evaluates to “True” 
determines the Sequence Flow that will be taken. One of the Gates 
may be marked as “default”, and is the last Gate considered. 
Choosing a particular Gate chooses the corresponding Sequence 
Flow. 
 

Exclusive Gateway (XOR)  An Exclusive Decision (Gateway XOR) has two or more outgoing 
sequences, but only one of them may be taken.  The conditions are 
evaluated in a specific order and first condition that evaluates to 
“True” determines the Sequence Flow that will be taken. One of 
the Gates may be marked as “default”, and is the last Gate 
considered. Exclusive Gateways can be used as a merge, for 
alternative Sequence Flow, though rarely used in this way.  There 
are two types of Exclusive Decisions: Data-Based and Event-
Based. 

 
Inclusive Gateway (OR)  The Inclusive Gateway OR can be used to model Inclusive 

Decisions or it can be used as a Merge. An Inclusive Decision 
Gateway symbol has a Bolded circle within the diamond Gateway 
symbol. 

 
When used to model Inclusive Decisions, each of the Sequence 
Flows (at least two) would be attached to the Gates of the 
Gateway. The Condition Type of the Sequence Flow is set to 
Expression, and the modeler would add the expression to be 
evaluated in the Condition Expression field of the flow. A default 
Sequence Flow may be used. 

 
When the Inclusive Gateway is used as a Merge, it will wait for 
(synchronize) all Tokens that have been produced upstream. It 
does not require that all incoming Sequence flow produce a Token, 
(as the Parallel Gateway does). It requires that all Sequence Flow 
that were actually produced by an upstream (by an Inclusive OR 
situation, for example). If an upstream Inclusive OR produces two 
out of a possible three Tokens, then the downstream Inclusive OR 
will synchronize those two Tokens and not wait for another Token, 
even though there are three incoming Sequence flows.  



Business Process Diagramming with BPMN 
 

 210 

Complex Gateway  Complex Gateways are included to handle situations that are not 
easily handled through the other types of Gateways. Complex 
Gateways can also be used to combine a set of linked simple 
Gateways into a single, more compact situation. Modelers can 
provide complex expressions that determine the merging/splitting 
behavior of the Gateway. The symbol for a Complex Gateway 
contains the asterisk symbol within the Gateway diamond symbol. 

 
When the Gateway is used as a Decision, then the expression 
determines which of the outgoing Sequence Flow will be chosen 
for the Process to continue. The expression may refer to process 
data and the status of the incoming Sequence Flow. For example, 
the expression may evaluate the Process data and then select 
different sets of outgoing Sequence Flow, based on the results of 
the evaluation. The expression should be designed so that at least 
one of the outgoing Sequence Flows will be chosen.  

 
When the Gateway is used as a Merge, then there will be an 
expression that will determine which of the incoming Sequence 
Flow will be chosen for the Process to continue. The expression 
may refer to process data and the status of the incoming Sequence 
Flow. For example, the expression may specify that any 3 out of 5 
incoming Tokens will continue the Process. Another example 
would be an expression that specifies that a Token is required from 
Sequence Flow “a”, and that a Token from either Sequence Flow 
“b” or “c” is acceptable. The expression should be designed so that 
the Process is not stalled at that location. 
 

. 



Business Process Diagramming with BPMN 
 

 211 
 

 

 
Gateway Control Types Appearance 
Data-Based Exclusive  
Decision (XOR) 
 

 

 
Event-Based 
Exclusive Decision (XOR) 

 

Inclusive Decision / Merge 
(OR) 

 

Complex Decision / Merge  

Parallel Fork / Join 
(AND) 

 

                                            Figure 17-3   Gateway Types 
 
 

Connecting Objects 
Flow Objects are connected on the diagram using Sequence Flows, Message Flows and 
Associations.  
 
Sequence Flow A Sequence Flow is a solid graphical line that is used to show the 

order that the activities will be performed in a Process. Each flow 
has only one source and one target. 

 
Normal Sequence Flow

                                                         Figure 17-4   Sequence Flow 
 

Additional sequence flow sub-types may represent certain 
conditions, such as a Conditional flow, Default flow, Exceptions 
flow etc. 
 

Conditional Flow A Sequence Flow can have condition expressions that are 
evaluated at runtime to determine whether or not the flow will be 



Business Process Diagramming with BPMN 
 

 212 

used. If the conditional flow is outgoing from an activity, then the 
sequence flow will have a mini-diamond at the beginning of the 
line. 

 
C onditional 
F low

 
                                                               Figure 17-5   Conditional Flow 
 
Default Flow  For Data-Based Exclusive Decisions or Inclusive Decisions, one 

type of flow is the Default condition flow. This flow will be used 
only if all of the other outgoing condition flows are not true at 
runtime. The Default Sequence Flow will have a diagonal slash at 
the beginning of the line. 

 
Default Flow

 
                                                                  Figure 17-6   Default Flow 
 
Exception Flow  An Exceptions Flow occurs outside the Normal Flow of the 

Process and it is based upon an Intermediate Event that occurs 
during the performance of the Process. The Exception Flow begins 
at the Error Intermediate or End Event attached to the boundary of 
the activity, signifying an interruption in the activity. 
 

 Exception Flow
 

                                                                  Figure 17-7   Exception Flow 
 
Compensation Flow A Compensation Flow defines the set of activities that are 

performed during the rollback of a transaction to compensate for 
the activities that were performed during the normal flow of the 
process. Compensation can also be called from a Compensate End 
or Intermediate Event 

 
 Compensation Association

 

                                                                  Figure 17-8   Compensation Flow 



Business Process Diagramming with BPMN 
 

 213 
 

 

Message Flow A Message Flow is drawn using a dashed line with a small circle at the 
beginning of the line. This line type is used to show the flow of messages 
between two entities that are prepared to send and receive them. In BPMN, 
two separate Pools on the diagram will represent the two entities 

 
Message Flow

                                                                  Figure 17-9   Message Flow 
 
Association An Association Flow is used to connect one or more Data Objects 

(Artifacts) to an activity, and to show that the Data Object is either an input 
or output to the Activity. 

 
Association Line

                                                                  Figure 17-10   Association 
 

Pools and Lanes 
BPMN models utilize two important conceptual modeling devices to distinguish process flow 
characteristics, pools and lanes. 
 
Pool A Pool (defined as a System Boundary entry type in the repository) 

represents a participant in a process, and it also acts as a "swimlane" and 
graphical container for portioning a set of activities from other pools. 

 
When a Pool is added to a diagram, only the name of the Pool is displayed. 
The swimlane labels will be displayed once a BPMN item is moved within 
the pool boundary. If the orientation of the Pool symbol is vertical, the 
name of the Pool and lanes are displayed at the top of the Pool, otherwise 
the labels are drawn on the left-hand side of the pool. Pools whose width is 
greater than their height are vertical.  To change the orientation of the Pool, 
highlight the pool symbol, select one of the “handles” (the green boxes 
surrounding the Pool symbol) a drag the handle to a new location on the 
diagram, expanding the Pool symbol. You can also right mouse click on the 
Pool symbol and choose the Stylize option to modify the size and 
orientation of the Pool. 
 
The Attributes field on the Define Item tab in the repository will display 
the items contained within the Pool and its lanes. 
 



Business Process Diagramming with BPMN 
 

 214 

Lane A Lane is a sub-partition within a Pool and will extend the entire length of 
the Pool, either horizontally or vertically. Lanes are used to categorize the 
activities in the Pool. If there is only one lane, then the lane shares the name 
of the Pool. While BPMN does not specify the usage of the Lanes, they are 
often used to identify internal roles (Manager, Associate), systems 
(enterprise application) and internal departments (shipping, finance sales). 
See Figure 17-11. 

 
Up to 4 Lane names can be assigned for each Pool. 

 

 

                                                                Figure 17-11   Pool and Lanes 
 

Artifacts 
Artifacts are used to provide additional information about the Process, and are represented by 
a Data Object, a Group, and an Annotation. 
 
Data Object A Data Object is represented by a square symbol with the top right corner 

of the symbol turned down. Artifacts are used to provide information about 
the process or elements defined or produced within the process, but do not 
affect the process. Data Objects are connected to other BPMN symbols by 
an Association Flow. 

 

Data
Object

                                                  Figure 17-12   Data Object 
 
Group A Group is a visual representation around a number of activities. Groups are 

represented in the Visible Analyst through the use of symbol coloring, or 
the user can draw a flow around the diagram objects to represent a group. 

 



Business Process Diagramming with BPMN 
 

 215 
 

 

Annotation An Annotation (referred to and implemented as a Note symbol in the 
Visible Analyst) is a Text Annotation, used as a mechanism for the modeler 
to provide additional information for the reader of a BPMN diagram. A 
Note object (and a Note Link) in the Visible Analyst does not maintain a 
repository entry; all information is written on the diagram as the Note label.  
Notes are connected to a specific object on the diagram with a Note Link 
line, but neither the Note nor the Note Link line affect the flow of the 
Process.  

 

Note Symbol
 

 

 
                                                              Figure 17-12   Data Object 
 

BUSINESS PROCESS DIAGRAM ATTRIBUTES 
A number of attributes are associated with BPMN Diagrams. Some of these attributes include, 
Diagram Id, Name, Version, Author, Language (for code generation), Creation Date, 
Modification Date, etc.  Use the Boilerplate and Boilerplate Keywords feature in the Visible 
Analyst to display these attributes on a BPMN diagram. See Boilerplates and Boilerplate 
Keywords. 

Note 
 Boilerplates and Boilerplate keywords are not available in the 

Educational version of Visible Analyst. 
 

DEVELOPING BPMN DIAGRAMS 
As described by the OMG group (www.omg.org.) in their Business Process Modeling 
Notation specification, there are three basic BPMN models: 
 

• Private (internal) business processes 
• Abstract (public) processes 
• Collaboration (global) processes. 

 
Each of these types may contain Pools and Lanes, but are optional based on the process type 
being modeled.  In this tutorial you will create a Collaboration process describing the Road 
Test processes to demonstrate the many features of BPMN diagramming. The Participants 
will be the DMV Evaluator and the License Applicant. 



Business Process Diagramming with BPMN 
 

 216 

 

Designate the Starting Event 
The event type will be a Timer event, indicating the scheduled appointment time for the Road 
Test.  The Road Test will be the Business Process modeled by the BPMN diagram. 
 
 

Set the Zoom Level: 1 From the View menu, select 66% zoom 
so that you can see all of the needed 
workspace. 
 

Create a New Diagram: 2 From the File menu, select New 
Diagram. 
 

 3 Select the diagram type Business Process 
Model. 
 

 4 Select Standard Workspace and 
Landscape as the Orientation. 
 

 5 Click OK. 
 

Add a Start Event: 6 Click the fifth symbol button, the open 
circle, on the control bar.  This is the Start 
event. 
 

 7 Place the cursor in the upper left corner of 
the workspace, and click the left mouse 
button.  The starting event is drawn on the 
diagram. 
 

Name the Event: 8 Label the event “Scheduled Driver Test”. 
Select the Event type:  Select “Timer” in the Trigger field and 

click OK. 
Save the Diagram:  Save the BPMN diagram with the label 

“Driver Test BPMN Diagram”. 
 

 

Add a Process Symbol to the Diagram 
A Process is an activity performed within a company or organization. The Process symbol is a 
rounded rectangle, the first symbol in the symbol bar. 



Business Process Diagramming with BPMN 
 

 217 
 

 

 
Add a Process symbol: 1 Click the first symbol button, the rounded 

rectangle, on the control bar.   
 

 2 Place the cursor to the right of the start 
event and click the left mouse button.  A 
process symbol is drawn. 
 

Label the Process: 3 Label the process “Validate Applicant”.  
 

Add other Processes: 4 Add the other processes “Perform Road 
Test” and “Issue License” to the right of 
Validate Applicant as shown in Figure 
17-13. 
 

Save the Diagram: 5 Save the BPMN diagram. 
 

Scheduled Driver Test Validate Applicant Perform Road Test Issue License

 
 
                                                   Figure 17-13   Flow Object Layout 
 

Adding a Pool to the Diagram 
A Pool represents a Participant in a Process, and it also acts as a graphical container for 
portioning a set of activities from other pools.   In our example, we can identify two DMV 
departments that would be responsible for the processes in our diagram.  The “Applicant 
Testing” department would perform the actual tests and evaluate the test results.  The “DMV 
Administration Staff” would perform the other duties such as accepting applications, 
validating applicants, issuing licenses to qualified applicants, etc. 
 

Add a Pool: 1 Click the seventh symbol button, the 
rectangle, on the control bar.  This is 
the Pool object. 
 

 2 Place the cursor above the “Perform 
Road Test” process and click the left 
mouse button.  A Pool symbol is 
drawn.  Label the Pool “Applicant 
Testing”. 



Business Process Diagramming with BPMN 
 

 218 

 
 3 Click the control bar arrow to activate 

the select mode. 
 
 

 4 Select the pool you just drew and 
expand its size by a clicking and 
dragging at its ends.  Make sure the 
activities that are the Applicant Testing 
department’s responsibility fall within 
this pool as shown in Figure 17-14. 

   
Save the Diagram: 5 Save the activity diagram. 

 

 
                                                 Figure 17-14   Flow Objects within a Pool 
 

Adding Sequence Flows to the Diagram 
Sequence flows are directional lines that communicate the order in which the processes are to 
be performed.  They can be labeled or left unlabeled with a default name of “«unnamed»”. 
For clarity, we suggest that you label the sequence flows. 
 

Add a Sequence Flow: 1 Click the horizontal arrow symbol 
button on the control bar, labeled 
Sequence Flow.  

   
 2 Place your cursor on the start event.  

Left-click the mouse and hold down the 
button as you drag the cursor to the 
right until it is within the first process 
symbol and let go of the mouse button. 
 

Label the Sequence Flow: 3 Label the sequence flow “Test 



Business Process Diagramming with BPMN 
 

 219 
 

 

Documents”. 
 

Add an End event: 4 Click on End event circle, the third 
circle in the list. Add the End Event 
under the process “Issue License” and 
label the event “Passed Test”. 
Select “Terminate” in Result field by 
clicking the down arrow. 
 

 5 Add the rest of the sequence flows as 
shown in the Figure 17-15. 
 

Save the Diagram: 6 Save the BPMN diagram. 
 

 
 
                                                 Figure 17-15  Sequence Flows Added 
 
As designed, this example represents a Private internal process with the Application Testing 
department of the DMV. However, it is also important that you understand how Collaborative 
Business Processes interact. We will add another set of processes within a Pool to show the 
interaction of the Application Testing department and the Licensing Department. Included is a 
Gateway to display the decision making capability of the BPMN diagrams. 
 

Add a Start Event: 1 Click the fifth symbol button, the open 
circle, on the control bar.  This is the start 
event.  Add the Start event “Vehicle Road 
Test” of type “Timer” below the current 
Pool, as shown in Figure 17-16 
 

Add a Process symbol: 2 
 

Click the first symbol button, the rounded 
rectangle, on the control bar.  Add the 
processes as shown in Figure 17-16. 
 

Add a Gateway: 3 Click the second symbol button, the 
diamond, and place your cursor to the 



Business Process Diagramming with BPMN 
 

 220 

right of the process “Test Results. Left 
mouse click to draw the gateway, labeled 
as “Pass or Fail”. 
 
For the gateway type, choose “Data-
Based Exclusive Decision”.  
 

Add Sequence flow to Gateway: 4 Draw the sequence flow from the 
gateway to the process “Reschedule Road 
Test”. Because the gateway is a data-
based decision, enter the following 
expression into the Expression field: 
“Test result=F”. 
 
Add a second sequence flow from the 
gateway to the process “Issue New 
License, and enter this expression into the 
Expression field 
“Test result=P”. 
 

Add a Stop Event: 5 Click on the last circle icon, the Stop 
Event, and add it between the processes 
“Reschedule Road Test” and “Issue New 
License”. Label the event “End of Test” 
and choose “Terminate” as the end Event 
Result type. 
 

Add Sequence Flows to the 
Diagram: 

6 Add the rest of the sequence flows as 
shown in Figure 17-16. 
 

Add a second Pool: 7 Click on the Pool icon, add it to the 
diagram and label the pool “Licensing 
Department”.  Click the ESC key on the 
keyboard to exit drawing mode.  
 

 8 Select the pool you just drew and expand 
its size by a clicking and dragging at its 
ends.  Make sure all of the new symbols 
are within the pool boundaries. 
 

Save the Diagram: 9 Save the BPMN diagram. 
 

 



Business Process Diagramming with BPMN 
 

 221 
 

 

Notes 
 The labels of the Gateway, Sequence Flows and Events can be moved 

on the diagram. Left mouse click on the label name, hold down the 
mouse button, and drag the label to the new position on the diagram. 

 
 To invert the direction of the sequence flow drawn between the “Pass 

or Fail” gateway and the process “Issue New License”, right mouse 
click when drawing the line to invert the line direction. 

 

 
 
                                                 Figure 17-16   Second Pool 
 
Message flows are used to show the flow of messages between two entities that are prepared 
to send and receive them. In BPMN, two separate Pools on the diagram will represent the two 
entities. 
 

Add a Message Flow: 1 Click the second line type, Message flow 
, and draw the flow between the processes 
“Validate Applicant” and “Driving Test” 
as shown in Figure 17-17. 
 

Save the diagram: 2 
 

Save the BPMN diagram. 
 

 



Business Process Diagramming with BPMN 
 

 222 

 
 
                                           Figure 17-17   Message Flow Between Pools 
 



Business Process Diagramming with BPMN 
 

 223 
 

 

 



Working with the Repository Functions 
 

 224 

Lesson 18 

Working with the Repository Functions 
 

OVERVIEW 
This unit helps familiarize you with the operation of the Visible Analyst repository and shows 
you the power of an online, interactive database for systems analysis, design and data 
modeling. The TEST project used in the previous lessons is used as the basis for your 
exercises. 
 
The repository is a powerful tool for creating and managing the narrative portions of a 
system’s specification. A project repository is used to provide an entry location for all project 
documentation. Each graphical entry on your diagrams has an automatically created 
corresponding entry in the project repository, as do any items entered into a Composition or 
Alias field. 
 
You have the ability to thoroughly define all of your graphical entries in the repository or to 
simply enter notes about them in the Notes field. As an integrated part of Visible Analyst, the 
repository operates in parallel with the diagramming functions to accomplish data 
decomposition logically. It contains powerful data management, text editing, import/export, 
and report facilities. By using it, meaning can be ascribed to diagrams and an asset of ever-
increasing value can be created. After defining items, changing entries and entering notes, you 
can generate reports from this information in many different forms. 
 
When you finish defining your data and processing, the repository also allows you to put it 
into an ASCII file and export it. The ASCII file can then be sorted to move data specifications 
to your database and process specifications to your text editor for writing code. (The Shell 
Code Generation utility can also be used for this purpose.) 
 

Note 
 Users of the Educational and Demonstration versions of Visible 

Analyst cannot add items directly into the repository.  First add the 
object to the diagram, and then edit it into the repository. 



Working with the Repository Functions 
 

 225 
 

 

 
   Figure 18-1   Blank Repository Dialog Box, Page One 
 

REPOSITORY BASICS 

Repository Control Buttons 
The repository control buttons (see Figure 18-2) are always displayed at the bottom of the 
repository dialog box. Each of the button functions is accessed by clicking on the button or, as 
is customary in Windows, by using its keyboard shortcut by holding down the ALT key and 
pressing the underlined letter to execute the button function. Only the functions available to 
you at a given time are active; the others are grayed. The button functions are: 
 
 
 
 



Working with the Repository Functions 
 

 226 

        

                
                               Figure 18-2   Repository Dialog Box Control Buttons 
 
 SQL   This button opens the Generated SQL for View dialog box.  This  

dialog box displays the SQL generated for the current view object 
based on the view table and column specifications selected when 
creating the view, as well as the current SQL dialect.  This button 
is active only when the entry type is View. 

 
Dialect   This activates the RDBMS SQL Dialect dialog box.  From there,  

you can change the current SQL dialect. 
 
Delete   This deletes the current repository entry from the database. An  

entry can only be deleted when it has no location references, 
meaning that it does not appear on a diagram nor as an attribute of 
another repository item. 

 
Clear   This clears the display of an entry and displays a blank  

repository dialog box. This allows you to Search for an existing 
entry or add a new entry. If you have made changes, you are 
prompted to save them before clearing. Your current location in 
the repository remains unchanged. 

 
Next   This displays the next sequential repository entry that meets the 

repository search criteria (see below). 
 
Prior   This displays the previous sequential repository entry that  

meets the repository search criteria. 
 
Save   This saves all changes made to an entry. 
 
Exit   This or the ESC key exits from the repository. 
 
Search   This initiates a search for a particular entry in the repository.  

The procedure is explained in the section on Search Capabilities. 
 
Expand   This allows you to expand or contract the display size of some 
Contract   fields. The fields that normally display four lines can expand to  

display 15. 



Working with the Repository Functions 
 

 227 
 

 

 
Jump   This allows you to jump immediately to another entry that is  

referred to in the current one. This feature is described in the 
section on Navigation Capabilities. 

 
Back   This button provides a means of jumping to the previous repository  

entry. You can then continue to move backwards displaying 
previous repository entries. 

 
File   This allows you to insert text from a DOS file at the cursor 

position or to copy highlighted text to a DOS file. It is explained in 
further detail in the Visible Analyst Operation Manual and in the 
online help system. 

 
Copy   This button provides a means of copying the current object. 
 
History   This provides a means of jumping back to a previously displayed  

repository object. A list is kept of every object definition that has 
been displayed. If you choose this button, the History dialog box 
appears and you can jump between entries by double-clicking on 
an entry. The maximum is 500 objects. 

 
Help(?)   This displays context sensitive help about the repository. You  

can also press F1 to activate the help system. 
 

Search Criteria  This allows you to specify how the repository is to be searched.  
It is explained in the section on Search Capabilities. 

 
Other buttons that may be displayed on the Define dialog box are: 
 
Primary Key  If the current object being examined is an entity type, the primary 

key button is displayed to the left of the Composition/Attributes 
field.   

 
Attributes Details  This button provides a means of populating the composition of a  

repository entry with components and physical information. This 
button is displayed to the left of the Composition/Attributes field. 
 
When the Entry Type is a Class, or when the Classic User Interface 
is turned off, the Add button displayed beneath the Attributes 
Details button is active.  You can use this button to add details.  
When you begin typing in the field next to the Add button, the 



Working with the Repository Functions 
 

 228 

button is enabled.  Click the Add button to add the attributes to the 
Attributes field. 

 

Editing Keys 
Because the Edit menu is not accessible from the repository, you can use the right-click menu 
that is available when an object (text) is highlighted and you click the right mouse button.  
Using the right-click menu, you can Cut, Copy, Paste, or Delete the selected object. 

Field Types 
The data repository of a Visible Analyst project is displayed using Define dialog box 
variations corresponding to different diagram objects. You see and work with some of these 
variations during the course of this lesson. The basic dialog box, shown in Figure 18-1, is for 
data elements, aliases, miscellaneous objects and external entities or source/sinks. Other 
objects, such as data stores, processes, functions, entities, relationships, modules, data flows 
information clusters, etc., have variations in individual fields and tabs of the Repository 
dialog box to accommodate the specific needs of those items. Some of these differences are 
seen later in the lesson. 

Label Field 
This is the name of the repository item. The names of items drawn on diagrams are 
automatically entered here.  

Entry Type Field 
This tells Visible Analyst what kind of object the item is: process, data flow, entity, etc. The 
entry type can be entered manually, or you can select the type from the scroll box accessed by 
clicking the down arrow at the end of the entry type field. 
 

Note 
 You can edit the Entry Type and Label fields of data elements and data 

structures that do not appear on diagrams. The entry type for a data element 
cannot be changed if physical information for that element has been entered. 

Description Field 
The Description field is a two-line field that provides a convenient place to enter a somewhat 
more extensive descriptive title of the object than the Label field allows. The contents of this 
field are used for the Comment on Column (data elements) and Comment on Table (entities) 
when SQL DDL is generated if the selected SQL dialect supports this syntax. 



Working with the Repository Functions 
 

 229 
 

 

Alias Field 
The Alias field contains 10 lines of 128 characters each. It allows for the entry of alternative 
labels to the one used as the object label. This is most commonly used for indicating the 
cryptic abbreviations that are sometimes used in the actual coding of a software program, as 
opposed to the plain English names that are desirable for reference. The Alias field is an 
intelligent field. Data names entered into it establish new repository entries for these aliases. 

Attributes Field 
The purpose of the Attributes field is to accumulate the collection of data elements that you 
wish to define as constituting a data flow, entity, data store, etc. The Attributes field is an 
intelligent field. Data names entered into it establish new data element repository entries or 
update existing ones. These new data elements can then be used for further definition. Data 
flows, data structures and couples can also appear in some Attributes fields. 
 
When you click the Attributes Details button, the Add Attributes dialog box appears. Using 
this dialog box, you can define up to 12 components and some of their properties.  As you 
enter items, the dialog box automatically scrolls as necessary to allow you to enter more items 
until you reach 12.  When you complete the entries, click OK to add them to the Attributes 
field.  If you need to add more than 12 components, click the Attributes Details button again; 
and a new dialog box opens so that you can add additional attributes.   
 
Use the Add button at the bottom of the Attributes field to add components one at a time.  
When you begin typing in the field next to it, the Add button becomes active.  Complete your 
entry, and then click Add to enter the component in the Attributes field. 

Values & Meanings Field 
The Values & Meanings field allows an unlimited number of lines. The maximum number of 
characters that can be contained in the field is 64K. This field allows the entry of specific 
information about the value(s) the item can take. 

Discriminator Values & Meanings Field 
If the current object is a data element that is used as a discriminator, this field contains a list 
of values to identify the subtype entities.  For each subtype, a value can be entered that will 
uniquely identify it.  By default, these values are numbers starting with 0 for the supertype.  
To change the value, click the value until an edit control appears, make your changes, then 
press ENTER. 

Notes Field 
The Notes field is also a field that allows you to enter any pertinent information about the 
object. The maximum number of characters that can be contained in the field is 64K. This is 
the logical field to use when creating hyperlinks to external documents, web pages or other 
application files. 



Working with the Repository Functions 
 

 230 

Location Field 
This field displays two types of usage information. The field can contain the diagram name 
(and, for DFDs, the diagram number) of every diagram where the item appears. The field can 
also tell you if the item appears as an attribute of another item. This second kind of location 
entry has the entry type of the parent item, followed by an arrow and the name of the parent 
item. 

Other Pages and Fields 
Other pages of the Define dialog box contain additional information.  For example, pages 2 
and 3 of the basic repository form provide location and relationship information and 
specifications for PowerBuilder/VISION extended attributes. These two pages are similar for 
most entry types.  For some entry types, additional pages will be displayed: 
• When the entry type is an entity, the next five pages contain keys, foreign keys, triggers, 

check constraints, and physical information.   
• For views, the next five pages provide table, column, join, clause, and option 

information.   
• When the entry type is a relationship, there are additional pages that contain foreign key 

and cardinality information. 
• When the entry type is a tablespace, an additional page contains property information. 
 
A full list and complete descriptions of pages and fields can be found in the Operation 
Manual and in the online help. 

Object Repository 
The Visible Analyst repository provides several additional forms and data input components 
for supporting the object-oriented concepts. The object repository components are detailed 
below. 

Attributes 
The Attributes field replaces the Values & Meanings field whenever the Repository dialog 
box displays a class.  The field contains a list of the data members for the class showing the 
local data element and type. To add, change, or remove local data elements, click the 
Attributes Details button or select Add/Change from the Repository Object menu. For each 
attribute, the following information can be defined: 
• Name. The name of the attribute. Each attribute of a class has a separate entry in the 

repository with a type of local data element. This is an optional field. The search button 
can be used to find other local data elements in the repository. 

• Type. The attribute type can be a class, data element, or data structure. If the type does 
not exist in the repository, a new class is created. The location field of the attribute type 
contains a reference to the current class. This is a mandatory field. The Search button can 
be used to display a list of valid types. If the attribute type is a data element or elemental 



Working with the Repository Functions 
 

 231 
 

 

class, its physical characteristics are displayed.  Entries added to the Type field are saved 
as data elements for an entity or data flow, and class/subtype element when the object is a 
class. 

• Limit. The number of occurrences of the attribute. If this field is blank, the attribute 
occurs once. 

• Reference. A qualifier to indicate the access method for an attribute. Value indicates the 
object defined in the Type field is used; Address indicates a pointer to the object is to be 
used; and Reference indicates a reference to the object is to be used. The default is Value. 

• Visibility. Public members have global visibility. Private members are only accessible to 
member functions and friends. Protected members are accessible to derived classes and 
friends. Implementation members are only accessible to the class itself. The default is 
Private. 

• Qualification. Constant indicates a member’s value cannot be changed. Volatile 
indicates the member can be modified by something other than the program, either the 
operating system or hardware. Static indicates there is only one instance of the member 
regardless of the number of times a class is instantiated. The default is None. 

• Physical Characteristics. If the attribute type is elemental, the physical characteristics 
can be set. 

 
For every item entered into the Type field, Visible Analyst creates a repository entry (if one 
with the same name does not already exist) and updates that entry’s location field. If an item 
is removed, this field is updated to reflect this. These repository entries are generally created 
as classes unless a data element already exists with the same name or the physical 
characteristics are defined 
 
As you enter items, the dialog box automatically scrolls as necessary to allow you to enter 
more items until you have finished. Insert is used to insert a new attribute into the list at the 
current position, while Delete removes the current attribute (the current position is indicated 
by ). When you have completed the entries, click OK to add them to the Attributes field. 
 
Item names entered into this field may contain up to 128 characters each and may consist of 
any upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; 
but the first character must always be a letter. 

Attached Entities/Classes 
The attached entities/classes for the currently displayed relationship are listed in this field. 
When an inheritance relationship is displayed, the characteristics of that relationship can be 
changed (see changing Inheritance Characteristics later in this chapter).  Otherwise, the 
information cannot be edited from within the repository; and all changes must be made on a 
diagram. The field lists the two entities or classes attached to this relationship. Below the 
second entity name is listed the reverse of the current relationship. If either direction of the 
relationship has not been named, the name of the relationship in the reverse direction is 



Working with the Repository Functions 
 

 232 

displayed as “reverse of (opposite relationship name).” This field allows you to jump to the 
repository entries for any of these entities or relationships, as described above. 

Relations 
For an entity or class, the Relations field displays the relationship name followed by the name 
of the entity or class on the other end of this relationship for each relationship attached to this 
entry. These sets are ordered alphabetically by the opposite entry name. When an inheritance 
relationship is displayed, the characteristics of that relationship can be changed (see Changing 
Inheritance Characteristics later in this chapter); otherwise, the information cannot be edited 
from within the repository; and all changes must be made on a diagram. 
 
This field allows you to jump to the repository entries for any of these entities, classes, or 
relationships by positioning the cursor on the line containing an entity, class, or relationship 
name and clicking the Jump button. 

Long Name 
When a repository entry, either a local data element or a module, belongs to a class, the full 
name of the entry includes the class name. The Long Name field displays this name and, in 
the case of modules, includes the argument list (the argument list is required to differentiate 
overloaded member functions). If you want to change the argument list for a class method, 
click the right mouse button on the Long Name field and select Change (see the Methods 
section later in this chapter for details). If you want to change the class to which the method 
belongs, select Class from the Repository Object menu. To display the class definition, click 
the Jump button. 

Class Characteristics 
Concurrency, displayed on the Methods/Friends tab,  is a class property that distinguishes an 
active object from inactive object. An active object may represent a separate thread of control. 
A sequential object is a passive object whose semantics are guaranteed only in the presence of 
a single thread of control. A guarded object is a passive object whose semantics are 
guaranteed in the presence of multiple threads of control. 
 
A persistent class exists beyond the lifetime of an executable program. This means it must be 
stored on a non-transitory storage device. If the subtype of a class is set to either entity 
(associative or attributive) and the class is used on an entity relationship diagram, this field 
cannot be changed. 
 
An abstract (or virtual) class cannot be instantiated because it contains pure virtual methods. 
If pure virtual methods exist for a class, Abstract is checked. If you attempt to uncheck this 
field, all pure virtual methods are reset to virtual. If you attempt to check it and virtual 
methods exist, they are converted to pure virtual methods. 



Working with the Repository Functions 
 

 233 
 

 

 
           Figure 18-3   Class Attributes 

Methods 
Methods (or Member Functions) are the operations that are defined for accessing a class. The 
Methods field contains a list of the functions for a class showing the name, return value, 
argument list, and flags to indicate its visibility. To add, change, or remove methods, click on 
the Methods field and click the Attributes Details button or select Add/Change from the 
Repository Object menu. To add a new method for a class, click the New button and type the 
name of method you wish to add. To search for methods that have already been defined in the 
repository, click the Search button. The list contains all modules that have previously been 
defined in the repository. If the module already belongs to a class, the class name is displayed. 
Note that when you select a module that already exists, the complete definition for that 
module is used including return value and argument list. Click OK to add the method name to 
the list of methods for the current class. For each method, the following information can be 
defined: 
 



Working with the Repository Functions 
 

 234 

 
        Figure 18-4   Class Methods 
 
• Returns. The return type can be a class or data element. If the type does not exist in the 

repository, a new class is created. The Location field of the attribute type contains a 
reference to the method. This is an optional field. Click the Search button to display a list 
of valid types. 

• Limit. The number or size of the parameter. If this field is blank, it occurs once. 
• By.   A qualifier to indicate how the return value is passed.  Value indicates a copy of the 

parameter is passed; Address indicates a pointer to the object is to be used; and Reference 
indicates a reference to an object is to be used. 

• Visibility. Public methods have global visibility. Private methods are only accessible to 
other member functions within the same class and friends. Protected methods are 
accessible to derived classes and friends. Implementation methods are only accessible to 
the class itself. The default is Public. 

• Qualification. Static indicates a method can be used without a specific instance of an 
object (it can only be used with static attributes (data members)). A Virtual method is one 
that you expect to be redefined in a derived class. A Pure Virtual method has no 
definition and must be defined in a derived class. A class with any pure virtual functions 
is an abstract (or virtual) class. The default is None. 

• Arguments. A list of parameters to be used by the method. This is an optional field. If a 
method appears more than once with the same name within a class, it must have a 
different argument list for each definition. This is known as function overloading. See the 
next section for defining arguments. 

 



Working with the Repository Functions 
 

 235 
 

 

When a method is added to a class definition, an entry of type module is created in the 
repository. The long name includes the class name and the argument list. The argument list is 
needed to differentiate between overloaded functions. 
 

Note 
 Because the same name can be used for more than one method, there may be 

duplicate module entries in the repository, each belonging to a different class. 
 

Arguments for Methods 
When defining methods (member functions) for a class, the parameters to the function need to 
be specified. To add, change, or remove arguments, click the Arguments button on the 
Method Definition dialog box. For each argument, the following can be defined: 
• Name. The name of the parameter. This is an optional field. 
• Type. The parameter type can be a class or data element. If the type does not exist in the 

repository, a new class is created. This is a mandatory field. The Search button can be 
used to display a list of valid types. If the parameter type is a data element or elemental 
class, its physical characteristics are displayed. 

• Limit. The number or size of the parameter. If this field is blank, it occurs once. 
• Pass By. A qualifier to indicate the how the parameter is passed. Value indicates a copy 

of the parameter is passed; Address indicates a pointer to the object is to be used; and 
Reference indicates a reference to an object is to be used. The default is Value. 

• Qualification. Constant  indicates a parameter’s value cannot be changed. Volatile 
indicates the parameter can be modified by something other than the program, either the 
operating system or hardware. The default is None. 

• Physical Characteristics. If the parameter type is elemental, the physical characteristics 
can be set.  

 
For every item entered into the Type field, Visible Analyst creates a repository entry (if one 
with the same name does not already exist). These repository entries are generally created as 
classes unless a data element already exists with the same name or the physical characteristics 
are defined. 
 
As you enter items, the dialog box automatically scrolls as necessary to allow you to enter 
more items until you have finished. INSERT is used to insert a new parameter into the list at 
the current position, while the DELETE key removes the current parameter (the current 
position is indicated by ). When you have completed the entries, click OK to update the 
method name field. Item names entered into this field may contain up to 128 characters each 
and may consist of any upper or lower case letters, numbers, spaces, periods, underscore 
characters and hyphens; but the first character must always be a letter. 



Working with the Repository Functions 
 

 236 

Friends 
The Friends field displays a list of both friend classes and methods (or functions). A friend is 
allowed access to the private data members of a class. To add friends, click on the Friends 
field and click the Search button, select Add from the Repository Object menu, or double-
click on the Friends field while pressing CTRL key. A list of classes and member functions is 
displayed in the Search list box. Locate each repository item you want to place in the Friends 
field and click the Search button; the item is added to the Select list box at the bottom. When 
you have found all of the entries you want, click the Select button and they are entered into 
the Friends field. 
 
To remove a friend, highlight the desired item and press the DELETE key or select Cut or 
Delete from the Repository Object menu. 

Navigation Capabilities 
In this section, you change the displayed repository entry using Next, Prior, and Jump. 
 

Note 
 The repository saves some internal settings for the duration of a Visible Analyst 

session. If these are set incorrectly, they may interfere with the smooth flow of 
this lesson. Therefore, we suggest that if you or another user worked in the 
repository during the current session, you should exit to Windows and restart 
Visible Analyst. In this way, you have a clean slate on which to run this lesson. 

 
Open the Repository: 1 Access the repository using either Define from the  

Repository menu or CTRL+D. A blank Define dialog 
box is displayed. 

 
Access an Entry:  2 Type “Person Information” in the Label field and press  

ENTER twice. (Pressing ENTER once brings up the  
Search dialog box. Pressing it a second time displays the  
entry found. If you press ENTER twice quickly, you get  
the same result without displaying the search box.) The  
repository entry for Person Information displays with all  
of the information that has been entered into the  
repository for this entry. 

 
Move Around:  3 Click Next. The next entry in alphabetical order is  

displayed. 
 

4 Click Prior. Person Information is again displayed. 
 
 
 



Working with the Repository Functions 
 

 237 
 

 

Jump to Other   5 Click the element Name in the Attributes field.  (It may   
Entries:    be necessary to scroll the contents of the field to bring  

Name into view.) Click Jump. (Click Yes if you are asked 
if you want to save Person Information.) The repository 
entry for the data element Name is displayed. 

 
6 Move to page two by clicking the Physical Information 

tab at the top of the dialog box.  (The current page 
number is displayed in the upper right corner of the 
Define window.) This displays more information about 
the current entry, including the Location information that 
indicates where the current entry is used. 

 
7 Click the line in the Location field containing Person 

Information. This highlights the line. 
 

8 Click Jump. The entry for Person Information is once 
again displayed. The Locations tab (page 2) is currently 
displayed. An alternative to selecting Jump to switch to 
another repository entry is to double-click the entry name 
in the Location field or to click the Back button. 

 
9 Move to page one by clicking the Description tab. 
 

Search Capabilities 
Searching for entries in the repository is an easy procedure. It can also be a very useful feature 
because you can set the Search Criteria to display only certain entry types as you move from 
one repository entry to the next. To search for an entry in the repository: 
 
 
Access an Entry:  1 Click Clear. This clears the dialog box but does not  

delete the entry. 
 

2 Type “Road Test” and press ENTER twice. The 
repository entry for Road Test is displayed with all of the 
information that has been entered into the repository for 
this entry. (This was done for you in the samples included 
with the TEST project.) 

 
3 Click Clear. 

 
 



Working with the Repository Functions 
 

 238 

Search for the   4 Click the Search button to open the search box to select 
Entry:    from the repository. Type “r” and entries that begin with  

“r” appear in the list box. If you now type an “o,” you see 
that the repository searches incrementally as you type, 
getting closer to the entry you want. 

 

  
                              Figure 18-5   Repository Search Dialog Box  

 
5 Click Road Test and then click Search. The repository 

entry for Road Test is displayed. 
    

Setting the Search Criteria 
Search criteria set the scope of the entries that are displayed as you search through the 
repository. 
 
Clear the Dialog Box: 1 Click Clear to clear the dialog box. 
 
Set the Criteria:  2 Click Search Criteria. You see a dialog box  

entitled Set Search Criteria, as shown in Figure 18-6.  
 



Working with the Repository Functions 
 

 239 
 

 

 
          Figure 18-6   Setting Repository Search Criteria 
 

3 In the box entitled Searches Affected, select All. This is 
the method used to limit the scope of the entries displayed 
when navigating the repository using Next and Prior, as 
well as the entries that are displayed when you select 
Search. 

 
4 In the box labeled Entry Characteristics, select All. This 

tells Visible Analyst to search all items in the repository, 
rather than only those entries that are Undefined or entries 
that have No Locations. No Location entries are typically 
those that have been entered directly into the repository 
rather than added to the repository by being placed on a 
diagram. 

 
5 Click the down arrow on the right side of the field marked 

Scope. This allows you to choose the diagram type to 
which you wish to limit your search. Select Data Flow. 

 
6 Click the down arrow on the right side of the field marked 

Entry Type(s). This allows you to be very specific about 
the type of entry to which you wish to limit your search. 
You can choose individual types and some combination 
types. 

 
7 Select Data Flow, then click OK. 
 
 



Working with the Repository Functions 
 

 240 

 
Try Out the Criteria: 8 At the blank Define dialog box, click Search. Because  

your search criteria limits searches to data flows, the list 
displays only the entries in the repository of the type data 
flow. Select Road-Test-Criteria and then click Search. 

 
9 Now click Next. The next entry displayed is the next data 

flow in alphabetical order, rather than simply the next 
entry in alphabetical order. If you click Next a few more 
times, you notice that only data flow entries are displayed. 

 
10 Click Search Criteria again and set Scope back to Entire 

Repository.  Be sure that Entry Type(s) is set to All.  
Click OK. 

Using Search to Add Items to a Field 
The Search feature can also be used to add repository entries to a field without retyping them. 
This option is very useful for adding multiple data elements to an Attributes field. Instead of 
typing the name into the field, you can select it using the Search function. 
 
Clear the Dialog Box: 1 Click Clear. 
 
Find an Entry:  2 Type “V” in the Label field and click Search.  

Valid-Applicant should be the first entry on the list.  Click 
on it and it appears in the Search For field. Click Search 
and the repository entry for Valid-Applicant appears. 

 
Select Attributes:  3 Click on the Attributes field. 
 

4 Click the Search button. The available data elements are 
displayed. Double-click on Address, Birth Date, Name, 
and Social Security Number.  All the selected elements 
are displayed at the bottom of the Search dialog box as 
shown in Figure 18-7.   

 
 

 
  
 
 
 
 
 



Working with the Repository Functions 
 

 241 
 

 

  
                          Figure 18-7   Add Information with Search 
 
 
Add Attributes 5 Click Select.  All the selected elements are added to the  
and Save:  Attributes field.  Click Save and then click Exit. 
 

ADVANCED REPOSITORY FEATURES 

Adding Information to the Repository 
In this unit, you add attribute information to an entity; the attributes consist of the data 
elements that make up the entity. You also add the primary key information, so that you can 
demonstrate Key Analysis and Key Synchronization to migrate foreign keys across 
relationships automatically. All of the key information relates to the method for accessing 
tables in a database. We assume that each entity corresponds to one table. 
 
Open a Diagram:  1 Open the entity relationship diagram “Driving School  

View”. 
 
 



Working with the Repository Functions 
 

 242 

 
Display a Repository 2 Click the  button on the control bar. 
Entry: 
   3 With the left mouse button, double-click the entity  

Student Driver. Its repository entry is displayed. 
 

Enter Attribute Data: 4 Place the text entry cursor in the field immediately to the 
right of the Add button under the Attributes field.  Type 
“Student Name” and click Add.  Add “Home Address” 
and “Age” in the same manner.  Since the data elements 
you just added to the Attributes field are not already in the 
repository, entries for each are automatically added when  
you click Save. 

 
Save the Entries:  5 Click Save to save the attributes you entered. 
 
Enter Key Information: 6 Click the key button to display the Primary Key dialog  

box.  Select Student Name to move it from the Columns 
in Table box to Columns in Key box.  Click OK to return 
to the Define dialog box.   
 
The key notation by Student Name indicates that Student 
Name is the primary key for this entity. 

 



Working with the Repository Functions 
 

 243 
 

 

 
                                   Figure 18-8   Student Driver Attribute Information 
 
 
Clear the Dialog Box: 7 Click Clear. This clears the repository dialog box but  

does not delete the entry from the repository. 
 
Access Another Entry: 8 Type “Driving School” in the Label field and press  

ENTER. 
 
 



Working with the Repository Functions 
 

 244 

Add Composition: 9 Click the Attributes Details button and type “Driving  
School Number” and “Driving School Name,” each on a 
separate line. Click OK. 
 

Create Primary Key: 10 Click the Key button next to the Attributes field to display  
the Primary Key dialog box. 

 
12 Click Driving School Number in the Columns in Table  

box to move it to the Columns in Key box.  Click OK to  
return to the Define dialog box. 

 
Save:   12 Click Save to save your changes, then click Clear. 
 
Access Another Entry: 13 Type “Driving Lessons” in the Label field and press  

ENTER. 
 
Add Attributes:  14 Click the Attributes Details button, place the cursor in the 

Type field, and then click Search.   
 

16 Scroll the search box until Driving School Number 
appears. Click Driving School Number and then click 
Search to enter it on the Attributes dialog box. Move the 
cursor to Type field of the next line. Add Student Name in 
the same manner.  

 
17 Move the cursor to the Type field of the next line, and 

type “Lesson Number.”  Click the cursor in the Limit 
field to enable the Physical Characteristics pane at the 
bottom of the dialog box.  Select Integer as the Data 
Type. 

 
18 Click OK to add the attributes to the Define dialog box. 

 
Create Primary Key: 19 Click the Key button next to the Attributes field to  

display the Primary Key dialog box. Click Lesson 
Number in the Columns in Table box to move it to the 
Columns in Key box.  Click OK to return to the Define 
dialog box. 

 
Save and Exit:  20 Click Save and then click Exit. 



Working with the Repository Functions 
 

 245 
 

 

 

Key Analysis and Key Synchronization 
The Key Analysis and Key Synchronization functions, found on the Repository menu, can 
help you set up a consistent relational database key structure. There are three types of keys 
used in a data model: primary, foreign, and alternate keys. All keys are designated in the 
Attributes field of an entity in the project repository. A primary key is one or more attributes 
or data elements that uniquely identify an entity. To designate a data element as a primary 
key, the yellow key notation is used in the Define dialog box.  On the diagram, primary keys 
are displayed in the area immediately under the entity name when the primary key level is 
selected from the control bar or the View/Entity Display Options menu.   A foreign key is a 
non-key attribute in one relation that appears as the primary key (or part of a compound 
primary key) in another relation. The gray key notation in the Attributes field of an entity 
designates a foreign key.  The FK notation is shown when the entity on the diagram is 
displayed at the attribute view level. 
 
Key Analysis verifies that the key structure for your data model is complete, checking that all 
key information is correctly identified for the data model. Key Synchronization analyzes the 
key structure and migrates data elements that you designate as keys, or parts of compound 
keys, across relationships to their associated entities, and creates the resulting foreign keys. 
Using associator element names in relationship repository entries makes this process work 
better. (Please check the Visible Analyst manual or online help system for an explanation of 
associator elements.) 
 
Key Analysis and Key Synchronization both involve analyzing the primary key [PK] and 
foreign key [FK] designations in the TEST project repository. A primary key is an attribute or 
data element that uniquely identifies a record. 
 
 
Run  Key Analysis: 1 Select Key Analysis from the Repository menu. Visible  

Analyst scans the entire repository and indicates any 
errors it finds. 

 
 
 
 
 
 
 
 
 
 



Working with the Repository Functions 
 

 246 

 
                                         Figure 18-9   Key Analysis Error Messages 
 
 
View the Errors:  2 Click the Maximize button in the upper right corner of  

the errors dialog box. Scroll through the messages. You 
see that there are error messages indicating missing 
foreign keys for the entities on the current diagram. 

 
 
                                                            Note 

 You can keep analysis error dialog boxes on the screen while you carry on 
various Visible Analyst activities. This is to make it easier for you to correct the 
errors found by Analyze. The same holds true for SQL Schema Generation, 
Shell Code Generation, etc. 

. 
 
3 Click Cancel. 

 
4 Select Key Synchronization from the Repository menu. 

Visible Analyst first analyzes for key errors and then 
migrates the foreign keys across relationships. 

 
  5 Maximize the Key Synchronization Messages dialog box.  

Key Analysis messages appear first, followed by Key 
Synchronization messages. You should notice the Key 
Synchronization messages, indicating the foreign keys 
that have been migrated. 
 
 



Working with the Repository Functions 
 

 247 
 

 

 
 
 

   
                                 Figure 18-10   Key Synchronization Messages 
 

 
6 Click Cancel. 

 
Examine the   7 Double-click Student Driver.  Notice the foreign key  
Migrated Key:   Driving School Number that has been added. This was  

done by Key Synchronization. It saves you from 
migrating all of the foreign keys manually.  
 
Note also that  Analyze added text describing the key. All 
text following an asterisk is considered a comment and is 
ignored by the repository. (When the object interface is 
enabled, comments are not displayed.) 
 



Working with the Repository Functions 
 

 248 

    
           Figure 18-11   New Foreign Key Information 
 

8 Click Exit. 
 

9 Deselect Student Driver on the diagram. 
 

View Objects  
Visible Analyst Corporate and Zachman Editions support the concept of an SQL view, which 
can be thought of as a derived or virtual entity.  A view is similar to an entity in that it has a 



Working with the Repository Functions 
 

 249 
 

 

composition, but the items that appear in the composition of a view must belong to other 
entities or be expressions based on data elements used by another entity.   
 
An SQL view is made up of two major components:  a list of column names and a select 
statement that is used to filter information from the tables in the view. The select statement 
can contain not only the primary select clause, but also any number of sub-selects and union 
selects. When view is selected as the entry type, view-specific Define dialog box pages are 
displayed.  Using these pages, you can select tables, columns, join relationships, clauses, and 
other options for the view.  An expression builder is available to help you create the 
expressions to be used in the filter, group by, having, start with, connect by, or join expression 
controls. 
 
Detailed information about views can be found in the Operation Manual and in the online 
help system. 
  
     Note 

 Views are not available in the Education Editions of Visible Analyst. 

Generate Database Schema 
The Corporate and Zachman Editions of Visible Analyst generates SQL DDL (Structured 
Query Language – Data Definition Language) schema from the information contained in the 
repository. In the Corporate and Zachman Editions, you can select from several different 
dialects of SQL, including a User Defined type, to allow the use of a dialect not currently 
supported by Visible Analyst. For more information on the custom feature, see the Operation 
Manual or the online help system. The statements that are supported include CREATE 
TABLE, CREATE INDEX, and COMMENT ON. More information is contained in the 
Operation Manual or in the online help system. 
 
The Education Editions of Visible Analyst allow you to generate SQL for Microsoft Access 
and Oracle only.  To generate SQL: 
 
Choose Access Dialect: 1 Choose SQL Dialect from the Options menu, then  

choose Access.  
 
Generate SQL Schema: 2 Select Generate Database Schema from the  

Repository menu to generate the schema.  When the 
dialog box appears, click OK.  (Refer to the Operation 
Manual or online help system for details of the SQL 
Schema Generation dialog box.)  If errors are found, they 
along with the generated schema will be displayed.  

 
View the Schema:  3 Maximize the SQL generation dialog box.  
 



Working with the Repository Functions 
 

 250 

4 Click the Schema button to display the generated schema.  
See Figure 18-12. If Visible Analyst does not have the 
information to generate the schema, a list of errors is 
displayed; but no Select box is present. Click the Errors 
button to view any errors.  (If too many errors are 
generated, the Schema button is not displayed.) 

 
 

 
  Figure 18-12   Generated SQL Schema 

   

Shell Code Generation 
The Corporate and Zachman Editions can generate C and COBOL shell code. The code that is 
generated encompasses the sequence of functions or paragraphs that make up a program, 
including global definitions, descriptive comments, function call/PERFORM statements, and 
passed parameters. Information entered in text fields in the repository entry for a program 
item or a structure chart module produces comments that describe these items within the 
generated code. Also, actual source code can be entered in the module description field of a 
module or macro, and this code is placed in-line with the function calls or PERFORM 
statements that are generated by invocations. Couples or ITRs used with invocation lines 
generate parameters for C code.  There is also an option to customize the code to be 



Working with the Repository Functions 
 

 251 
 

 

generated. (See the online help for other generation options supported by Visible Analyst, 
such as AS/400 DDS, Visual Basic, PowerBuilder, etc.) 

XML Generation 
Visible Analyst can generate the XML Schema based on the W3C standard by selecting the 
Tools | Export | XML Schema (XSD) menu option. The XML file is generated for the entities 
and (optionally) classes developed in the project. The XML file is written to the Visible 
Analyst TRANS folder.   
 
XML DCD code can also be generated based on the data models. This is similar to SQL 
schema generation.  XML can be selected as the generation option when you select SQL 
Dialect from the Options menu.  The procedure is similar to the SQL DDL generation.  See 
the Operation Manual or the online help for more information. 

Repository Reports 
Now you practice generating a report on the data contained in the repository. This is a basic 
report containing a detailed listing of all entries contained in the repository. For detailed 
information about Reports and Report Queries (Custom Reports), see the Operation Manual 
or the online help system. 
 
First set the font for the report you want to generate. 
 
Set the Report Font: 1 From the Options menu select Text Settings. 
 

2 Under Text Type, select Report Body. 
 

3 Select a typeface and point size, and click OK. 
 
Set the Report Criteria: 4  Select Reports from the Repository menu.  The  

Repository Reports dialog box appears (see Figure  
17-13). 
 

  



Working with the Repository Functions 
 

 252 

                                    
Figure 18-13   Repository Reports Dialog Box 

 
 
5 Under Project Scope, select Entire Repository. 

 
6 Under Report Type, select Detailed Listing. 

 
7 Under Included Types, select All. 

 
8 Under Report Scope, Entire Project is selected. 

 
9 In the box labeled Sort Sequence, select Alphabetical. 

This determines the entry order in your report printout. 
 

10 In the box labeled Entry Characteristics, select All  
Entries. 

 
11 In the box entitled Entries Per Page, select Multiple 

Entries Per Page. You can select Single Entry Per Page to 
reorder the pages of your report once they have been 
printed. 

 
Run the Report:  12 Click Print; the information is sent to the printer.  Select  

Preview to view the report first. 
 



Working with the Repository Functions 
 

 253 
 

 

 
             Note 

 Reports can be generated in HTML format so that they may be viewed in a 
browser.  When you select Preview, the Use Browser for Preview Option is 
enabled.  If you select this option and you have a browser on your PC, the report 
is generated and displayed in your browser.  

 
13 Click Cancel when printing is complete to exit the 

Repository Reports dialog box. 
 



Where To Go From Here 
 

 254 

 

Lesson 19  

Where To Go From Here 
 

OVERVIEW 
This concludes the Visible Analyst tutorial. To exit the program, select Exit from the File 
menu. 
 
You have now completed exercises in many of the major elements of planning, structured 
analysis and design, data modeling and object modeling: 
• Drawing diagrams to model a system. 
• Using methodology rules to insure against inconsistencies. 
• Adding written definition to the graphic model. 
• Embellishing the model following the initial layout. 
• Expanding the model through definition of repository elements. 
• Generating reports. 
 
All structured software and systems engineering involve these same basic operations. 

REAL WORLD APPLICATION 
The example project that you created was a simple one. The real power of MDA is in the 
application to systems too complex to keep in your head at one time, too large to be reviewed 
by inspection, too widespread to have only one person working on the whole job. These types 
of projects include nearly every system designed today. That power shows itself in four areas: 
• The assurance of accuracy and completeness, that no elements are left dangling or 

unaccounted for. 
• The prompting and reminders that error checks and repository output provide, to focus 

attention in the midst of a dauntingly complex assignment. 
• The word processing-like ease with which changes and modifications can be 

accomplished, while ripple effects are flagged and accounted for. 
• The convenience of thorough documentation that is produced concurrently with the 

design, not as a drudgery-filled after-effort. 
 



Where To Go From Here 
 

 255 
 

 

The power of MDA further multiplies into substantial gains in productivity, communication 
and quality when applied to team effort. The Corporate and Zachman Editions of Visible 
Analyst have significant capabilities for exporting and importing information, either through 
portable media or through participation in a local area network. This allows Visible Analyst to 
become an integral part of any development environment, sharing information and expanding 
the value of labor. Many groups thus can benefit from another group’s hard work. 
 
Finally, the application of the power of MDA productivity enhancement is not limited to 
software but can be applied toward analyzing and designing any system, such as: 
 

Manufacturing Medical Diagnostic Analysis 
Planning Command and Control Operations 
Processing Administrative Procedures 
Legal/Judicial Inventory Control 
Audits  

 
Visible Analyst is designed to be a natural extension of the way you think, create, and 
analyze. Our goal is to “Put MDA Within Everybody’s Reach” and to make MDA tools and 
the methodologies of structured analysis, design, data modeling and object modeling a 
natural, seamless, integrated part of your everyday work, rather than an arcane ritual to be 
occasionally endured by specialists. The integration and flexibility to use the components and 
elements that you deem necessary for your application provide you with a customizable tool 
set that can be adapted to support how you choose to work on the design and development of 
information systems. 

WHAT TO DO NEXT? 
There are still many things for you to do to become comfortable and committed to the use of a 
MDA tool. We suggest the following: 
• Study and review the logic concepts introduced in the tutorial (consider reviewing the 

referenced materials). 
• Review the tutorial steps and practice any areas that were unclear. 
• Select a personal real-world project to do using Visible Analyst.  Make it a modest-sized 

effort to give you some time to explore and experiment with the tool. 
• Select the parts and components that you want to use in your software development 

practice. 
• Practice, practice, practice. Make adjustments where needed. 
• Make the tool a regular part of all of your projects. 
• Define standards and procedures for library components. 
• Build disciplines and skills with concepts and Visible Analyst. 
• Use technical support as needed - don’t get stuck, don’t become frustrated. 



Where To Go From Here 
 

 256 

• Stop and evaluate what you have done, show others, review the work of others - find 
ways to improve the content and the processes. 

• Practice reusability wherever possible. 
• Stay up to date with the tool and the evolving methodologies. 
• Build a library of materials for use in future projects. 
 

CONCLUSION 
We hope that these lessons have helped to make you feel comfortable with the planning, 
structured systems analysis and design, and data modeling tools, and their implementations in 
our product. 
 
For more information or if you have any questions about MDA or structured analysis, please 
contact the Visible Systems technical support staff: 
 

Telephone (781) 778-0200 
FAX  (508) 628-1515 
Internet: http://www.visible.com 
E-mail: support@visible.com 

 
You can send your comments to: 
 

Customer Comments 
Visible Systems Corporation 
63 Fountain St. Suite 301 B 
Framingham, MA 01702 



Where To Go From Here 
 

 257 
 

 

 



Index 
 

 258 

Index 
 

# 
 button, 72, 73, 83, 85, 88, 90 

, 
, library modules, 128 
, return value, 233 

: 
:  procedure call, 184 

A 
a list of  functions for a class, 233 
a list of valid types, 148 
abstract class, 234 
Abstract class, 232 
access diagrams, 12 
access method, 231 
access method for an attribute, 144 
access projects, 12 
Accesses repository, 10 
action, 153 
action verb, 58 
action verbs, 56 
actions, 4 
activation, 176 
activation bar, 184 
activation symbol, 179 
active  object, 232 
active state verbs, 56 
activity, 157, 206 
activity diagram, 157 
activity states, 159 
actor, 167 
actor communicates with  use case, 169 
actors’, 167 
add a file, 116 
add a new method for a class, 233 
add activation symbol, 180 
add actor, 172 

add actors, 172 
add arguments, 148, 235 
add communicates relationship, 173 
add includes relationship, 173 
add message, 193 
add method, 193 
add methods, 233 
add object deletion, 182 
add object links, 193 
add objects, 192 
add procedure call, 184 
add procedure calls, 183 
add relationships to a use case diagram, 173 
add return, 186 
add symbol button, 139 
add symbols, 82 
add system boundaries, 172 
add system boundary, 172 
add text, 186 
add text button, 186 
add use case, 173 
add use cases, 172 
adding a line, 71 
adding a start, 160, 216 
adding a synchronization bar, 160 
adding activities, 161 
adding attributes to a class diagram, 145 
adding caption text, 73 
adding classes, 139 
adding classes to a view, 139 
adding composition, 240 
adding connection lines, 85 
adding decisions, 161 
adding entities to a view, 96 
adding items to a field using search, 240 
adding labels, 163 
adding lines to a diagram, 132 
adding methods, 149 
adding new flows, 118 
adding relationship lines, 99 
adding relationships to a collaboration 

diagram, 193 
adding relationships to a state model, 155 
adding relationships to a view, 140 
adding states to a view, 154 



Where To Go From Here 
 

 259 
 

 

adding stopping, 162 
adding swimlanes, 163 
adding symbols, 67 
adding transitions, 162 
Address, 144, 147, 148, 231, 234, 235 
advanced repository features, 241 
aggregation, 137 
aggregations, 4, 60, 138, 140 
Alias field, 224, 229 
aliases, 228 
Align selected symbols, 10 
align symbols, 83 
alternate key, 245 
alternate name for the use case, 171 
alternative labels, 229 
analysis, 1 
analysis error dialog boxes, 88 
Analysis error dialog boxes, 123 
Analyze, 10, 59, 80, 87, 88, 89, 101, 112, 119, 

122, 123, 151 
analyze for key errors, 246 
analyze information process, 3 
analyze process, 3 
analyzing a class diagram, 151 
analyzing a diagram, 101 
analyzing an FDD, 88 
analyzing for balance, 122 
analyzing for completeness, 122 
annotation, 215 
Apply button, 70 
argument list, 233, 235 
arguments, 148, 235 
Arguments, 147, 234 
Arguments button, 148, 235 
arrow, 58 
Arrow, 96 
arrow originating at the object lifeline and 

looping around to end at the same lifeline, 
176, 212 

arrow with a filled circle, 135 
arrowhead terminator, 130 
arrows, 60 
artifacts, 214 
ASCII file, 224 
as-is operations, 3 
assembly, 129, 198 
assigning user access, 14 
association, 137 

association flow, 213 
Associative, 138 
associative entity, 94 
associator elements, 245 
assurance of accuracy, 254 
assurance of completeness, 254 
asterisk, 247 
asynchronous message, 176 
asynchronous stimulus, 184, 190 
attach flows, 114 
attach lines, 114 
attached classes field, 231 
attached entities field, 231 
attaching data flows to symbols, 118 
attribute type, 144, 230 
attributes, 60, 137, 175 
Attributes, 137 
Attributes Details, 227 
attributes field, 229 
Attributes field, 230 
attributes of an object, 144 
Attributive, 138 
attributive entity, 94 
Attributive Entity, 98 
Auto Connect, 115 
auto label lines, 193 
Auto Label Lines, 71 
Auto Label Symbols, 67, 68 
automatic labeling of lines, 13 
automatic labeling of symbols, 13 

B 
Bachman, 96 
Back button, 227 
Backup, 14 
balancing a data model against a process 

model, 59 
basic attributes, 60 
basic MDA models, 3 
basic problem statement, 107 
behavior, 138, 175 
bi-directional relationship, 57 
black bar, 157 
blank context diagram, 92 
block the symbols, 83 
Boilerplate, 66 
Boilerplates, 116 



Index 
 

 260 

Boldness, 70 
bounding box, 70 
BPEL4WS, 205 
BPMN, 205 
build information systems, 1 
building relationships', 155 
business functions, 3, 79 
Business Model, 3 
Business Process Modeling, 205 
business rules, 58 
Business rules, 18, 42, 45, 46 
business scenario description, 171 
By, 147, 234 

C 
C, 250 
C type components, 138 
calling flows, 127 
calling sequences, 127 
caption text, 11, 116 
caption text adding mode, 11 
capture the behavior of a single use case, 175 
cardinality, 56, 137, 140 
Cardinality, 142 
cardinality notations, 96 
cardinality of classes, 138 
Cascade, 14 
change argument list of method, 191 
change arguments, 148, 235 
change arrangement of open diagrams, 14 
change caption characteristics, 73 
change cardinality of relationship, 101 
Change Color, 76 
change data flow lines, 115 
change default settings, 13 
change entity type, 98 
change from one state to another, 153 
Change Item, 98, 101, 135 
Change Item dialog box, 98 
change items displayed, 13 
change methods, 233 
change of condition, 153 
change terminator, 133 
change the appearance of active diagram, 13 
Change Type, 98 
change zoom level, 13 
changing a symbol type, 97 

changing caption characteristics, 73 
changing conditions, 61 
changing states, 61 
changing text characteristics, 76 
child, 81 
child diagram, 111, 112, 117, 118 
child diagrams, 107 
choose rule set, 5 
class, 138, 148, 175, 191, 234 
Class, 144, 230, 235 
class characteristics field, 232 
class diagrams, 137 
class hierarchies, 5 
class inheritance, 94 
class level, 189 
class model, 1 
class name, 235 
class type, 137 
classes, 4, 60 
Classic User Interface, 227 
classify kinds of users, 171 
clause information, 230 
clauses, 95 
CLDs, 137 
Clear, 9, 10 
clear dialog box, 237 
clear display, 226 
clear the dialog box, 238 
click and drag, 9, 12 
click and drag object, 12 
Close, 77 
close a diagram, 112 
Close Diagram, 112 
closing a diagram, 77 
cluster, 94 
cluster diagrams, 63 
cluster view, 95 
COBOL, 250 
code generation, 1, 127 
collaboration diagram, 189 
collaboration diagram analysis questions, 190 
collaboration diagrams, 189 
collapse folder, 12 
collection of program statements, 60 
colors, 75 
Colors, 13 
column information, 230 
columns, 95 



Where To Go From Here 
 

 261 
 

 

COMMENT ON statement, 249 
comment text, 247 
comments, 62, 250 
communicates relationship, 169 
compilation, 129 
completion of the actions, 157 
components, 1, 195 
components of a class modeling process, 137 
components of state transition modeling, 153 
Composition field, 224, 240, 245 
computer program, 128 
concatenated entity, 94 
Concurrency, 232 
condition, 176 
condition an object can be at rest in, 153 
conditional behavior, 157 
conditional flow, 211 
conditional invocation relationship, 133 
conditional procedure call, 184 
conditional terminator, 133 
conditions, 176 
configuration features, 7 
Connect, 10, 86 
connecting symbols, 86 
Connection errors, 151 
connection lines, 86 
connectors, 81 
consider benefit, 171 
consistency check, 3 
Constant, 144, 148, 231, 235 
context diagram, 92, 107, 112 
contract button, 226 
contract display size, 226 
control architectures, 127 
control bar, 10, 11 
Control Bar, 13 
control connection, 130 
control couple, 130, 135 
control couples, 60, 130 
control flags, 60 
Control menu, 8 
Control menu button, 112 
control relationship between activation and its 

callers, 176 
control relationship between the activation and 

its callers, 176, 179 
copy, 7 
Copy, 10, 13 

copy of  parameter is passed, 235 
copy of parameter is passed, 148, 234 
copy of the parameter is passed, 147 
Copy Project, 14 
copy text to a DOS file, 227 
Correct Cardinality, 101 
correlation table, 94 
couple, 130 
couple adding mode, 11 
couple cursor, 11 
couple-adding cursor, 134 
couples, 11 
Couples, 250 
Create a new diagram, 82 
create a use case diagram, 172 
create a view, 59 
create additional views, 139 
create diagrams, 12 
CREATE INDEX statement, 249 
create models, 3 
Create new diagram, 10 
Create New Diagram, 117 
create new sequence diagram, 178 
create projects, 12 
create repository entries, 80 
CREATE TABLE statement, 249 
create the process view, 103 
creating a child diagram, 108 
creating a diagram, 66 
creating a new diagram, 96, 116, 139 
creating a new project, 63 
creating a top-level diagram, 112 
creating an FDD, 82 
Crowsfoot, 65, 96 
CTRL+A, 10 
CTRL+C, 10 
CTRL+D, 10 
CTRL+E, 10 
CTRL+F, 10 
CTRL+L, 10 
CTRL+N, 10 
CTRL+O, 10 
CTRL+P, 10 
CTRL+Q, 10 
CTRL+R, 10 
CTRL+S, 10 
CTRL+T, 10 
CTRL+U, 10 



Index 
 

 262 

CTRL+V, 10 
CTRL+X, 10 
CTRL+Y, 10 
CTRL+Z, 10 
Current Diagram, 101 
current object, 8, 12, 68 
current project, 12, 78 
current zoom level, 12 
custom repository report, 10 
cut, 7 
Cut, 10, 13, 71, 89 
cutting a symbol, 70 

D 
dangling data flow, 122 
dashed arrow, 186 
dashed line, 176 
dashed line with an arrow, 169 
dashed vertical line, 175, 178 
data and control are passed between modules, 

130 
data attributes, 4 
data characteristics, 60 
data connection, 130 
data couple, 135 
Data Couple, 134 
data couples, 130 
Data couples, 60 
Data Definition Language, 249 
data element, 109, 148 
Data Element, 144, 230, 235 
data elements, 62, 228 
data entities, 3 
data flow, 110 
Data flow balance, 122 
data flow diagram, 56, 61, 103, 107, 128 
Data Flow Diagram, 4 
data flow diagram objects, 108 
data flow diagramming symbols, 111 
data flow diagrams, 63 
data flow line, 110, 115 
data flow model, 1 
data flow name, 111 
data flow splits, 122 
data flows, 58, 228 
Data members, 137 
data model, 1, 61 

Data Model, 4 
data modeling, 56 
data object, 214 
data only module, 129 
data parameters passed between program 

modules, 130 
data store, 58, 109 
data stores, 58, 228 
Data Structure, 144, 230 
data transformations of the system, 61 
data ture, 175 
database, 58 
database keys, 62 
decision, 157 
Decision, 133 
decision diamond, 161 
decision end, 157 
decision logic, 127 
decision start, 157 
decompose, 107 
decompose a process, 112 
decomposed processes, 90 
decomposing a diagram, 125 
decomposing a process, 108, 111 
decomposing data flows, 120 
Decomposition, 82 
decomposition hierarchy, 108 
default cardinality, 65 
default colors, 76 
Define, 10, 13, 236 
Define dialog box, 12 
define information systems, 1 
define models, 3 
define proposed changes, 1 
defining attributes, 145 
Definition errors, 151 
definition of object classes, 137 
DEL, 10 
delegate, 198 
Delete, 13, 89 
delete arguments, 148, 235 
Delete button, 226 
delete current parameter, 235 
delete current repository entry, 226 
delete line, 89 
Delete Project, 14 
delete the current attribute, 144, 231 
dependency relationship, 199 



Where To Go From Here 
 

 263 
 

 

derivation tree of the target, 191 
derived class, 142 
derived classes, 147, 234 
derived table, 95 
Description, 64 
Description field, 228 
description of the use case, 171 
deselect symbol, 71 
deselect symbols, 83 
Deselecting Objects, 9 
design, 1 
design information systems, 1 
designating a starting point, 159 
desktop colors, 7 
Detail field, 142 
develop changes, 3 
DFD, 58, 81, 107 
DFDs, 59, 63, 79 
Diagram, 14 
diagram Control menu button, 8 
diagram created by information, 67 
diagram creation date, 67 
diagram heading, 67 
diagram label, 68 
diagram list, 12 
Diagram menu, 13 
Diagram Type, 66, 112 
diagramming tools, 5, 63 
diamond, 157 
Discriminator Values & Meanings Field, 229 
display context sensitive help, 227 
display errors, 122 
display next sequential repository entry, 226 
display previous sequential repository entry, 

226 
displaying symbol labels, 76 
document information systems, 1 
double colon, 191 
double-click, 9 
dragged-down flows, 113 
draw a top-level diagram, 107 
draw data couple, 135 
draw line terminator, 133 
Draw lines, 10 
drawing a class object, 140 
drawing a data connection, 134 
drawing a line, 72 
drawing a process, 111 

drawing a structure chart, 131 
drawing couples, 134 
Drawing Mode buttons, 11 
duration of the action in time, 176, 179 
dynamic model, 61 
dynamic states, 5 
dynamic view, 155 

E 
ease of change, 254 
Edit menu, 9, 13 
EDITING A DIAGRAM, 67 
editing function shortcuts, 71 
editing mode, 11, 73 
elbow line, 99 
Elemental class, 138 
ending point, 158 
enforce referential integrity, 57 
ensure agreement, 108 
ensure understanding, 108 
Enter Subflows box, 120 
entities, 228 
entity, 56, 93 
Entity, 138 
Entity Attribute, 13 
entity model, 62 
entity relationship diagram, 56, 93 
entity relationship diagrams, 63 
Entity Relationship Model, 4 
entity relationship modeling, 56 
entity type, 93, 94 
Entries Per Page, 252 
Entry Characteristics, 252 
Entry Characteristics box, 239 
entry order, 252 
Entry Type field, 228 
erase button, 244 
Erase button, 226, 237, 238, 240, 243 
Erase partially drawn line, 10 
ERD, 56, 93 
ERD Notation, 65 
ERDs, 59, 63 
error checks, 254 
error message, 88, 101 
error messages, 60, 246 
errors dialog box, 246 
evaluate current information activities, 1 



Index 
 

 264 

event, 93, 162, 206 
event triggers, 153 
events, 4 
events that change state value, 155 
exceptions flow, 212 
existing activation, 180 
Exit, 12, 254 
Exit button, 226 
exit the repository, 226 
expand button, 226 
expand display size, 226 
expand folder, 12 
Explode, 112, 113, 117, 201 
exploding, 112 
Export, 14 
exporting the repository, 224 
extended attributes, 230 
extends relationship, 169 
external entities, 58, 107, 228 
external entity, 58, 110 

F 
F1, 2, 227 
fast track users, 2 
FDD, 79 
field types, 228 
File button, 227 
File menu, 8, 12 
filled circle, 158 
filled circle inside a hollow circle, 158 
filled solid arrow, 190 
Find, 10 
finding an entry, 240 
fixing errors, 123 
FK, 245 
flag information, 230 
flags, 95, 233 
flat flow of control, 184, 190 
flow chart, 107 
flow of events, 167, 171 
fonts, 7 
foreign key, 245 
foreign key notation, 245 
friends, 147, 234 
Friends field, 236 
from, 191 
function, 55, 60, 81 

function calls, 250 
function checks, 122 
function model, 1 
function overloading, 234 
function parameters, 235 
function symbol, 82 
functional decomposition diagram, 80, 90, 124 
functional decomposition diagrams, 79 
Functional Decomposition Model, 3 
functional decomposition modeling, 56 
functional models, 5 
functions, 228 
fundamental entity, 93, 96 
future line, 133 

G 
Gane & Sarson, 58, 65, 80, 109, 110, 111, 122 
gateway, 208 

complex gateway, 210 
exclusive decision, 209 
Inclusive Gateway, 209 

generalize relationship, 169 
generate a global view, 102 
generate a new view, 103 
generate application shell code, 2 
generate application software code, 1 
generate code, 6 
generate database schema, 2, 62 
generate new data model views, 102 
generate reports, 6 
generate schema, 1 
generate shell code, 62 
generate SQL code, 2 
generate test cases, 2 
generate test plans, 2 
generate test scenarios, 2 
generate test sequences, 2 
generating a process decomposition model, 

124 
generating a view, 102 
generating DFDs from an FDD, 90 
generating SQL, 249 
generic couple, 130 
generic couples, 130 
gerund, 94 
Global, 98 
global definitions, 250 



Where To Go From Here 
 

 265 
 

 

global view, 93 
global visibility, 144, 147, 234 
Grid, 13, 82 
group of objects with the same data structure, 

138 
guard condition, 184, 192, 193 
guarded object, 232 
guarded outgoing transactions, 157 

H 
half-stick arrowhead, 190 
hardware configurations, 7 
Help, 10 
help bar, 12, 68 
Help Bar, 13 
Help button, 227 
Help menu, 2, 15 
Help mode, 10 
hidden interfaces, 129 
Hide labels, 76 
hiding symbol labels, 76 
hierarchical diagram, 59 
hierarchical structure, 3, 4 
hierarchical structures, 62 
high-level planning, 79 
History button, 227 
History dialog box, 227 
horizontal dimension, 175 
horizontal solid arrow, 176 
how a parameter is passed, 148 
how groups of objects interact, 175 
how parameter is passed, 235 
how return value is passed, 147, 234 

I 
identify existing system processes, 55 
identify specific business function, 55 
Implementation, 144, 147, 231, 234 
implementation of an operation, 138 
Import, 14 
Included Types, 252 
includes relationship, 169 
incoming transition, 157 
Individual, 98 
information about the way modules function, 

130 

information cluster, 129 
information clusters, 228 
inheritance, 4, 137, 138, 140, 142, 231 
Inheritance, 138 
initiate a search, 226 
input, 60 
input data flow, 110 
input data flow not shown attached, 122 
input data flows, 115, 118 
input flows, 113 
input transitions, 157 
inputs, 4 
insert a new attribute, 144, 231 
insert a new parameter, 235 
insert text from a DOS file, 227 
instance, 138 
instance level, 189 
instance of a class, 175 
integrated repository, 1 
interaction diagram, 175 
interaction diagrams, 189 
interface, 196 
interface table row, 130 
internal data, 60 
internal flows, 115 
interrelationships of modules, 60 
intersection, 94 
invert a couple, 135 
Invert Couple box, 135 
invert elbow, 99 
invocation line, 130 
invocation lines, 250 
invocation sequences, 127 
invoked by name, 129 
invoked module, 130 
invoking module, 130 
ioutput data flows, 115 
iterative set of invocations, 131 
ITR, 130 
ITRs, 250 

J 
join information, 230 
join relationships, 95 
jump button, 227 
Jump button, 237 
junction, 94 



Index 
 

 266 

K 
Key Analysis, 13, 241, 245 
Key Analysis messages, 246 
key operational characteristics, 5 
key structure, 245 
Key Synchronization, 13, 241, 245, 246, 247 
key synchronization messages, 247 
Key Synchronization messages, 246 
Key Synchronization Messages dialog box, 

246 
keyboard editing commands, 228 
keys to using Visible Analyst, 5 

L 
label diagram, 68 
Label field, 228 
label line, 72 
Label Message dialog box, 184, 191 
label relationship, 99 
label symbol, 68 
label system boundary, 172 
label use case, 173 
labels, 3 
LAN version of Visible Analyst, 63 
left mouse button, 9 
level 1 DFD, 92 
level of detail, 112 
library macro, 129 
library macros, 128 
library model, 62 
Library Model, 5 
library module, 129 
lifeline, 175 
lifelines, 175 
lifetime, 178 
limit, 137 
Limit, 144, 147, 148, 231, 234, 235 
limit the scope of the entries, 239 
line adding mode, 11 
line between two entities, 94 
line cursor, 11 
line drawing mode, 10 
line entry mode, 133 
line handles, 72, 89, 118 
line mode, 115 
line segments, 89 

Line Settings, 13, 115, 132, 133, 134 
Line Settings., 73 
Line Type, 73, 134 
line with a filled circle, 130 
line with a filled in circle, 130 
line with an open circle, 130 
line with no circle, 130 
line-adding mode, 118 
line-drawing mode, 71 
lines, 11 
Lines, 10, 13 
list, 143 
list of  parameters, 234 
list of all entries in the repository, 251 
list of all objects in the repository, 12 
list of classes, 236 
list of column names, 95, 249 
list of data members, 230 
list of friend classes, 236 
list of friend methods, 236 
list of member functions, 236 
list of methods for the current class, 233 
list of parameters, 147 
list of valid types, 144, 234, 235 
list of values to identify subtype entities, 229 
Local change, 98 
Local Data Element, 144, 232 
Local Data Elements, 144 
location field, 144, 230 
Location field, 234, 237 
logical expression, 192 
logical file, 58 
long name, 148, 235 
Long Name field, 232 
Loop, 134 
loop line, 131, 134 
looping, 127 
Lorensen, 137 

M 
macro, 129 
macros, 128 
maintaining consistency, 59 
mandatory relationships, 57 
materials flow, 107 
Maximize button, 82, 116, 246 
maximize diagrams, 7 



Where To Go From Here 
 

 267 
 

 

maximize the window, 116 
Maximize the workspace, 131 
MDA concepts, 3 
MDA rules, 3 
MDI, 7, 8 
mechanics, 60 
member functions, 235 
Member Functions, 233 
Menu Help, 10 
menus, 12 
message, 176 
message flow, 213 
message name, 176, 183 
message type, 184 
messages, 191 
messages passed, 175 
messages received, 189 
messages sent, 189 
method, 138 
Method Definition dialog box, 148, 235 
methodologies for process modeling, 58 
Methods, 147, 233 
methods field, 149 
Methods field, 233 
methods window, 149 
migrate data elements, 245 
migrate foreign keys, 241, 246 
minimize diagrams, 7 
Model Balancing, 13 
model balancing rules, 13 
model errors, 3 
models, 1 
modify user list, 12 
modifying an existing view, 14 
modularity, 62 
module, 128 
Module, 232, 235 
modules, 127, 228 
move backwards through repository entries, 

227 
move name of a line, 72 
movement of items, 110 
moving a symbol, 70 
Multi-page, 67 
multiple incoming transactions, 157 
multiple open diagrams, 7 
multiple views, 93 

N 
name, 137, 191, 233 
Name, 230, 235 
name couple, 135 
name of message, 183 
name of parent item, 230 
name of the attribute, 144, 230 
name of the child class, 142 
name of the child entity, 142 
name of the parameter, 148, 235 
name of the parent, 117 
name of the parent class, 142 
name of the parent entity, 142 
name of the repository item, 228 
name of the source object, 191 
name of the target object, 191 
name of the use case, 171 
names of data flows, 111 
Names Per Relationship, 65 
navigating the repository, 236 
Nest, 12, 112, 116, 117, 155, 200, 201, 202 
nest a process, 116, 201 
nested decompositions, 122 
nesting, 108, 112 
network activity information, 12 
New, 96 
New button, 233 
New Diagram, 10, 66, 82, 131, 139 
new diagram dialog box, 66 
New Project, 64 
new project dialog box, 64 
next button, 236 
Next button, 226, 239, 240 
No Location entries, 239 
non-key attribute, 245 
non-transitory storage device, 232 
normal, 142 
normal class, 138 
normalization, 57 
Normalization, 101, 102 
normalization errors, 101 
normalizing data, 57 
note, 189 
note link, 190 
Notes field, 224, 229 
noun, 55, 56, 58 
number of attribute occurrences, 231 



Index 
 

 268 

number of names per relationship line, 96 
number of occurrences of an attribute, 144 
number of parameters, 147, 148, 234, 235 
numeric relationships, 138 
numerical scope of associations, 56 

O 
object, 93, 175, 189 
object  browser, 12 
Object Browser, 13 
Object Class Model, 4 
object classes, 191 
object definitions, 60 
object deletion, 176 
object instances, 191 
object link, 190 
object links, 191 
Object menu, 9, 98, 112, 113, 120 
Object Menu, 10 
object methods, 191 
object model, 1, 60, 61 
Object Model, 4 
Object Modeling and Design, 137 
object repository components, 230 
Object Type, 76 
objectives of structured planning, 55 
object-oriented approach, 5 
object-oriented concepts, 60 
Object-oriented modeling, 60 
objects, 3, 177 
objects participating in a business scenario, 

189 
occurs many times flag, 184 
occurs multiple times. See 
off-page connector, 81, 129 
one-way transfer of control, 130 
online help, 2 
on-page connector, 129 
open a parent diagram, 116, 200 
Open Diagram, 10, 112 
open diagram icon, 112 
Open diagrams, 7 
open ellipse, 131 
Open existing diagram, 10 
open function icon, 112 
operation, 138 
operational flows, 127 

operations, 138, 175 
optional comments, 171 
optional relationships, 57 
options for generating a view, 102 
Options menu, 12, 13, 115 
order to perform an action, 176 
ordered association, 143 
ordered set of invocations, 131 
Ordering, 143 
Orientation, 67 
output, 60 
output data flow, 58 
output data flows, 118 
output flows, 113 
output transactions,, 157 
outputs, 4 

P 
Page, 12 
page connector, 81 
Page Size, 67 
parallel activities, 157 
parallel behavior, 157 
parameter passing, 127 
parameter type, 148, 235 
parent, 81 
Parent, 116, 200 
parent class, 137 
parent class contains the child, 137 
parent entry type, 230 
Pass By, 235 
Pass By., 148 
passed parameters., 250 
passing data between a module and a data only 

module, 130 
passing of control, 59 
passing of data, 60 
passing of parameters, 59 
passing parameters, 60 
paste, 7 
Paste, 10, 13, 71 
pasting a symbol, 70 
PERFORM statements, 250 
performance of actions, 157 
period of the interaction, 175 
Persistent class, 232 
physical characteristics, 144, 148, 231 



Where To Go From Here 
 

 269 
 

 

Physical Characteristics, 235 
physical model, 61 
PK, 242, 244, 245 
planning, 1 
Planning Statement, 38, 41, 42, 48, 51, 52 
pointer, 147, 148, 231, 234, 235 
pool, 213 
populate composition of repository entry, 227 
populating a top-level diagram, 112 
Position Symbol, 68 
primary key, 242, 245 
primary key notation, 245 
primary keys, 93 
primary select clause, 95 
Print, 10, 12 
printer drivers, 7 
Prior button, 226, 236, 239 
Private, 144, 147, 231, 234 
private visibility, 139 
procedure, 60 
procedure call, 190 
process, 81, 108 
Process, 103 
process decomposition diagram, 80, 124 
process decomposition diagrams, 63 
process decomposition model, 124 
process model, 61, 109 
Process Model, 4 
Process modeling, 57 
process models, 5 
process numbering, 109 
process symbol, 81, 83, 108 
process symbol number, 112 
process view, 103 
processes, 1, 4, 56, 58, 79, 228 
product information, 15 
Product Model, 4 
program, 60 
programmatic modules, 153 
programming modules, 127 
Project Database, 5 
project details, 127 
Project Name field, 51, 52, 64 
Project Scope, 252 
properties, 60 
proposed operations, 3 
Protected, 144, 147, 231, 234 
protected visibility, 139 

provide focus for requirements analysis, 55 
pseudo code, 2, 62 
pseudo-code, 127 
pseudo-relationships, 95 
Public, 144, 147, 231, 234 
public visibility, 139 
Pure Virtual, 234 
purpose of structured design, 127 

Q 
Qcomp button, 145, 149, 230, 233 
Qualification, 144, 147, 148, 231, 234, 235 
qualification flag, 137 
qualifier, 147, 148, 231, 234, 235 
qualifier names, 142 

R 
Real Time Model, 4 
reasons for top-level diagram, 108 
rectangle, 81, 154, 157, 178 
rectangle with dashed lines and double lines, 

129 
rectangle with dashed sides, 129 
rectangle with right side open, 109 
rectangle with rounded convex sides, 129 
rectangle with rounded lines across each 

corner, 94 
rectangle with solid borders, 128 
rectangle with straight diagonal lines across 

each corner, 94 
rectangles, 139 
recursive call, 180 
Redisplay the Labels, 76 
Reference, 144, 147, 148, 231, 234, 235 
reference method, 137 
relational database, 56 
Relations field, 232 
relationship, 94, 138, 153 
relationship structure, 158 
relationship type, 151 
relationships, 60, 228 
relationships between entities, 4 
relationships between states, 154 
remove a friend, 236 
remove methods, 233 
remove partially drawn lines, 13 



Index 
 

 270 

removes the current parameter, 148 
Rename/Move, 14 
repeating subgroups, 94 
Report Query, 10 
Report Scope, 252 
Report Type, 252 
Reports, 10, 13, 251 
repository, 1, 5, 6, 7, 62, 93, 95, 224 
repository access, 13 
repository control buttons, 225 
Repository dialog box, 228, 230, 236, 240 
repository entries, 80 
Repository menu, 13 
Repository model, 5 
Repository Object menu, 145, 230, 232 
repository objects, 6 
repository pages, 230 
repository reports, 251 
Repository Reports dialog box, 251 
resize object browser, 12 
Restore, 14 
return, 147, 176, 186, 190 
return arguments, 176 
return flows, 127 
return from a procedure call., 190 
return message from an object, 176 
return type, 234 
return value, 233 
Returns, 234 
reusability, 62 
reverse engineering, 1 
reverse relationship, 100 
right  mouse button, 9 
role names, 142 
roles that generalize, 169 
roles user plays, 167 
rounded rectangle, 81 
row of buttons, 10 
rubber-banding, 72 
rule set, 65 
Ruler, 13 
rules, 5 
Rules box, 65 
rules methodology, 80 
Rumbaugh, 137 

S 
SA, 5 
Save, 10, 12, 77, 97 
Save button, 226 
save changes to an entry, 226 
Save diagram, 68 
SC, 127 
scaling, 67 
schema generation, 13 
Scope, 98, 240 
SD, 5, 127 
Search, 143 
search button, 84 
Search button, 226, 234, 235, 238, 240 
Search criteria, 238 
Search Criteria button, 227 
Search dialog box, 236, 240 
search for names, 84 
Search list box, 236 
search mode, 10 
Searches Affected box, 239 
Searching for entries, 237 
Security, 13 
select a flow to split, 120 
select a line, 118 
Select box, 240 
Select button, 236 
select database engine, 65 
select diagram type, 172 
select existing flow to be a subflow, 121 
Select Flows from Diagram box, 121 
select function, 90 
select line, 89 
select line type, 63 
Select line type, 155 
Select list box, 236 
Select point size, 251 
Select Process for Views dialog box, 103 
select statement, 95, 249 
Select the diagram type, 154 
Select typeface, 251 
select workspace, 172 
Select workspace, 154 
selected line, 133 
selected object, 8 
Selecting a Block, 9 
selecting a diagram object, 8 



Where To Go From Here 
 

 271 
 

 

selecting caption position, 73 
selecting diagram type, 96 
selecting lines, 72 
selecting page size, 96 
selecting symbol, 70 
selecting workspace, 139 
selection box, 85 
selection mode, 11, 69 
selection mode button, 88 
self call, 176 
self-delegation, 190 
self-destruct, 176, 182 
sequence diagram, 175 
sequence flow, 211 
sequence number, 192, 193 
sequence of output transactions, 157 
sequential object, 232 
set, 143 
set caption text mode, 73 
set of activities, 167 
set of couples, 130 
set of transactions, 167 
set physical characteristics, 235 
set report font, 251 
Set Search Criteria dialog box, 238 
set zoom level, 96, 116, 200 
Set zoom level, 131 
setting the zoom level, 139 
setting zoom level, 154 
sharing of attributes, 138 
sharing of operations, 138 
shell code generation, 13, 250 
Shell Code Generation, 224 
SHIFT+F1, 10 
SHIFT+F10, 10 
Shortcut keys, 10 
Show Line Names, 13 
Show Symbol Names, 13, 76 
Single Arrow, 134 
size of parameter, 147, 148, 234, 235 
small circle, 129 
Snap Symbols, 10, 83 
solid line, 169 
solid line with a stick arrowhead, 158 
Sort Sequence, 252 
source of operations, 108 
source/sink, 110 
source/sink,, 58 

source/sinks, 107, 228 
Spawn, 12, 90, 112, 116 
spawning, 79, 90 
special form of a state diagram, 157 
specific object from a class, 138 
Specifications for testing, 127 
specify hierarchical relationships, 81 
specify to search repository, 227 
specify values for arguments, 191 
Split Data Flow, 120 
splitting data flows, 120 
SQL DDL, 249 
SQL schema, 13 
SQL view, 249 
standard class, 138 
standard repository report, 10 
start object, 158 
State, 153 
state element, 154 
state entity, 154 
state model, 61 
state transition diagram, 153 
State Transition Diagram, 154 
state transition model, 1, 153, 154 
State Transition Model, 4, 61 
Static, 144, 147, 231, 234 
static model, 61 
STD, 154 
steps an object passes through, 153 
stick arrowhead, 190 
stores, 4 
Strategic Planning, 20, 21, 26, 34, 45, 47, 48, 

49, 50 
Structure, 138 
structure chart, 2, 59, 60, 61, 127, 128 
Structure Chart, 4 
structure chart diagramming symbols, 128 
structure chart model, 1 
structure charts, 81, 127 
structured analysis, 57, 127 
Structured Analysis, 5, 92 
structured design, 127 
Structured design, 59, 127 
Structured Design, 5, 92 
Structured Modeling, 92 
structured modeling techniques, 55 
structured Planning, 55 
Structured Query Language, 249 



Index 
 

 272 

Stylize, 69 
stylize a symbol, 70 
Stylize Symbol Dialog Box, 70 
stylizing a symbol, 69 
subclasses, 4, 60 
subflow, 121 
subflows, 120 
subfunctions, 55 
subroutine, 60, 128 
sub-select clause, 95 
subset of classes, 137 
subset of data, 93 
subset of data model, 96 
subsystems, 55 
subtype, 138 
subtype entity, 94 
supertype entity, 94 
support information systems, 1 
supported statements, 249 
swimlane, 158, 213 
symbol adding mode, 11, 68 
symbol button, 118 
Symbol Color, 76 
symbol cursor, 11 
symbol drawing mode, 81 
symbol entry mode icon, 96 
Symbol Labels, 77 
symbol mode cursor, 93, 94 
symbol-adding mode, 81 
symbol-adding mode cursor, 108 
symbols, 11, 139 
Symbols, 13 
synchronization bar, 157, 160 
Syntax Check, 101 
Syntax errors, 151 
system analysis process, 120 
system boundary, 167 

T 
T, 186 
T button, 73 
TAB key, 9 
table information, 230 
tables, 95 
tall thin rectangle, 176 
Terminator Type, 133, 134 
test completeness, 3 

test consistency, 3 
test data, 62, 127 
test information systems, 1 
test rule compliance, 3 
Text, 10, 13 
text adding mode, 10 
text cursor, 11 
text editor, 224 
Text field, 68 
Text Settings, 13, 73, 76, 251 
Text Settings Dialog Box, 74 
Text Type, 77, 251 
The base class, 142 
the data flow diagram, 58 
the development of physical programming 

modules, 2 
thorough documentation, 254 
Tile, 14 
time, 175 
time sequence, 175, 177 
to, 191 
to identify the data flowing into a process, 58 
to insert a new parameter, 148 
tools menu, 14 
top level diagram, 92 
top-down design map, 4 
top-level diagram, 107, 108 
transform data, 108 
transformations of data inputs and outputs by 

processes, 57 
transition, 153 
transition lines, 162 
transition steps, 153 
transitions, 155, 157, 158 
triggers, 4 
Triggers, 153 
triggers that change state value, 155 
Type, 144, 230, 235 
Type field, 144, 235 
type of message, 191 
type of relationship, 142 
type of relationship line notation, 65 
type of visibility, 137 
types of analysis, 80 
types of keys, 245 
types of qualifiers, 142 
types of roles, 142 



Where To Go From Here 
 

 273 
 

 

U 
Unattached objects, 122 
unconditional procedure call, 184 
undefined entries, 239 
Undefined entries, 239 
Undo, 10, 13 
undo move line, 13 
undo moved line, 10 
Union, 138 
union select clause, 95 
unnamed data flow, 122 
unordered association, 143 
Unselect diagram object, 10 
unstructured diagram, 63, 95, 112 
Unstructured diagram, 65 
Update DFDs, 91 
update existing DFDs, 91 
use case, 167 
use case diagram, 167 
Use errors, 151 
user goals, 167 
user information, 15 
user-defined attributes, 13 
user-defined object definition, 13 

V 
validate new information processes, 1 
Value, 144, 147, 148, 231, 234, 235 
Values & Meanings field, 229 
Values button, 191 
vertical axis, 177 
vertical dimension, 175 
view, 93 
View, 96 
View menu, 13, 93 

View Object, 95 
View of Data Model, 102, 103 
views, 4 
Virtual, 147, 234 
virtual class, 232, 234 
virtual table, 95 
Visble Analyst architecture, 5 
visibility, 139 
Visibility, 144, 147, 231, 234 
Visible Analyst basic components, 5 
Visible Analyst Control menu button, 8 
Volatile, 144, 148, 231, 235 

W 
warning messages, 60 
Window menu, 14 
Windows Clipboard, 7, 71 
Windows Multiple Document Interface, 7 
Windows-specific features, 7 
workspace, 6, 7 
Workspace, 67 

X 
X, 176, 182 

Y 
Yourdon, 80, 109, 110, 111 
Yourdon/Constantine, 60 
Yourdon/DeMarco, 58 

Z 
Zachman Framework, 1, 5, 15, 16, 17, 18 
zoom level, 82 

 
 


